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We have studied the problem of obtaining the rotation matrix elements d¥(6) =

(N| ez |N), where

|N) refer to a particular degenerate class of basis vectors of a symmetry group G which embraces
the rotations SU(2); as a subgroup. For G = SO(v), SU(»), and SU(») ® SU(»), we prove that these
particular representation functions are proportional to the Gegenbauer polynomlals C*“' 2)(cos 6),
Cy Atv— (cos 6), and C‘l"’(cos 6), respectlvely The reduction of such functions into one another according
to the formula CN, =Xy aNCN has been solved in generality for complex values of N and corresponds to
the reduction of Regge poles of G into Regge poles of one of its subgroups. The reduction formula for
functions of the second type EN =3.by E} has also been derived; here one simply meets an infinite

series.

1. INTRODUCTION

There are three main lessons to be drawn from the
nonrelativistic Coulomb problem: (i) the special
nature of the dynamics provides the higher symmetry
group SU(2) ® SU(2) ~ SO(4); (ii) the bound states
fall into simple classes of representations of the group,
namely of the type (N, N); (iii) the Reggeization
procedure for the bound and scattering states is more
easily discussed by working directly in the plane of the
principal quantum number rather than returning to
the conventional angular-momentum plane. In line
with these three ideas, a scheme! has been recently
developed for hadronic matter having the following
ingredients: (i) Strong interaction dynamics is evi-
denced by the existence of an approximate super-
multiplet group G which contains the rotations as an
SU(2); subgroup; (ii) the hadronic states belong to
simple, degenerate classes of G representations; and
(iii) Reggeization is carried out in the plane of the
Casimir operator which labels the physical sequence
of G multiplets. Reduction to the angular-momentum
plane is necessary only for introducing simple sym-
metry-breaking corrections to G and for comparison
with the results of standard Regge theory.

One of the crucial mathematical problems which is
encountered in these Reggeized supermultiplet schemes
is, for the degenerate series |N) of G-representations
in question, the determination of the rotation matrix
element

avo) =

oo(0) =
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(N 73 |N),

the analog of d Pj(cos 0) for SU(2);s.

prove in Sec. 2, for particular most-degenerate
sequences of basis vectors (fully specified there), that,
when G is SO(v), SU(v), and SU(v) ® SU(»), the
generalized rotation functions are the Gegenbauer
polynomials

C%V‘"’z’(cos 8), C}V‘”‘l’(cos 0),

and C}v"(cos 0),

respectively, appropriately normalized. A second
important aspect of the Reggeization scheme con-
cerns the reduction of the (above) series of functions
pertaining to G into the functions belonging to various
subgroups—for instance the reduction of C! into
Ct =P for the H-atom case—and this is fully
treated in Sec. 3. Formula (29) summarizes the work
and expresses the fact that (stated in terms of repre-
sentations of the first kind) a Regge pole of a higher
symmetry group decomposes into a series of Regge
poles of a subgroup plus a specific background inte-
gral. An alternative decomposition (stated in terms of
representations of the second kind) is given by formula
(32).

2. DEGENERATE REPRESENTATION FUNCTIONS

Let us recall how one proves that the rotation
functions d(0) = (JO] e=/2|JO) of SU(2) are the
Legendre polynomials. This will serve as a good
introduction and guide to the subsequent determina-
tion of the rotation functions for the higher groups.
There are at least two simple methods for finding the
d’(0).

(a) The first utilizes the SU(2) Lie algebra by
expressing the commutators [e%#72, J] as commuta-
tors [e=72, J,] and differentials of =7, Sandwiching
[e=72, J2] between the states in question provides a
differential equation whose regular solution is known
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to be the Legendre function. In fact this technique is
no more difficult to apply for finding the full set of
di1,(0) functions in closed form.

(b) The second makes use of the basic tensor
representation g, (q being a unit vector) and the fact
that general |j) vectors correspond to forming sym-
metrized traceless tensor products

Quiowy = 4y, """ q,, — trace terms.

The rotation functions come as scalar products

’
Quyo1sQuy- -y, Where g,q, = cosf.

That they are the Legendre polynomials may be estab-
lished by finding the recurrence relation between
three contiguous such functions and assuming regu-
larity at 6 = 0. The general djj,,.(f) are then found
from the P; by releasing indices® from the scalar
product QQ’. They are not immediately writable in
closed form.

Let us now turn to a larger group G which contains
the rotations as a subgroup and see how to determine
the relevant rotation functions. One must, for a start,
specify the class | NW) of G-basis vectors which charac-
terize the degenerate series in question; here N refers
to Casimir operator labels of G and W to the further
subgroup labels which completely specify the states.
Now, in practice, when G is one of the groups SO(»),
SU(»), and SU(v) ® SU(»), it is easiest to specify the
degeneracy character of the basis vectors by stating
precisely the nature of Young tableaux that represent
the sequence of representations (the relationship
between the number of boxes in various rows of the
tableau), which corresponds to stating specific rela-
tions between the Casimir operator labels N of G.
This already indicates that one should apply the
tensor representation technique (b) rather than differ-
ential method (a). A more important reason for
abandoning method (a) is the fact that the Lie algebra
may be quite complicated with the additional difficulty
that even if one knew the relations between the
(quadratic, cubic, - - ) Casimir (C) operators of G and
the commutators [e=%’z, C] the sandwiching of the
identities would provide involved second-, third-, - - -,
order equations? for

diwA0) = (NW| 7 |NW') (1

which, on the face of it, appear difficult to disentangle
and solve. We shall therefore adopt method (b) below

2 For example, djilo(ﬁ) is obtained from d,(f) by evaluating
ef(q)[a(Q + 0)/0g,] where €, is a polarization vector orthogonal
tog. ;

% The representation functions for SO(3, 1) satisfy a pair of
coupled second-order differential equations which, in general, lead
to a quartic one after decoupling.
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to compute the rudimentary functions 4 (6) in which
the W-subgroup is trivially represented? as a singlet.

A. G = S0(v)

We assume v > 3 in order that G © SO(3);. The
most degenerate class of base vectors |N) is charac-
terized by the Young tableau consisting of N boxes
in the first row and no others. It is constructed from
the basic unit vector’g, (u =1, -+ ,%),49,4, =1, by
forming the symmetrized scalar product

OQuiooouy =y " "y + Ay E Opimus " duy
It perms
+ bN z 6#1#26;13#4‘1#'5 Y quzv+ e
# perms

and imposing tracelessness: Quuuy - -u, = 0. This pro-
vides the coefficients ay, by, - - - and'it is easy to find

ay = —(v+ 2N — 4),
The basic recurrences follow by noticing that

q“lQI‘Z"'l‘NH + qﬂzQuwa"'lth + 4+ qﬁll\'+lQ“1"'ﬂN

N+1

= g qllelll"'(J')"‘MNﬂ

is a symmetric polynomial of degree ¢V*! and vanishes
under a double tracing operation. Accordingly it can
be expressed as the linear combination

a'Qﬁll"'ﬂN+l + IS Z 6uiujQu1"'(i:i)"‘llN+l’
"

where the coefficients « and f can be found by com-
paring terms of order ¢V and ¢V, One finds

N+1

z qﬁ‘iQﬂl"'(j)"‘l‘N+l
j=1

20 + N — 3)
(» + 2N — 2)(» + 2N — 4)

N+1

X z (SuiﬂjQﬂl"'(”)"'I‘NJrl' )
.9

= (N + ])Qﬂl"'l»’NH +

The representation functions® (corresponding to W-
singlets) are proportional to

Fay(cos0) = q,, " 4,0, uy» 4°9 =cosb. (3)

If we contract identity (2) over g, - ¢,

| we obtain
4 These are the analogs of d}y(0) wherein the U(1) subgroup is
trivially represented.
® If we designate the generators by Jyy which obey the standard
Lie algebra of the orthogonal group,

[JK}.,Juv] = i(akvjly + 61;;110' - 61:#-]/1»' - alv-]xu),

then one may identify the rotations as the subgroup consisting of
Jzs, Js1, and Jiz, and to determine (e~?8/2) below one fixes qu =
0,0,1,0,0,---) and q"t = (sin§,0,¢0s86,0,0, ).

¢ Strictly, Fv = Quy...uy@py.--uy but the tracclessness and
symmetry conditions allow it to be rewritten as (3).
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the recurrence relation

FN+1 — COS GFN

N+ N —3)
N—-l = 0,
(v +2N =2)(v + 2N — 4)
letting
Fy = N! Cy coep(y = 2),
) (v+2N—4HH +2N-2)
(4)

(N + 1)Cys1 — (v + 2N — 2) cos 0 Cy

+ ¢+ N—=3)Cy,=0, (5
whence we at once recognize the recurrence relation
for the Gegenbauer polynomial C}"~? (cos §). Thus,
(N + DI'(v —

'+ N-=2)

which is a well-known result’;
cases are new.®

di(6) = 2 cl-d(cos ), (6)

however, the next two

B. G = SU()

Here we take » > 2 in order that G © SU(2);. We
shall consider the class of basis vectors consisting of
2N boxes in the first row, N boxes in the second
row, -+, and N boxes in the (v — Dth row, the
degenerate Feynman series as it is sometimes termed.
This sequence is generated® from the fundamental
tensor g% (4, B =1, ,%), g5¢4 = », by forming
the symmetrized product

By- By _ Hl B, By
Quy--ay = Z 94,94, " " 94y
A perms
+ay Z o0t gy
porms
B’l Bs By Bs,,. DBy .
+ by 2 0410.420.2004104° - qlY +

and imposing tracelessness QCBz
mines the coefficients

—[2(N — )!(» + 2N — 3)]?

and so on. Basic recurrences are established by ob-
serving that

lj"v = 0. This deter-
“*N

ay =

Nil B o

i B (D By
z QA,-QAlu-(i)---ANH
)

" A. Erdélyi er al., Ed., Higher Transcendental Functions, Vol. 2
(McGraw-Hill Book Co., Inc., New York, 1954), Eq. 11.2(8).

8 Actually the formulas for the degenerate series of SU(¥) &
SU(v) were given in Ref. 1. However, they were obtained by a much
more cumbersome method than the one we have presented here.

¥ If one designates the generators of SU(¥) by J5, (J4 = 0), the
Lie algebra is given by the commutation rules [J£,J3] = 8575 —
6572 and the rotation subgroup J is given by the generators J? +

Ji4 o, Iy i+ - and UL —J; —J5 — T3+ ), where-
upon one identifies the tensors below:
gi=a- i ¢f=0a Wi,
q=1(0,0,1), q = (sin6,0,cos0).
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is quadruply traceless and hence can be written in the
form

N+1
BB i (i) B
QN+ B X SE0L00 i
&4,k
« and @ are deducible by comparing terms of order
g¥*' and ¢V, and we obtain the basic identity
N BB s
o Bi () By
ZqA,-QAi-“(i)“'A:’:
t,7
— OBr Bas
Qv
(v+N-—2
v+ 2N —1)(» + 2N = 3)
s (G
3 54,’5@ e 4211 @)
&0k,

Upon contracting over an index pair, formula (7)
provides the corollaries

ByAB (k) - BNyC C AB; "By
2090 ay T+ 44,

k

'ANC]

v+ N—-2) X sBioBy By (o
= oN 3 AR ¢
V+2N—3i§,: 4@y oty ()
and

apn e
(v+2N_2)(v+N_2) 1° By "
- QU ()

(v +2N = 3)

which are used below.
The rotation function is proportional to!®

IA
NQ A\ 5
quB =wvcosl. (8)

Upon contracting (7) over ¢’ Al o 'qg‘lmx and making
free use of corollaries (7) and (7 "), a little work shows
that the Fy satisfy the recurrence formula

Fy(cos §) = ‘1131

Fryi1— (v + 2N) cos 6F
N(» + 2N}v + 2N — 2)(v + N — l)F

1 =0,
(v + 2N — 1)(» + 2N — 3) !
whereupon, defining
Fy=nN—2+D 0 +2IN=2) .
(v—=Dr+1D-(v+2N=3) ~
we get
(N + I)CN+1 - (’V + 2N — 1) cos OCN

+ @+ N—-2)Cy,=0, (10)
which allows us to identify C§*~V(cos 6). Thus for

10 Again it is tracelessness and symmetry which allow Fy =
Qa kYO 4 to collapse into (8).
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the degenerate SU(v) series considered,

I'(N + DI'(» —
'N+v—-1

Note that when » = 4 we meet C}, polynomials. In
spite of the isomorphism SU(4) ~ SO(6) these differ
from the orthogonal functions C? for SO(6) because
the series of representations are quite different; in one
case the space coordinates are assigned to the [6]
representation, in the other case to the [15].

dyi(0) = D cloneos g). (1)

C. G =SU@) ® SU(»)

Again we take » > 2 and shall assign the rotations!?
to the diagonal SU(2) subgroup. We consider the
degenerate class of vectors described by tableaux
(N,0,---,0) and (N, N, -, N) for each, respec-
tively, of the SU(»), as well as the adjoint series. These
are constructed from the basic tensor (N = 1): q§
[A=1,---,v; B=1,---,; hatted and unhatted
indices referring to each of the SU(v) groups], qf;fql% =
»0G , by forming symmetrical products of these

Q=3 andiy
I perms
They are already irreducible representations of
SU(») ® SU(»), though not of the diagonal SU(»)
(since they are not traceless under 4B contractions).

Clearly,
N Bt B By B
> g G = (N 4 gk B (12)
2,7

and it is also easy to establish directly from the basic
definition that
OBy ByD By B /
450us. . aye =@+ N)Q4 4y . (12)
The fundamental representation function is pro-
portional to

A

[N S U Y ) ]:"--B_ I;IA_
Fy(cos0) = g7 " 47 "0y 4ys dadp = vcos .
(13)
i ! d .. 'Ay.
Consequently, contraction of (12) overg'z 1+ - g5 x4,

making use of (12'), yields the recurrence
Fyya— (v + 2N)cos0Fy + NN+ v — DFy_; =0
11 The Lie algebra here is provided by
[74.7¢) = 8875 — 627¢,
[ ,Jg] =0,
Vi a8 = arf - 52},

with J% = J% = 0. We take the diagonal subalgebra (J)} + (J)%
with J defined in Footnote 9 for our rotation subgroup and identify
our basic tensors g5 = q - (J)f and q’f =q- (J)f.

DELBOURGO, KOLLER, AND WILLIAMS

or, setting

Fy = N!Cy, (14)
(N + DCypy — (v + 2N)Cy
+N+»—1)Cy=0. (15

We recognize here the Gegenbauer function
C}{,"(cos 0).

Thus for the degenerate SU(v) ® SU(») series in
question,
(N + DI'(»)

Iy
C%(cos 6).
T(N + 7) ~/(cos )

dfi(0) = (16)
Notice that when v = 2 we have the O(4) functions
C! because the series of representations for both
groups coincide.

We note a few of the properties of these functions
and their relationship with the group theory before
we treat the reduction problem in the next section.
From the definition

T + 24)

Clz) = T(a + OLOD
(e + DDA

Fla + 22, —a; A+ 453 — 32),
(17)

it is well known that the Gegenbauer function satisfies
the symmetry property,

Cl = —sinan[C_,_y;/sin m(a + 24)].  (18)

Translated in terms of the normalized d functions (6),
(11), and (16), we have the ““weak equivalence”
relations

d¥(9) = d~N¥""(0), for SO(v),
d¥(0) = d~N"1(6), for SU(»),
dNO) = (),  for SU() ® SU®),

which simply reflect the fact that the three quadratic!®
Casimir operators N(N 4+ v — 2), N(N 4+ » — 1), and
N(N + ») that label the three sets of degenerate series
are invariant under the substitutions N —» —N —
v+2, —N—v+1, and —N —», respectively.
Indeed, the positions of the symmetry axes at N =
1 — {v, § — §v, and —}v, respectively, are associated
with the principal unitary infinite-dimensional repre-
sentations of the noncompact extensions SO(» — 1, 1),
SU(» — 1, 1), and SL(», C); and from the symmetry
point to N = 0 (the first, trivial, finite-dimensional
representation) stretch the supplementary series of

12 Stated in terms of the generators given in Footnotes 5, 9, and

A A
11, the Casimir operators are }.J,yJ,y, %J:J;, and }(Jf.l; +Jg.1§
respectively.
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representations.’”® Moreover, as the asymptotic be-
havior of CX(z) is (z* + z—*~2%), the unitary representa-
tions C*,(z) of the noncompact group extensions have
the lowest possible asymptotic behavior and are
square-integrable over the corresponding group mani-

fold.
3. ANALYTICAL REDUCTIONS

According to the generalized Regge scheme, a pole
belonging to a higher symmetry group G provides an
amplitude of the type B(t) d*¥(0)/sin ma(t), where
d*) is the generalized rotation function continued
along the trajectory to complex N = «(t). One may
naturally ask what sequences of ordinary SU(2),
Regge poles (and trajectories) are implied from the
higher group. At integer N values this question is
straightforwardly answered since it amounts to a
reduction of the higher multiplet (labeled by ¥) into
sets of J multiplets; analytically this corresponds to
decomposing the Cy(cos ¢) polynomials into series of
Legendre polynomials P ;(cos 6). More generally, one
is interested in the reduction problem for complex
N = o (i.e., along the whole trajectory) from G to one
of several possible subgroups—stated analytically,
how C% decomposes as a series of C%. The solution
to this problem is embodied in formula (29) and is
valid for arbitrary complex 4 and Z’, although
physically one is concerned only with integer or half-
integer values of 2 and A’. We have obtained it in three
stages: in the first almost trivial step the decomposition
for integer N has been obtained to serve as a boundary
check on the succeeding formulas; the second step
makes use of the basic recurrence relation between
C*and C*! to write C% as a finite series >, C* ,. plus
a finite number of “background terms,” valid when
A and A’ differ by an integer; the last stage consists in
rewriting the finite remainder as a difference of two
infinite series which permit analytic continuation in
A and 1’ to values which differ by half integers as well;
these ““background series’” are expressible as integrals
over the principal unitary representations, the analog
of the background integral at j = —} which appears
in ordinary Regge theory.

The case of integral & is simply resolved. The poly-
nomial character of C%(z) and its oddness or evenness,
according to whether N is odd or even, means that a
decomposition of the form

L e
Cy(2) = 2 a,Ch_a(2)

k=0

(19)

is possible for arbitrary 4 and A’ with [N/2] denoting
the largest integer less than or equal to N/2. The

13 These statements can be verified for the well-known representa-
tions of SO(2, 1) ~ SU(1, 1) and SO(3, 1) ~ SL(2, C).
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coefficients @, may be found from the usual orthog-
onality properties of the Gegenbauer functions
(N =2k + H)I(N — 2k + DA

2 al(N — 2k + 2)

x f "CH@Ch w1 — 2t dz (20)

dy,

for, upon using Rodrigues’s formulas,'

C}?(Z) — (_2)AF(N + A)F(N + 21) (1 ___ 22)1}—).
N T(HO(N + DIRN + 24)
x (ﬁ)A[a — ¥ ()
dz

and

dY 4 2T+ A .,

( dz) =P @
we get!®
ak — 22N—4k+2}.—1

x (N — 2k + /)I'(N — 2k + 2 + DI'(A)
al'2N — 4k + 20)['(X)

1
xf Cé\’;—2k+l’(z)(l - Z2)N—2k+l—§‘ dz
-1

_ (N =2k + WPk + ¥ — YLV — k + AT
Lk + DI(N — k + A+ DIA@W — 2)
(23)

We may actually continue the series (19) up to k =
$(N + n) for positive integer n < 22 since the a, are
finite and the C¥, vanish identically.!® But we cannot
extend the kX summation up to infinity as the I' func-
tions occurring in a; do not vanish to permit the series
to terminate naturally. Consequently the analytic
continuation to complex N = « cannot be trivially
deduced from formula (19).

We therefore follow a different approach which
hinges upon the contiguity relation?

CH' — C1) = (a + DT (24)

Writing (24) for values of « decreasing by units of 2
and summing, we get
i
CH = i o + 2 — W)Chg + Cihy. (29)
k=0

Let us fix / on the right in such a way that « — 2/is as

4 A. Erdélyi, Ed., Higher Transcendental Functions, Vol. 1
(McGraw-Hill Book Co., Inc., New York, 1953), Egs. 3.15 (10), (30).

15 Tables of Integral Transforms, Vol. 2, A. Erdélyi, Ed. (McGraw-
Hill Book Co., Inc., New York, 1954), Eqs. 16.3(4). The hypergeo-
metric function 3F, of unit argument is evaluated by Eq. 4.4(6) to
give formula (23).

1¢ Through the I functions appearing in definition (17).

17 Reference 14, Eqs. 3.15.2 (27), (28).
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close as possible to the right of the symmetry point
—A4,ie., let 0 < o — 2/ 4+ 4 < 2; by this device the
remaining function C+}, , is of “background size”
relative to the C?%, in so far as it is more convergent
in its asymptotic |z| behavior; for integer « the back-
ground term vanishes automatically and the decom-
position (25) reduces to (19). The same trick can be
applied successfully to obtain decompositions for 4
and A’ values differing by integers (see the Appendix

for details). One arrives at

1 A'—2
Ci" = Z akC:_gk + z Brca}‘——;Q—Z ’ (26)
=0 r=1

where 2’ — 1 is a positive integer, 0 < o — 2/ +
A< 2,and

o =2k ATk + 2 = D0 — k+ MI(R)
TPk + Do — k + A+ DIA)D( — 2)

@7

_ T+ ¥ —A—r+ D+ X = Dl'G+1r)
T+ DI = A—r 4+ DD+ A— [+ DY)
(28)

Formula (26) tells us that a Regge pole of a higher
group decomposes as a sum of Regge poles of a lower
group plus a number of ‘“background terms”; and
the square-integrability'® of these background terms
allows them to be expressed as a background integral

[ Btocie + i s

p=—0n0

over the principal unitary series of the noncompact
extension of the lower group. The distribution B(p)
is perfectly definite, being given'® by (26),but we shall
not belabor the issue by determining it here.

All the above is not quite general enough as we
often require decompositions for 4 and A’ differing by
half integers, the Toller — Regge pole decomposition,
C' — C%, being a case in point. As a matter of fact,
we can cover this situation with very little more work.
We formally rewrite the finite background sum as the

18 The asymptotic behavior ~|z|*~2!=2 of these background terms,
stronger than any single function C;}(z), means that they can only be
expressed as a distribution over the most convergent of these, viz.,
C-+ip(2); these functions pertain to the principal unitary repre-
sentations of the noncompact group extension and in fact there are
standard theorems that any square-integrable function f(z) defined
over the group can be decomposed in terms of them. See Footnote
19.

12 If B(z) satisfies ff" |B(2)[? (22 — 1)*~} dz < oo, then one may
write B(z) = | C%,,, L(@DB(p)(A® + p?) dp, with the inverse transform
B(p) = ffc 1?(Z)Cf';'+,~‘[,(z)(z2 — 1)»% dz according to the standard
references [see, for instance, I. M. Gel’fand and M. A. Naimark
Unitdre Darstellungen der klassischen Gruppen (Berlin, 1957)].
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difference of two infinite series

A=A © @

2 BTC;.-M" — z bkcg+k+1 + ZCkC;}’-HH»l’ (29)

r=1 k=0 k=0
with B, , ... =b, ,.. = —¢, and analytically
continue in A" — A. The correctness of this step can be
checked by writing each Gegenbauer function as a
sum of two hypergeometric functions of argument
z72 [formula (31) below] and comparing® all powers
of z. Our final result therefore is summarized by

12 @ 0
Ci =2aCon +IbCh% + T aClul, (30)
k=0 k=0 k=0

where 0 < o — 2/ + A < 2, g, is given by Eq. (27),
by=—C,,., ,, = B,,,and By is given by Eq. (28).
Hence, for general 2 and A’ we encounter an infinite
series of background terms; these cancel to a finite
series when A’ — /. 1s integral and disappear altogether
as they must when « is integer. The reduction formula
for the actual representation functions dV(f) is
obtained from (30) by renormalization with the factors
occurring in formulas (6), (11), and (16).

For the sake of completeness we provide below the
reduction formula for representations of the second
kind, which appear in the Mandelstam form of the
Regge pole amplitude (fQ_, ,/sinwa in ordinary
Regge theory). These functions of the second kind,
E%(z),in contrast to functions of the first kind,CA(z),
are singular near z = 1 and possess no symmetry
under the substitution o-> —a — 24, [For 2 =1,
cos awkE,(z) coincides with the Legendre functions of
the second kind Q,(z).] On the other hand, they have
simple asymptotic characteristics. They arise in the
break up

si
Ciz) = %’ (E} + E*,_,),

(31)
o L+ 20 m
T T+ A+ 1) sin (e + A)

xF(“+2Z+1,°‘+u;a+A+1;1).
2 2 z?

(22)—1—2}.

(32)

For Re o > — 1, the asymptotic behavior as |z| -
is governed by E*_,., which is a series of decreasing
powers in z? starting from z* Accordingly, we are
interested in a decomposition of the type

" o0
A _ i
EZ, or = Z aEZ sitons
k=0

20 In fact, this was the method by which we originally derived (29)
before realizing it could be recovered from (26) by the method
described in the text.
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which is easily discovered, once it is recognized that the
E, satisfy the same contiguity relations as the C,;
for we can follow the same steps which led to formula
(26) to obtain

14

Atr
—1— E —1—"/1+2k + Z B E—1—2A+2l+25

k=0 r=1

(33)

except that we no longer have any compulsion to
prevent / being as large as we like—there is no longer
any well-defined ““background line” which governs the
asymptotic behavior of representations of the second
kind. In fact, since

p! —21—2r—2
E—::21+21+2 = 0(]z|" i ),

itis clear that all remainder terms on the right (33) can
be made as small as we please for |z| > 1 by making /
sufficiently large. Consequently we can extend the
summation over k to infinity for |z| > 1 and drop all
remainder terms. Thus, for Reow > —4 and |z| > 1,

Ei;—zw(z) = Z akEia—2/1+2k(Z)a

=0

(34

where the coefficients g, coincide with the ones ob-
tained previously for representations of the first kind
and are given by formula (27).2!

APPENDIX
This contains the details of derivation of formula
(26) from (25). Repeated application of (25), when
A" — s a positive integer, gives

1 1—(kgt - +kjzr_y)

Ci= 3 o0 3

ka—a=0 k1=0
x(oc+l'—1—2k,1,_,1)___
A =1
(0 + A =2k — -
A

1 —2kgt-*4ky )

+2c§ig,~ 2 2

kyr_;=0 kry1=0

A
Ca—Z(k1+ ke )

— 2k;))

2L In the special case A’ = 1, A = {, this agrees with the “Lorentz
pole” decomposition into Regge poles; see A. Sciarrino and M.
Toller, J. Math. Phys. 8, 1252 (1967).
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X (a+}., - 1 _2k;.l_/1)...
r=1)
e+ A+r—2kyy — =2k
A+7
Rearranging the summations,
A2 ;
Zal k. }.Ca— 2k + z BA T, /Cai;l—z’ (Al)
r=1
where k =k, + ky + -+ + k,._, and
+ A =2000%) .
Ay ki __(oc (%) M )aa Jds (A2)
I'(A +
B;j,r.}\ - (F()»')r)lgo( o+ A +r— 2k)a}. RER (A3)
with
Kk F—ki—c—ka g
Gy pa = E 2 2
=0 k2=0 ky'—j—1=0
X {o+A+1—=2k—k)} -
o+ —1=2k - —k;_,_)}

(A4)
Careful inspection of (A4) reveals the recurrence
relation
Gppa=(0+ A4+ 1=20)a 551+ dr s
which solves as

X T(x 4+ 4 — KT —

ay k2=

A+ k)
I+ A+ 1=k — )Tk + 1)

The summation in (A3) is easily performed if the
recurrences among the 4 are used and one gets

(A3)

PG+,
() AL+
DA+ AU+ 2 —2—r+ D@+ 4 =)
ST+ DTE =2 —r 4+ Dl a4+ A= +7)
(A6)

Mora =

Hence, expression (26) follows.
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The non-Markoffian kinetic equation for the one-particle momentum autocorrelation function,
derived by Zwanzig and studied in great detail recently by Berne, Boon, and Rice, is analyzed in the weak
coupling limit. It is shown that, in this limit, this kinetic equation remains non-Markoffian because the
kernel which determines the memory effects only decays very slowly. More precisely, it tends to zero over
times of the order of the relaxation time itself and »ot, as could be expected, over the much shorter collision
time, The comparison with the more traditional approach, based on the solution of a transport equation,

is also discussed.

1. INTRODUCTION

Time-dependent autocorrelation functions (af) have
played an important role in the recent development
of nonequilibrium statistical mechanics. In particular,
they appear as a major tool in the theory of transport
coefficients.!

The traditional method for evaluating these quan-
tities is based on the solution of a transport equation
of the Boltzmann type for a one-particle distribution
function (df), from which the af can be computed
(see Ref. 1). However, the possibility exists of deriving
a kinetic equation which directly applies to these af.
This elegant alternative was first exploited by Zwan-
zig? and recently reconsidered with much detail by
Berne, Boon, and Rice.?

In particular these authors obtained a kinetic
equation for the one-particle momentum af, denoted
by ¥'(¢) [see Eq. (2.5)], of the following non-Markof-
fian type:

(1.1)

where the kernel K(¢), a function of time only, is
defined in terms of the N-particle Hamiltonian with
the help of projection operators. The simplicity of
Eq. (1.1) is remarkable; in particular, it opens the
way to powerful semiphenomenological approxi-
mations in cases, like dense fluids, where explicit
calculations cannot be performed. This is an important
result which cannot be achieved by the transport-
equation approach.

Yet the price paid for this apparent simplicity is
fairly high; indeed the whole difficulty of the many-
body problem is “hidden’ in the kernel K(#), which

oY) = —Ltdt’K(t — Y,

* Chargé de Recherche au Fonds National Belge de la Recherche
Scientifique.

1 See, for instance, P. Résibois, J. Chem. Phys. 41, 2979 (1964),
and references quoted therein.

2 R. Zwanzig, Phys. Rev. 124, 983 (1961).

3 B. Berne, J. P. Boon, and S, Rice, J. Chem. Phys. 45, 1086
(1966).

has very complicated analytical properties, even in
the simplest cases. It is the aim of the present paper
to illustrate this point: we discuss in detail the prop-
erties of the kernel K in the limit of weak coupling.

In Sec. 2, we first review briefly previous work
leading to Eq. (1.1) and then discuss a very simple
approximation leading to a Markoffian kinetic equa-
tion, describing an exponential decay for ¥'(¢). At
first sight, this approximation seems to correspond to
the weak coupling limit of Eq. (1.1).

In the third section, we reconsider the same prob-
lem from the more traditional point of view: we
calculate ¥'(¢) from the solution of the Fokker—Planck
transport equation which governs the evolution of the
one-particle momentum df in a weakly coupled gas.
The surprising result is that this calculation runs in
conflict with our approximate solution obtained in
Sec. 2.

The reason for this discrepancy is analyzed with
great detail in Sec. 4. Using the formulation developed
by Prigogine and co-workers,*5 we show that even in
the weak coupling limit [A* — 0, t — oo, (A2%) finite]
one is not allowed to take the Markoffian approximation
to Eq. (1.1). Indeed, we show that the simplified
kernel K(t), which results from this limit, is a distri-
bution which only tends to zero after times of the order
of the relaxation time of the system (4-2); moreover,
its explicit form remains rather complicated. When
this exact limiting form for K(r) is taken, we recover
of course from the kinetic equation (1.1) the result
derived before from the transport-equation method.
However, it looks as if, for the particular exact model
discussed here, the intermediate stage (1.1) is more
a step backward than a step forward in the analysis
of the behavior of ¥'(z).

This result does not, of course, put any discredit

4 1. Prigogine, Non-Equilibrium Statistical Mechanics (Interscience
Publishers, Inc., New York, 1962).

8 P. Résibois, in Many-Particle Physics, E. Meeron, Ed. (Gordon
& Breach Science Publishers, Inc., New York, 1967).
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on the above-mentioned semiphenomenological ap-
proaches, valid in dense systems, but shows the
difficulty of using Eq. (1.1) in exact models.

2. KINETIC EQUATION FOR THE VELOCITY
AUTOCORRELATION FUNCTION

We consider a system of N classical particles
enclosed in a volume Q. Its Hamiltonian (massm = 1)
is

N N
Hy=H,+ AWV =233+ 13 V(r,—r)), (2.1)
=1 i>j=1
where r; and p,, respectively, denote the position and
the momentum of particle i; V{(|r; — r,]) is the inter-

action between particles i and j.

The Liouville operator associated with (2.1) is

Ly = Ly+ 0L (2.2)
with
X 0
Ly=—i2p- - (23)
i=1 al'j
N
we=i1 3 . (i —i). (2.4)
ii=10r; \0p;, Op;
The one-particle momentum af is defined by
1 ;
V() = = (pexp (—iLyD)py), (2.5)
(P

where the bracket denotes the average over all phase
space weighted by the canonical distribution

o= [drap¥ . 26)
Here we have used the symbols rV¥ for (ry,r,, -,

ry), dr¥ for drydr, - - - dry, etc.
Moreover, we write for later convenience the
canonical equilibrium distribution p§ as

v X
J— € v
Py = PR(r") I'I1 #1%(ps), 2.7)
i

where @{%(p,) is the normalized one-particle Maxwell-

Boltzmann df, while PR(r") denotes the configuration
distribution

exp (—piV)
fdrN exp (—pAV)

PR(™) = (2.8)

As shown by Zwanzig and by Berne, Boon, and
Rice,5'¥'(¢) obeys the following non-Markoffian kinetic
equation:

o, ¥ () = —lzftdt’K(t’; HP@E—-1). (29

¢ See, respectively, Refs. 2 and 3.
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In this formula, the kernel K(¢; 4) is defined by

K(t; 1) = <1_z> (Fyexp [—i(1 — P)Lyt]Fy), (2.10)

D

where F, is the total force acting on particle 1, i.e.,
Jov(r, — 1)

F,=-Y

2.11
=2 or, @11)

and P is a projection operator defined as follows:
for any phase vector G(r", pV) one has

eq
PG(rY, p) = BEY | dr™ dpp; - G, pr™).

)
(2.12)

The proof of Eq. (2.9) is fairly simple but will not be
reproduced here; the reader is referred to the refer-
ences mentioned above.

We want to consider here a very simple model,
where all calculations can in principle be performed
exactly; hence we discuss the weak coupling limit of
Eq. (2.9).

Let us first naively expand the kernel K(7; 2) in the
coupling parameter 4, so that

K(t; &) = K®(@) + i AmIK M, (2.13)

Let us assume that this expansion converges for
small enough 1 and that each term K'")(¢) tends to
zero after some time 7,, independent of 4.

Moreover, we make the hypothesis that the integrals

f dt t"K™(t) (m > 0; n > 2)

0

converge. We then formally expand (2.9) as
t o0

atIF(t) = _lzf dr I:K(2)(t/) + z an“H_Z)(t'):l
0 n=1

x I:‘I"(t) + i;l(_m—")m a;"llf(t)]. (2.14)

We also notice that

(1) 8,¥(¢) as well as higher order derivatives are at
least of order A2;

(2) in the limit ¢ 3> 7,, we have

t 0
f dr K™y = f drK™(@ay™,  (2.15)
0 0

a result which is A-independent.

Thus taking the well-known weak coupling limit
42— 0, t — oo, (A%) finite, we arrive at the following
Markoffian form?:

o (1) = —220@W(r); 22— 0, t — oo, (A%) finite,
(2.16)

7 See Ref. 5, as well as H. Terwiel and P. Mazur, Physica 32, 1813
(1966); P. Mazur and H. Terwiel, Physica 36, 289 (1967).
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where the coefficient {® is defined by

€(2) =fmdtK(2)(l‘).
0

Deliberately, we have not tried to derive Eq. (2.16)
with much rigor because this would require the
knowledge of the analytical properties of the kernel
K(t; 4), which we have not yet investigated. It is,
however, interesting to point out here that standard
complex variable theory allows to formulate fairly
weak sufficient conditions on the Laplace transform
of the kernel K(¢; 4) for Eq. (2.16) to be rigorously
valid. This matter is discussed in detail in Appen-
dix A.

Using (2.10), (2.11), and the obvious property

PL, - =0, (2.18)

we may cast (2.17) in the explicit form

(2.17)

? = %2> foodt(Fl exp (—iLet)Fy),, (2.19)
P/ Jo

where the subscript O means that the average is taken
with the unperturbed canonical distribution.

Because ¥'(0) = 1, Eq. (2.16) tells us immediately
that the decay of the one-particle af is governed by a
single exponential

W(t) = exp (—A2?r), 120,
(A27) finite. (2.20)

In the next section, we show that an alternative
approach of the weak-coupling behavior of ¥(1)
throws doubt on the validity of this result. As a
matter of fact, we see in Sec. 4 that the assumptions
made here about the behavior of K(#; 1) are incorrect.
Yet, at first sight, the analysis given here seems just
as satisfactory as what is generally accepted as
“correct”” in most work on nonequilibrium statistical
mechanics.

t— 0,

3. ANALYSIS OF THE af IN TERMS OF THE
FOKKER-PLANCK EQUATION

For reasons which will become clear soon, let us
formally rewrite the af (2.5) as

W(1) = uu - py exp (—iLyt)[1 + (u- p,)/kT]),
(3.1)

where u is an arbitrary parameter with the dimensions
of a velocity. The equivalence between (2.5) and (3.1)
is readily obtained once the following elementary
properties are noticed:

(pry =0, (p}) = 3kT, (3.2)

(P exp (—iLyt)pi”) = 0J5"(pi" exp (—iLy)pi),
(3.3)

RESIBOIS, BROCAS, AND DECAN

where « and § denote Cartesian components of a vector
(0 =x,p,2z; B = X, ¥, z).

Using (2.6), Eq. (3.1) can be cast in the following
form:

Y() = u? f dp - pga(p: 1), (3)
with
eupus 1) = f drY dp¥py(rY, pVi 1) (3.5)
and
o, pV3 1) = exp [—iLyt][l + (u- p)/kT]p%.

(3.6)

Clearly, py(rN, pV; t) is a solution of the Liouville
equation

i0,p5(r", p¥s 1) = Lyppy(r™, p¥50) - (37)

and 1s normalized to one:
f dr¥ dppx(r, p; 1)
=J dr¥ dp®py(r™, p"'; 0)

- f drN dp¥[1 + (u - p)/kT]pS"

=1. (3.8)

It may thus be interpreted as an N-particle df and,
from (3.5), ,(py; ¢) is a one-particle df.

The motivation for writing ¥'(¢) in the form (3.1) is
now quite clear: the introduction of the formal
parameter u allows us, with the help of (3.4), to
calculate the af from the one-particle df ¢,(p,;?),
which has been extensively studied in the literature
(see Refs. 4 and 5, and references quoted therein). In
particular, let us consider the weak coupling limit
22—0, t— o0, (4%) finite. From (3.6) (taken at
t =0 and in the limit 4 —0), we also deduce the
following initial condition:

¢1(p1; 0) = [1 + (u- p/kTle(p),  (3.9)

P 0 = @i%(p), P71 (3.10)
It is then well known that ¢,(p,; ¢) obeys the follow-
ing equation:

0,01(p1; ) = QP (p)ey(prs 1), (3.11)

where Q‘(p,) denotes the linear Fokker—Planck
operator

0
0%p) = L5 f dk f dp. Ky == molk - (b, — )

P

d i
x KV - (~— _ —) o8py). (3.12)
aPl apz
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Here, V;, is the Fourier transform of the interaction
potential

v, =JdrV(r) exp (—ik. 1); (3.13)

d(x) is the Dirac delta function, and p is the particle
density.

The eigenvalues and eigenfunctions of (3.12) are
not known; however, it is readily verified that the
operator [@4]1Q®)(p,) is self-adjoint and satisfies the
conditions which guarantee that the Sturm-Liouville
type of problem,

[T QP (p)P () = A, [ D, (py), (3.14)

possesses a complete set cf eigenfunctions @, with
real eigenvalues A, (Ref. 9).
Moreover, we have the orthonormality property

J dp. (9T D, (p),(py) = 05T,

It is also known that Q®(p,) is a seminegative
definite operator such that (see Refs. 4, 5, and 8)

Ay =0, Dp) = @1"(p1)s
A, <0 (n>0). (3.16)

If we expand ¢,(p;; ¢) in the series of eigenfunctions
D, , so that

oo D) = GIkT 3 Eu‘“’C‘,;"(t)cbn(po, (3.17)

a=x,y,2 n=0

(3.15)

one obtains easily from (3.11), (3.14)-(3.16), the
following convergent formal expansion for the af
¥(1):

W)= 3 2ICPPexp (=2 A1), (3.18)

a=x,y,7 n>0
The expansion coefficients C'@ = C®(0) are given
by
€= WD)} [appl@,3) (1> 0) (319)

and obey the sum rule

z zlc(na)|2 =1

a=x,¥,2 n>0
Comparing (3.18) with (2.20), we immediately see
that these two expressions are only compatible
(a) if {'? is one of the eigenvalues, say A, (1, # 0)
of (3.14);

(3.20)

8 See especially, I. Prigogine and R. Balescu, Physica 23, 555
(1957).

% R. Courant and D. Hilbert, Methods of Mathematical Physics,
Vol. I (Interscience Publishers, Inc., New York, 1953). Note that all
equations are written here for a discrete spectrum. Because of the
very fast decay of the initial condition (3.9) at infinity, this result
appears to be correct in view of recent rigorous analysis {see C. H.
Su, J. Math. Phys. 8, 148 (1967)]. However, our conclusions would
be unaffected if the continuous spectrum of 3®)(p,) contributed to
the evolution of @,(p;; 7).
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(b) if simultaneously

C® = ok . (3.21)

Let us first show that condition (a) also implies
condition (b); then we verify that (3.21) cannot be
true.

We write (2.19) explicitly as

J dt— dkfdplfdpszk

x exp [—ik - (p; — potIkV,i*(p) 1 (po)

X kVimo[k - (py — po) Ik Vi ®(pOei®(py)  (3.22)
and, with (3.2) and integration by parts, as

Z(Z)

C())— __1_

o5 dp g™ [Pl%q]glm(l’l)[l’lq’ 1.

(3.23)
With the help of (3.15) and (3.19), this also gives

(=3 JICOFIA,L

a=x,¥,z n>0

(3.24)

which immediately shows that condition (a) implies
condition (b).

Now, this latter requirement in turn imposes that
P.¢5%(py) is an eigenfunction of Q(p,). Direct calcu-
lation immediately tells us that this is nof the case, and
we are thus lead to a contradiction,.

4. ANALYTICAL BEHAVIOR OF THE KERNEL
K(t, ) IN THE WEAK COUPLING LIMIT

The results of the preceding sections lead us to a
paradox: we have found a different behavior for'¥'(¢),
according to the method we have used! If we look
back at the various steps of the calculation, we realize
that the weak point is in the unchecked assumptions
made on the series (2.13), a crucial step for obtaining
the simple exponential decay (2.17).

We now show that these assumptions are indeed
incorrect: even in the weak coupling limit, one has to
retain an infinite class of terms in the expansion (2.13).

In order to prove this, it is simpler to consider the
Laplace transform K(z; 4) of the kernel K(z; 1). We
write

K(t; A) = —_—1§ dz exp [—izt] K(z; b)), (4.1)
27i Jo
where the contour C passes above all singularities of
K(z; 7). We have from (2.10) and (2.18) that
1/ 1
o F1 B
P\ " Lo+ (1 = P)ASL —

5 \
R@z; 2 = F ). (42
(z5 4) / 4.2)
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A possible reason for a nontrivial behavior of
K(z; 2) for small z [and thus of K(¢; 4) for large ¢] is
apparent in Eq. (4.2); the projection operator P,
defined by (2.12), appears in the denominator. This
makes it very difficult to prove any statement about
the analytical properties of K(z; 4); in particular, the
theory of Cauchy integrals, which plays such an
important role in the theory of Prigogine and co-
workers (see Refs. 4 and 5), is not directly applicable
to (4.2).

In order to circumvent this difficulty, we establish
an equivalent form for K(z; ) which involves in the
denominator another projection operator P,, defined

by
PG(rY, p¥) = Q7N f dr¥G(rY, pY).  (4.3)
The following identities can then be shown to hold:
K%z; 4)
z7IA%K%z; )

R(iz; 1) = (4.9)
with
Rz 7) = <;—> [ammtt + =20, =5 1

X D(py, z; Hppr(p).  (4.5)

In this last equation, we have introduced the one-
particle operators D and Q, defined respectively by

D(p,, z; )

= [ar™ dp¥oL L v
Ly + M1 — P)OL — z
N
X Py(rY) I«Iz P%(p) (4.6)
and -
Q(pl, z; A)
L [ar¥ ap¥-s, ——1 oL
Q Ly + A1 — PO)(SL -
X IT PiUp). (4.7)

Although this has not been proved rigorously, we
assume that D(p,, z; A} and (p,, z; 2) have a finite
value in the thermodynamic limit N — oo, Q — oo,
N/Q = p finite; this is easily verified to lowest order
in A

The proof of these identities is straightforward,
although fairly long; for these reasons, we have put it
in Appendix B,

Equations (4.4) to (4.7) express the kernel K(z; 1)
in terms of operators which involve only the projector
(1 — Py) in the denominator, but no more (1 — P).

It may be asked, of course, what is the advantage of
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these new expressions, which look much more com-
plicated than the compact expression (4.2) ? The answer
is that the analytical properties of operators involving
the projector (1 — Py) are fairly well understood, in
the frame of perturbation calculus at least.
Let us consider for instance Eq. (4.7); we have,
provisionally assuming convergence,
2Qpy, z; ) =

S0, (48)
n=2 .

with
£2(7L)(p )

_ =

o f dr¥ dp¥8L[(Ly — )1 — Po)SL]™

N

X TI 14(p)).

We can write this quantity in Fourier space with
respect to spatial coordinates:

e O
X O} BLILy = 27'(L = POLI™ 10}
X H P14(py).

Here we have used the usual Dirac notation, in terms
of kets [{k}) and bras ({k}|, for the Fourier matrix
element of an arbitrary function or operator G(rV, p™):

WG 10D = o [ar exp [—i%k,r,}

j=1

4.9

(4.10)

N
x G(r¥, p™) exp [iZk,’»r,-:l. (4.11)
=1

It is well known that the operator (1 — P;) has the
following formal representation in Fourier space:

(1 — Py ={k}§{0}|{k}><{k}l, (4.12)

i.€., it picks up from a complete Fourier expansion the
nonvanishing wavenumber components. This prop-
erty has been studied in detail recently’® and is also
briefly discussed in Appendix C.

For the operator y, defined by

¥(z) = ({0} SLI(Ly — 2)7'(1 — Po)SLI"[{0}), (4.13)
we may thus write the equivalent form
w(z) = ({0} 6LU(Lo — 2)'OL)" [{0})ire»  (4.14)

where the subscript ““irr” (irreducible) is taken with
the meaning used in the theory of Prigogine and co-
workers?5; that is, in the evaluation of (4.14), all

10 M. Baus, Bull. Acad. Sci. Belg. 53, 1291 (1967).
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intermediate states are to be taken with nonvanishing
wavenumbers {k} # {0}.

Operators of the type (4.14) have been extensively
studied. We define

P2 =92 [ze87],
yt(z) = [analytical continuation of y*(z € §1)]
[zesS] 4.15)

It can then be shown that, in the thermodynamic limit,
the only singularities of y*(z) are in the lower half-
plane S—, af a finite distance from the real axis, inde-
pendent of the coupling constant (see also Refs. 4 and
'5). This result cannot, however, by any means, be
considered as a mathematical theorem, and this
without doubt brings a certain weakness in the con-
clusion to be obtained below. Yet, many model cases
can be treated exactly, which confirm the statement
made here.!!

More precisely, it can be safely assumed that the
singularities of y*(z) are at a distance from the real
axis characterized by

Imz > —17), (4.16)

where 7, is some time characterizing the duration of
the collision process. We see thus that if |z| « 72,
then y*(z) may be expanded in a Taylor series around
the origin.

Let us now explicitly assume that the forces are
weak (4 « 1) and let us also preclude that we shall
later be interested in values of z of the order A2 [(12¢)
finite implies (4%z7!) finite]. We may then write from
(4.8), (4.10), (4.14), and the basic assumption on
y1(z), that
Q' (py, z; ) = BQ"(py; 2) + O(A);

A2—0, (2227 finite
= Q"% (py; 0) + O(4);
A2—0, (%27 finite, (4.17)

and a similar result holds for Dt(p,, z; A). Here, the
superscript “+” has the same meaning as in (4.15).
Moreover, from (4.6), (4.7), and (2.8), we see that

D2 (py, z) = Q+2(p,, 2) (4.18)
and

Q*(p,, z) = lim Q| dr¥ dp™SL

€0

oL

0 i€
N
X 11 pr'(p). (4.19)

11 A pathological case is found when one tries to expand
w*(z) as a virial series, in power of the density p; the well-known
divergence in the virial expansion of the transport coefficients is
related to a logarithmic singularity of ¢*(z) at the origin z = 0.
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With the help of (2.3), (2.4), (3.13), and the well-
known formula

lim [i(x — i) = #é(x) — iP(x"), (4.20)
€0
it is easily established from (4.19) that
Q*%(p,, 0) = —iQ%(py), 4.21)

where the Fokker-Planck operator Q?)(p,) was de-
fined in (3.12).

It is now a matter of some elementary algebra to
derive from the formulas established in this section
the following expression for the kernel K(z, 1), valid in
the weak coupling limit A2 — 0, z — 0, (4227 finite:

M R(z; 2)

i . .
= d e — eq -z
[(pi)f B g, M (Pl)} z
(4.22)

It is also easy to establish that, when A2 — 0, all the
singularities of K(z; 2) other than those described by
(4.22) (i.e., for |z| finite) are located at a distance from
the real axis given by (4.16).

The difficulty with the assumptions made about
expansion (2.13) is now easily understood. Indeed, if
we formally expand (4.23) in a power series of A2, we
get

/1212+(Z; A) — 2121»1?—&(270(2);
n=1

2=>0, z—0, (A% finite, (4.23)
and the coefficients K+(2")(z) have the form

K¥(z) = (i"By,)/z" . (4.24)
Here the coefficients f,, are independent of both z and
A, and the factor i* is introduced for convenience.
The explicit form of these f,, is complicated but not

needed here, except for §, which is immediate to
calculate:

1

fo=—

* (D

Inserting (4.23) into (4.1) and performing the

trivial residue evaluation at z = 0, we obtain the

following expression for the time-dependent kernel
[see also the argument after (5.1)]:

dpll’lQ(z)(Pl)PﬂPfq(PJ =% (4.25)

RK(t; 2) = 22%P8(t) + A*K’(1; 4) + Olexp (—t/r)1;

. *—0, t— o0, (4%)finite, (4.26)
with
0 n—2
}.2Kl(t; }. — 227;' t .
) nzz ﬁ?n (n _ 2)! >

0, t—o0, (A%)finite. (4.27)
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The full complexity of Eq. (4.26) should be appre-
ciated. First, let us notice that the leading term
2A2®4(¢), when inserted into (2.9), would imme-
diately lead to the simple exponential decay (2.20);
moreover, the singular nature of this term is not re-
lated to the formal nature of expansion (4.23). As we
show in Appendix D, this term remains when the
compact form (4.22) is Laplace-inverted: it is related
to the fact that the first derivative of ¥'(¢) does not
vanish at t = 0 when the limit # — 0 is taken affer one
goes first to the weak coupling approximation [see
(3.18)].

Next, we notice that the remainder A2K'(¢; 4) is of
order A* for times of the order A~2 (assuming conver-
gence). Nevertheless, it does not satisfy the requirement
of tending to zero over a time independent of /. In other
words, its total contribution for times of the order
A2is
(lzt)"'l
(n — 1)
t— oo, (4%)finite, (4.28)

12 0
[arkawn=23p. — 0();
0 n=2

A2—0,

a quantity of the same order as the integral of the first
term in (4.26). We are thus not allowed to neglect this
remainder, and the derivation leading to (2.16) is in
error.

We shall not pursue further the analysis of the
expansion (4.24), because this would require a detailed
calculation of the coefficients f,,. Moreover, in the
next section, we derive the correct behavior for the
af W(z) by a direct method, independent of any
perturbation expansion. Also a detailed model calcu-
lation, together with a few general properties of the
kernel K(z; 1), are presented in Appendix D.

5. CONCLUSION

In the preceding section, we have established the
correct form for the kernel K+(z;A) in the weak
coupling limit [see Eq. (4.22)] and we have shown why
the naive reasoning which leads to a simple expo-
nential decay for the af ¥'(z) is in error.

We still have to prove that Eq. (4.22) for K+(z; 1)
solves the apparent paradox we have found and leads
to (3.18) for the solution F(¢).

Let us first take the Laplace transform of Eq. (2.9);
we obtain

Y1) = L

27i Jo

exp (—izt)

PR (5.1)

The contour C is chosen as a parallel to the real axis
in the upper half-plane, closed by an infinite semi-
circle in the lower half-plane; because the contribution
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to (5.1) coming from this semicircle vanishes, we may
as well replace K(z; 2) by its determination K*+(z; 1),
defined by a formula analogous to (4.14). Moreover,
in the weak coupling limit, we may use expression
(4.22) for the kernel K*(z; ), because in Eq. (5.1) we
are only interested in the singularities of the integrand
located at a distance of the order A2 from the real axis;
all other singularities give asymptotically negligible
contributions. After some straightforward algebra, we
get

1 1
_ — —7 —_—
() = j;c dz exp ( lzt)[:< ; f dp,p,

Py
X Por(p )} ;
z — iA2Q®(py) e
2—>0, t— o0, (%) finite. (5.2)

The bracketed term in the integrand can be expressed
as a series expansion in the eigenfunctions of Q®(p,);
using (3.14) and (3.19), we get immediately

Y1) = L dzexp(—izt)| Y 3 IC0F

2m7i ﬁ}' P [a:w,y,z n>02Z2 -+ iA? lAnl:l
Commuting the sum and the integral, we get then the
required result (3.18) by application of residue
theorem.

This shows the complete equivalence between the
transport-equation method, as developed in Sec. 3,
and the approach based on a kinetic equation for the
af when the weak coupling limit is correctly taken.

However, we see that for explicit detailed calcu-
lations, the apparent simplicity of the kinetic equation
(2.9) is paid for by the great complication of the
kernel, even in a simple limiting situation [see Eq.
(4.22)].

This of course does not prevent these kinetic
equations from being extremely useful in the semi-
phenomenological treatment of systems which are
beyond the power of quantitative treatment; a nice
example is furnished by the Berne-Boon and Rice
analysis of Rahman’s computer experiments.!? Yet
the present derivation shows very clearly the great
care that has to be exercised when exact calculations
are developed starting from these kinetic equations.
Such difficulties are usually avoided in the more
traditional treatment based on transport equations;
as we exemplified in Sec. 3, the calculations, although
less elegant, are then generally straightforward.
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APPENDIX A: MARKOFFIAN LIMIT OF A
NON-MARKOFFIAN KINETIC EQUATION

We formulate®® here rigorously sufficient conditions
on the Laplace transform of the kernel K(z; A} which
guarantee that the weak coupling limit of Eq. (2.9) is
the Markoffian equation

oy () = —12[ f dt’K(z)(t’)}‘F(t). (A1)
0
This analysis is based on the Lagrange theorem,'

which we recall here without proof: If K(z; 1) is
holomorphic in a domain including a circle on which

and if
| R(z; DI # 0 (A3)
inside this circle, then the equation
z4+ 2K(z;2) =0 (Ad)

has a single zero, z,, inside this circle. Moreover, this
zero is given by

o 1\ gn—l Fag, . 3
Zy = z( nl') [d K (Z’ A)} z?n'

dzn—l

(A5)

2=0

n=1

From this result we want to prove the following, more
general result:

Theorem: Assume that the Laplace transform
K(z; 2) of the kernel [see (4.1)] exists and satisfies the
following requirements:

(1) K(z; 2) is holomorphic in z in the semi-infinite
plane

Imz > —7;' (7, > 0, A-independent) (A6)

and holomorphic in A for A smaller than some finite
value 7,;
(2) K(0; 4) is finite for all |A] < |4,|, so that

|K(; A)] > B> 0 (Bis-independent); (A7)

(3) |K(z; 2)| tends to zero at least as fast as |z|~! for
zZ— 00,

Consider the solution of Eq. (2.9), which in general
is
4z _CXP (—izt)

, 1
Y({t) = —
® z + 22R(z; )’

27i Jo

(A8)

where the contour C lies above all the singularities of
the integrand. In the weak coupling limit A% — 0,

13 1t is gratefully acknowledged that the matter of this appendix
is the result of fruitful discussions with Dr. M. De Leener.

14 See, for instance, G. Sansone and J. Gerretsen, Lecture on the
Theory of Functions of a Complex Variable (P. Noordhoff Ltd.,
Groningen, The Netherlands, 1960).
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t — o0, (A%)finite, we then have the following as-
ymptotic result:

W(t) = exp [iA*K(0; 0)t]. (A9)
First we establish a lemma.
Lemma: Consider a region
Imz> —r> —1%, (A10)

where r is an arbitrary positive number, smaller than
7.; and consider values of A% such that!®

A2 < rB{{A(r)[M(r) + BI}

where M(r) and A(r), respectively, denote the least
upper bound of the modulus of K(z; 2) on a circle of
radius r centered around the origin and in the whole
region (A10) [clearly M(r) < A(r)].

Then, under the conditions of the theorem, z 4+
A2K(z; ) has only one zero in the region (A10) and
this zero is given by Lagrange formula (A5).

(Al1)

Proof: The proof runs in three steps:
(a) From (All), the zeros z, of z 4 A2K(z; 1) in
(A10) are such that

|20 = 122K (z0; D) < 22A4(r) <rB[[M(r) + Bl. (A12)
(b) Inside and on the circle of radius R, defined by
R = rB[[M(r) + B], (A13)

the function K(z; 2) does not vanish. Indeed, K(z; 2),
being holomorphic inside the radius r, has the ex-
pansion

RN =300 d<r.  (Al9)

Then
|K(z; 2) — R(0; 1| < ZIQn(l)I lz]*.  (A15)

Moreover, by the Cauchy- principle, we have

10, (D < [M(r, DYfr" < [M(P))fr",  (Al6)

where M(r, 1) denotes the maximum modulus of
K(z, 2) on the circle of radius r. Thus

|K(z; )] > 1K(0, )] — |R(z; &) — R(0; 2)] (A17)
>B— M@r)z(r— 2z, |zl <r. (Al8)

The second term increases when |z| increases, but
clearly
|K(z; D] >0

when [z| < R [see (A13)].

(A19)

% We assume here rB/A(r)[M(r) + B] < A2; strictly speaking,
instead of (Al1) we have A* < min [rB/A(")[M(r) + B], A2]; the
case rB/A(r)[M(r) + B} > A2 is, however, trivial to treat.
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Imz 4

Fic. 1. The con-
tour of integration in
Eq. (AB).

Rez

== —

ﬁzo

(c) On the circle of radius R, one has [see (All)
and (A13)]

PLSEIR)] rB M(r)
|zl [M(r) + BlA(r) rBM(r) + B
(A20)

By (A19) and (A20), we see that the circle R satisfies
the conditions of Lagrange theorem; we have thus
one zero inside this circle, which is given by (AS).
From (A12), there can be no other zero inside the
region (A10). This completes the proof of the lemma.

With this lemma the proof of the main theorem is
immediate. Indeed we can choose the contour of
integration in (A8) as is indicated in the Fig. 1,
because the integrand of (A8) has z,(4) as only singu-
larity in the region (Al0). As the two segments
parallel to the imaginary axis do not contribute, we
have

Y1) = exp [—izo(A)t] + ZL exp (—1tr)
mi

w0—ir i
xf dw exp [ ia,)t] .
— 0 —iT (6() — ir) =+ 121{((1) —_ ir; l)
(A21)
The integral in the second member exists because the
integrand is regular and the condition imposed on

|K(z; 4)| at infinity insures that the limit @ — o poses
no difficulty (in the Cauchy principal value sense).

Thus
J‘w_"dw exp [—~iwt]
—w—ir {0 — ir) + 22K(w — ir; 2)
As |zg| < R < r, we see that in the asymptotic limit
t — o0, one has
W{r) = exp —izo(A)r.

(A22)

Note that this result is valid for any A satisfying
(Al11).'¢ As the right side of this latter equation is
independent of 4, we see that this condition is auto-

16 We see here that the asymptotic result (A22) is valid for A2 finite,
satisfying (A11). We do not know, however, whether this condition
(Al1) is very restrictive or not.
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matically fulfilled when 4> — 0. Moreover, the regu-
larity of K(z; ) with respect to 4 also insures that

lim z(4) = —12K(0; 0), (A23)

A=0

and we thus get (A9) in the weak coupling limit.

Note that neither (A6) nor the asymptotic behavior
of |K(z; A)| for |z| — O are satisfied by the kernel (4.22).

Let us finally point out that the proof was possible
because K(¢; ) is an ordinary function. In transport
theory, equations similar to (AS5) are often used (see
Refs. 4 and 5), but no comparable rigor can be achieved
in their derivation, because in this latter case the
kernel is an operator.

APPENDIX B: PROOF OF EQUATIONS
4.4) TO 4.7
With the help of (2.4), (2.6), and (4.2), we can write
2Rz ) = = J dr™ dpVp ASL
(py)
1
X
Lo+ XL — P)oL — z
We use the identity
[Ly + A(1 — P)SL — z]"' = [Ly, + AOL — zJ!
+ [Ly + AL — z]"PASL[Ly + A(l — P)L — 2]
(B2)

Lyp.py'. (B1)

and insert it in (B1). Using (2.12), we obtain
K(z;2) = R(z; 2) + ([2)K%(z; DK(z; 2), (B3)

where
ROG; 1) = — f dr¥ dp¥p,6L
(p1)

o
Ly+ A0L — z

The identity (B3) was in fact already proved in Ref. 3.
In a second step, we transform K°(z; 1) by using the

projection operator P, defined by (4.3). Let us first

introduce the auxiliary operator A(rV, pV, z; 2):

AN, pN, 23 2)

= OL{Ly + ABL — z] 'Ly,

= OL[Ly + APYOL + A(1 — Pg)oL — zJ'Ly. (BS)
An identity similar to (B2), but involving now P,

leads us to the following result:

AN, pY, 25 Dpypid

Lypipy'.  (B4)

w 1 8. 1
= p(r", p¥, z; Hppl — - (™, p¥, z; 2) o

x f drVAGS, pY, 23 Dpups, (B6)
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where we have introduced the operator

(Y, pY, 23 1) = OL[Le + A1 — PoL — z] 'Ly
(B7)

We decompose the equilibrium distribution p3?
according to (2.7) and integrate both members of Eq.
(B6) over all positions and all momenta except p,. In
doing this, we take ito account that, in the product
term on the right side of (B6), only particle 1 appears
explicitly in both p(r¥, pV, z; 1) and A(QV, pV, z;4).
If any other particle were common to these two
operators, the corresponding contribution would
vanish in the thermodynamic limit. More precisely, it
is immediately verified that, after integrating (B6) over
r¥ and pN-1, this product term vanishes except when
p: appears in the two factors of the product; imposing
one more particle to be common to these two factors
reduces the contribution by a factor 1/, a negligible
contribution when

N— o, Q— o, N/Q=pfinite.

Using then a familiar trick,'” we may then formally
write
- 1

[ar v,z 0 o

N
X f dr AN, p¥, z; Dy TT e mIPRe™)
i=1
: > 1
=|dr¥ de‘lip(rA, P,z %) IT oi%(p) =

e Qv

x f dr'¥ dp VAV, pp™ 7, 23 Dpei(py)
N , . 1
x I wiehpse™ + o)

We get then from (B6)-(B8) the required Eqgs. (4.5)-
4.7).
APPENDIX C: PROOF OF EQUATION (4.12)

Take an arbitrary function G(r¥, pV); its Fourier
expansion is

N
G, 1) = 3 Gu(r") exp [igl k,-r,}. )

From (4.3), we immediately get

(B8)

N

(1 = POGEY, p%) = 3 G(r™) exp [z’ s kjr,} ~ Gy
N

= 3 Gy exp [iZk,-r,]. )
{k}#{0} =1

Following Dirac,'® we may consider G(rV, p¥) as the

17 P. Résibois and H. T. Davis, Physica 30, 1077 (1964).
18 P, Dirac, The Principles of Quantum Mechanics (Oxford Uni-
versity Press, London, 1947), 3rd ed.
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configurational representation of an abstract vector
|G(pY)); we write then (C2) in abstract form as

M (1 = Py) |G(PY)) ={kg{0}<rN | {KIx{k}| GP™)),

which also implies
(1 = P)IG(P™) = > Nkh{k} | G(p").
k) #1{0}
This proves Eq. (4.12).

APPENDIX D: FURTHER CONSIDERATIONS
ON THE WEAK COUPLING LIMIT OF
KERNEL KX(z; 1)

Using Eqgs. (4.22), (3.14), and (3.19), one obtains

easily the following form for the weak coupling limit
of K+(z; A):

. i3 ICEEIAz + 12 1A,
VPKT(z; ) = =222
&4 > ICOPz + i2* A,

an>0

(D)

Unfortunately, this formula does not allow us to calcu-
late easily the time-dependent kernel K(¢; ) in closed
form, although, as seen below, some general properties
of K(t; 1) can be deduced.

In order to have a better understanding of Eq.
(D1), let us first consider a model calculation, in which
only two coefficients C® do not vanish. Thus we
write

lzk;odel(z; }')

=2 [Aq] |C1|2/(Z + iA? A4 + A, |C2|2/(Z +iA? |A,))
IC11%/(z + 2% |AL]) + 1Co*(z + iA* [Ay])

(D2)
with [see (3.20)]
ICH + IC3 = 1. (D3)
Thus we have
-!l2
RRE gz 2) = a2 PZE P IALIAL

z + iA%x
with
a = |C]l |Ay] + |3 A4,
B = ICil 1Al + ICYl | Ayl
Some care has to be exercised in calculating the
inverse kernel by (4.1). Indeed K ,.,(z; 4) tends to a
constant when |z| — co. We may, however, write it as
i22 [Aq] [Ag] — «

z 4 il

R gen(z3 7) = ilz[/f + } (DS)

The first term gives a delta function by Laplace
inversion, while the second may be calculated by
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residue theorem. We obtain®®

WK moaai(ts 1) = 22°8(1) + P*Kipoqult; 1) (D6)
with
2K oael(ts A) = A(Ay| [Ag] — o) exp —A%at. (D7)

These results, in agreement with the discussion of
Sec. 4, show that:

(1) The singular term in the kernel (D6) is inde-
pendent of any A expansion; it just expresses the fact
that

(1), # 0 (D8)

when one first takes the weak coupling limit and then
lets t — 0.

(2) The remainder K/ .,(t; %) is a well-defined
expression of order 4*. However, it only tends to zero
for times of the order 472 In particular, the integral

Azf A K ae(t's 1) = 72 Ll 1Ael = o)
0 oL

(D9)
is of the same order as the corresponding integral of
the singular part.

Let us now come back to the complete expression
(D1). In analogy with (D5) and using (3.24), we
write it as

VRN z;2) = iA%® 4+ 2*K'(z; %) (D10)

19 The factor 2 in front of the delta function arises because we
adopt the convention [ 28() f() dt = £(0,).
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with

o . C(a),2(|A | _ C(Z))
PRz 7) = /12[ L ]
e P TV

(a)|2 -1
x [ iL} . (DI
a,n Z + 112 lAnl

By Laplace inversion, the first term gives the dis-
tribution 24204(¢), but the remainder

NK(t; ) = — —l—fﬁ dz exp (—izt)/lzlz’(z; A) (D12)
2@iJe

cannot be evaluated easily in closed form. Yet it is
easy to verify that K'(z;2)isa meromorphic function,
with poles in the lower half-plane.

Then one shows readily that

22 f wdtK’(t; ) = —ii2K'(0; )
) C(na) 2 A, — 2
—; [E |Co " (AR = ¢ )]

=, A,
IC;a)lz}-l
x| >—=1, (D13)
["'“ IAnl

which again is of order 42,

Finally, let us point out that we have proved that
the poles y, of K'(z; A) are purely imaginary, simple,
and ordered in such a way that

|Az|<|yzl<|Az+1|’ i=1,23”'3n,'." (D14)

We shall not, however, reproduce this calculation in
detail here.
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Gel’fand-Kirillov Conjecture on the Lie Field of an Algebraic Lie Algebra*f
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This is an article written to review with sufficient detail the so-called Gel’fand-Kirillov conjecture
concerning the isomorphisms between the quotient fields of the algebras generated by canonical variables
[pi, ¢:l = 6,51 and the quotient fields of the universal enveloping algebras of algebraic Lie algebras.
This conjecture sheds new light on the relation between the universal enveloping algebra of an algebraic
Lie algebra and the Lie algebras of dynamic groups in quantum mechanics.

I. INTRODUCTION

The Gel'fand-Kirillov conjecture concerns the
quotient field associated with the universal enveloping
algebra of an algebraic Lie algebra. This conjecture is
of some interest to physicists due mainly to the fact
that it relates, through isomorphism, the field of
quotients constructed out of the universal enveloping
algebra to the field of quotients constructed out of
some associative algebra generated by the 2r gener-
ators

P17 Prs

41, 2 qn

over the ground field K[x] which is just the polynomial
ring on a set of indeterminates

X1, X

over the field (i.e., a commutative division ring) K.
We note K is also the ground field of the Lie algebra
of concern. The py, -+, p,, ¢1, ", g, mentioned
here are required to satisfy

(D

where 1y, denotes the unit element of the universal
enveloping algebra UL of an algebraic Lie algebra L.

We see that (1) is nothing but the quantum-
mechanical commutation relations of canonically
conjugate operators. In order to state the conjecture
we first define “algebraic” Lie algebras. To make the
discussion more or less self-contained, we mention
briefly some of the basic concepts and definitions of
ring theory that are relevant to the conjecture. Then
we shall discuss some properties of the universal
enveloping algebra before we go into a full exposition
of the conjecture. It is rather unfortunate that the
conjecture cannot be fully understood without the
mathematical machinery that may seem to be heavy
to many physieists.

Pi s —q;° P = 0yl

* Four talks given at the Department of Physics, Syracuse
University, in June and December 1967.

+ Work supported in part by the Graduate School of the Univer-
sity of Wisconsin, Milwaukee, Wisconsin.

II. NOTATION

VS
AA

Vector space

Associative algebra; and when it is
used as a subscript we simply mean
to concentrate on the natural AA
structure of the object

Lie algebra; and if it is used as a
subscript like +;, (where #£ is an
AA) we mean that the AA # is now
made into an LA by means of
[a,d]=a-d —a -a,wherea-da
denotes the AA multiplication

The set of all K-endomorphisms on
a vector space V over a ground field
K (@ = End; V is also used for
short)

The set of all automorphisms on V'
The set of all K-homomorphisms
from ® to K when both are con-
sidered as AA’s over K

The set of all polynomial functions
on @ (i.e., on Endy V) with coeffi-
cients in K

A is an ideal of B

A composition; e.g., it sends (a, b)
intoaob

LA

Endg V

Aut V
Hom;,. (¥, K)

III. CONCEPT OF ALGEBRAIC LIE ALGEBRAS

To define an algebraic Lie algebra we define first
the concept of an algebraic group.

Def: Algebraic group (1.e., ““algebraic linear group”
sometimes): An algebraic group G is defined as a sub-

group of Aut V' (where V is a vector space over a
field K) satisfying

IS C K[P):G = {y , ne Aut V, w(n) = 0,V eS}.
set

(2
Remarks:

(i) S is called the defining set of G. S is obviously
an ideal (w.r.t. associative multiplication!) of
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K[®]; therefore, S is also called the “ideal of
polynomial functions associated with G.”

(i) It is obvious that an algebraic group is a Lie
group.

(ii)) K[®] has the structure of an associative alge-
bra; K[®] is the associative algebra generated by
Hom, (®, K) and the constant functions.

Def: K[®] as a ©-module (bimodule):
(i) K[®] can be defined as a /eft ©-module

Qg: 0 x K[D] — K[D],
ie.,
Qui(p,mM-> gux
defined by

(pump=mn(d-9), Ve,

where +-» denotes element-wise mapping.
(ii) K[®] can be defined as a right ®-module

QP X ®—>P,

©)

ie.,
Qui(m@)prrog
defined by
(m0 @) = n(g-¢), 4)

Def: The derivation d on K[®]. d,,Vp € End, V,
is defined as the derivation on K[®] satisfying

e,

d,K=0 5)
(K here means “‘constant functions’’) and
d,f=¢uf, VfeHomy (0,K). 6)
Proposition: Let
Ly = {p| geEndg V,d,S < S}; 7

then
[Lelua % [Endg Vs,

where Lie algebra composition is the true bracket (i.e.,
[, 9l=9 ¢ — ¢ - @) and S is the defining set
of some algebraic group G.

Def: Ly is called the “Lie algebra of the algebraic
group G.”

Def: a sub-Lie algebra, L, of [End, V], is an
algebraic Lie algebra if it is the Lie algebra of an
algebraic group.

Remark: There are a number of equivalent ways of
defining algebraic Lie algebra; for instance, one could
define it in terms of the so-called “‘replica.” -3

1 C. Chevalley, Am. J. Math. 65, 521 (1943).
2 C. Chevalley, Ann. Math. 48, 91 (1947).
3 Seminaires S. Lie, Ecole Normal Superior, 1954-55.

YUTZE CHOW

The reason for such an alternative, but equivalent,
definition is due to the following ‘‘necessary-and-
sufficient™ type of theorem: Let

L C [Endg Vs,
LA

then L is algebraic <= every replica of any element of
L belongs to L.

IV. SOME IMPORTANT THEOREMS ON
ALGEBRAIC LIE ALGEBRA AND
ALGEBRAIC GROUPS

Proposition 1: Let
X,X' CEndg V
and
G={g|geEndg V, (g7 Xg — X)X’
for any x € X}, (8)
then G is an algebraic subgroup of the Lie group
GL(n, K).

Remark: [Endg V], = gl(n, K) if dim V = nand
if we use a basis for V. Here we write gi(n, K) to
denote the Lie algebra of GL(n, K).

Proposition 2:

Lg={y|y€Endg V, [x,y]€ X ,anyx € X}, (9)
where G means the Lie algebra of an algebraic
group G.

Proposition 3: (char K = 0): Let

LC [EndK V]LA’
LA
then
[G.ua C L, anyae L= Lisalgebraic, (10)
LA
where G, is the intersection of all algebraic sub-
groups of GL(n, K) whose Lie algebras contain a. [G,

is the unique smallest algebraic subgroup of GL(n, K)
for char K = 0 (char = characteristic).]

Proposition 4: (char K = 0):

L C [Endg V], = L is algebraic, (11)
LA
where L) = [L, L].
Proposition 5: (char K = 0):
semisimple L C [Endg V1,4, = L is algebraic. (12)

LA
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Proposition 6: Let L;; be a collection of subalge-

braic Lie algebras of [Endg V], , then
L=NL
i€l

is also a subalgebraic Lie algebra.

If G, is an algebraic group of automorphisms of V'
such that L, is the Lie algebra of G;, Vi [, then L
is the Lie algebra of the group

G=NGg,.

€1

Proposition 7: Let {L;},.; be defined as above, then
the Lie algebra generated by all the L;, i €1, is also
algebraic.

Proposition 8: If LX is a sub-Lie algebra of Endy V,
and if K’ is a subfield of K, then

I¥ is algebraic = IX is algebraic. (13)

Proposition 9: Let V be any nonassociative algebra,
then the set Der V, of all the derivations on V, is a
subalgebraic Lie algebra of [Endy V]y,; i.e., Der V
is the Lie algebra of the group Aut V.

Proposition 10: (char K = 0): Let Gy,- -+, G, be
closed connected subgroups of GL(n, K) and let G
be the smallest closed subgroup of GL(n, K) such that

GDGis i=1,"',m,

then G is the sub-Lie algebra of [End, V];, gener-
ated by G,.

Remark: In spite of the formal definition, it can be
shown that the Lie algebra of an algebraic group
coincides with the ordinary definition of Lie algebra
when the algebraic group is treated as an ordinary
Lie group.?

Y. SOME EXAMPLES ON ALGEBRAIC
LINEAR GROUPS

(A) For any finite-dimensional vector space V,
Aut V is an algebraic linear group.

Observations: This is obvious; we take the poly-
nomial as the product of all characteristic polynomials
for Aut V.

(B) For any fixed / € @, the set
G={g|gecAutV,h-g~g-h=0 (14

is a subgroup of Aut ¥V, and is an algebraic linear
group (remembering that we denote ® = End, V).
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Observations:
(i) That G is a group is obvious, since
h-g1—gh=0, anyg, €0G,
h-g,—gh=0, anyg,€G;
thus,
h-(g1:g)=(h"g1)' g
=(g1"h) g
=g (h-g)
=g, (g h)
=(g1°8) b,
ie,h (g18)—(g1°8) h=0,thusg, g, €G.
(i) We now ask what is the defining set of G. To
answer this we shall digress to discuss the following
definitions:

Digression: Let dim V =n and {v} = {vy, -, v,}
be a basis of V. Now we introduce a set of n? elements
g:; €® such that g, ;i 0v,0,, i,,k=1,--",n
Then & € @ can be written as

b= e ek,
where a,,(h) is cl’early a K-linear mapping, with
a;: - K
defined by
a;:hi>ag h).

Def: The a;;(h), i,j=1,-++,n, are called the
coordinates of h (w.r.t. the basis {v}).

Def: The set of n? K-linear mappings, {a,;}, i,j =
I,-++,n, is said to form a system of coordinate
Sfunctions.

We now return to the question of the defining set
of G. Let {a,,;} be a system of coordinate functions on
®. We know the mappings

g ayth- g,
g ag-h),

are obviously K-linear. Obviously, then, G is the set
of all automorphisms given by all g € Aut V satis-

fying:

any g€ Aut v,

a;;(g- ) —a(h-g)=0.
Therefore, the set of all mappings
hag-h)—ayh-g)=0
is the “defining set” of G.
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(C) For any given (fixed) = € K[®], the set
G={g|lgeAuntV,n(g-h) =n(h),any he ®} (15)
is an algebraic linear group.

Justification:

(i) For any g,, g, € G, any he ®,

(g1 g2) " M) = m(g1- (g2* h))
= 7(gy " h)
= w(h).
(ii) We simply consider the mapping

End, V — K,
defined by
grrm(g-h) —m(h) =0,
which furnishes the defining set of G. (We use ® and
Endg V as equivalent notations.)
(D) Let F be any polynomial function on V in K.
Then, the set

G={g|lgeAutV, Fg()) = F(v),anyve V} (l6)

is an algebraic linear group.

Justification:
(i) F((g: g)) = F(gi(g(v))
= F(g,(v))
= F(v), anyg,,g,€G.

(i) Simply consider the mapping

End, V—K,
defined by

g Fg) — Fv) = 0,

(E) The special linear group, SL(n, K), is algebraic.

(F) As an example of a nonalgebraic group, con-
sider the 2-dimensional real vector space V with a
basis {V, V,}. Consider the set G of all K-endomor-
phisms of V describable in the form

(5

with real positive a and an irrational number . In
this case, G is not an algebraic group though G is a
Lie group.

anyve V.

VI. EXAMPLES OF ALGEBRAIC LIE ALGEBRAS

These follow simply as the Lie algebras of algebraic
groups; for example, the known algebraic Lie algebras
are:

(1) sl(n, K), with K being algebraically closed and
of characteristic zero.

(2) gl(n, K).
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(3) All nilpotent Lie algebras as sub-Lie algebra of
gln, K).

(4) All semisimple Lie algebras over a field of
characteristic zero (e.g., real or complex number
fields).

(5) Representations of Lie algebras of diagonal
matrices as Lie algebras of nilpotent matrices.

(6) Representations of semisimple Lie algebras as
derivations of solvable Lie algebras.

VII. ON NOETHER RING, ORE CONDITION,
AND QUOTIENTS

We summarize in this section some of the standard
mathematical concepts in ring theory to be used later.

Def: Ring: A ring is an Abelian group and also a
(noncommutative) multiplicative semigroup with or
without a unit element.

Def: Noether ring: A ring R is (left) Noetherian if
every chain of (left) ideals of R:

R,CR,C- - (17)

terminates (i.e., 3 anindexn: R, = R, .; ="+ ").

Def: Ore condition: A ring R is said to satisfy the
(left) Ore condition if for Va, b € R where b is a non-
zero divisor (a nonzero divisor b is defined as ﬂc # 0,
c€R:ch =0 orbc =0), then

da',b'eR:b -a=4a b, (18)

where b’ is also a nonzero divisor.

Def: A ring satisfying (left) Ore condition is called
a (left) Ore ring.

Now we can give the formal definition of quotients:

Def: Quotients associated with an Ore ring: A
quotient associated with an Ore ring R is defined as
an ordered pair (a, b) with a, b € R and b being a non-
zero divisor, equipped with an equivalence relation
defined by: two quotients (a, b) and (c, d) are said to
be ‘“‘equivalent” (it is easy to verify that all axioms
of equivalence are satisfied) if

3 nonzero x, y: (xa, xb) = (ye, yd) (19)
and we shall denote the (a, ) quotient by the notation
a1b. 20)

Definition for right quotients is similar and we denote
them by ab™1.
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Proposition 11: For any two left quotients =16, c~'d,
defined in an Ore ring without zero divisor, we can
find their “least common denominator” in the sense
that

and ¢ = x7ly,.
1)

Proof: For a, ceR, the (left) Ore condition
implies that

Ax, y1, y2 € Ria b = x7y,

dt,seR:t-a=s5"c¢, (22)
ie.,
clost=qgt 7L (23)
Next, we have
al-b=a' t721t-b (24)
and, similarly,
clid=c?t-s7t-5-d (25)
We set [using (23)]:
al-tt=cl-gl=x! (26)
and
t b=y, sd=y; 27

thus, substituting (26) and (27) into (24) and (25)
gives

atb = x7ty,
and

cld = x7ly,.

Next, we note that if R is an Ore ring without zero
divisor then an equivalence relation can be established
between any given left quotient and some right
quotient. This is quite obvious since R is Oreian, thus
for any nonzero a, b € R,

JceR and d(#0)eR:ca=db (28)
which provides the equivalence relation
d7c = ba™! (29)

-~ N
(left quotient)  (right quotient)

Def: The quotient field: Since any right quotient
(i.e., of the form ¢d™') can be written as a left quotient,
we shall only.deal with left quotients. The set of all
left quotients associated with an Ore ring without
zero divisor forms a noncommutative field (i.e., a
division ring) w.r.t. the compositions of addition,
subtraction, multiplication, and division as defined
below:

(1) addition:

a’'b, + atby, = a7 (b, + by), (30)
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(2) subtraction:

a—lbl - a—1b2 = anl(bl - bg), (31)
(3) division:
(@b ™ - (a7'by) = by'bs, (32)
(4) multiplication:
(a7'by) - (a3'by) = (bi'a) ™ " (az'by).  (33)

VIII. ON FILTRATION AND GRADED
STRUCTURE

Def: Filtration: Let R be a ring, If a chain of sub-
groups (w.r.t. the additive structure of the ring) of R,

ROCRIC"" (34)

satisfies the condition

Cs

i=0

Il

then this chain is called an “increasing filtration™ of R.

Def: Graded Ring: If a filtration of a ring R satisfies
the condition

R;*R; = R, (36)

then the ring R is said to have a ‘“‘graded ring”
structure w.r.t. this filtration.

Def: gr R: For a graded ring, w.r.t. the filtration

Ryc Ry, (37)
we define
gr “R = R,/R,_,
with
R,=0, for Vi<O, (38)
and
grR = zogr @R, (39)

where the last expression signifies that V& € gr R can
be written as

o;, o;egr PR

M8

(40)

o =
=0

with only a finite number of «; being nonzero.

Now, let m; denote the “canonical projection”
mapping,

mt R, — gr ®R 41)
defined by
mia; - a,mod R, (42)
then it follows from
R,-R; < R, (43)
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that we have the mapping

gr OR x gr YR — gr V+IR (44)

which equips gr R with a “‘graded ring” structure.

Next, we mention briefly some properties of the
universal enveloping algebra of a Lie algebra. First,
we recall the universal enveloping algebra UL of a
Lie algebra L (over a commutative field F) is defined
as an associative algebra (over F) satisfying the com-
mutative diagram

LA-hoin

L > (UL);, = UL
f /s
Ve
/
/
/7
/
v LA-Hom AA-hom / £
(any) //
’
/
/
Vs
’
//
»
- 4
(any) (45)

That is, for any given AA A and any LA-hom p,

there exists a unique AA-hom f satisfying

feo=vy (46)

One important property of UL is its uniqueness up

to isomorphism; this is rather obvious because in the

defining commutative diagram the # is arbitrary;
therefore, we can draw

L (UL)LA = UL

(f)

f (AA-iso.)

A
!
1
!
|
|
!
]
i
]
]
!
]
]
¥

(UL)'LA = (uL)'

@7

where (UL)' is another universal enveloping algebra
of L. Therefore, it is only necessary to look for one
construction of UL. It can be easily shown that we
can achieve this by setting

UL = TL/IL, (48)
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where TL is the tensor algebra on L, i.e.,

TL=®L (49)
=0
with (F is the ground field of L):
Ly=Fl, Li=L, Li=L&L, et., (50)

and IL is the two-sided ideal (associative) generated
by all elements of the form

Il =I'el- 1[I
Now we shall talk about filtration of UL.

(51

Def: Filtration of UL: Let (UL), be defined as a
sub F-module (of UL) generated by the set of all
o) - o) - - - 9(l;),j < n, VI, € L. Thus, we have

(UL)—I = 0:
(UL)O = Fl,
(UL), = F1 & (L),
m (52)
(UD)w = F1® 3, ¢(L) -~ ¢(L),
T=1 e’
J copies
and it is obvious that
(UL)y = (UL)y < -+ (53)
which defines an increasing filtration of UL.
Define, now,
gr MUL = (UL),/(UL),_, (54)
and define
gr UL =3 gr‘""UL. (55)
n=0
This newly constructed
gr UL (56)
can be made into an algebra w.r.t. Q,:
Q,: gr ™UL x gr UL — gr ™™UL, (57)
defined by means of passing to quotient from
(UL)p, x (UL), > (UL) 1., (58)
defined by
(u,W)y—u-u', ue(UL),, v e(UL),, (59
ie.,
Qy: ((w mod (UL)y, y), (4 mod (UL),_,))
> (¢ mod (UL),,_,) * (&' mod (UL),_,)
= u-u mod (UL)yypy- (60)

The algebra gr UL (with Q,) is called the graded
algebra associated with UL.
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gr UL has the properties:
(i) gr UL is generated by ¢L;
(ii) gr UL is an Abelian associative algebra.

IX. THE ALGEBRA A4,(R) GENERATED BY
CANONICAL ELEMENTS

Let A4,(Z) be the associative algebra generated
over the ground field of integers Z by the set of
canonical elements

P 5P s qad =4psgd, (61
satisfying

il =pi g5 — 45 pi = 0514, (62)

(pispid =0, Ig:,9:1 =0, (63)

where 1 is the unit element of the algebra 4,.(Z).

It is obvious, the ground ring can be extended
from Z to an arbitrary Ore ring R by tensor product
in the usual way. That is, we construct

A,(Z) @z R = 4,(R) (64)

by considering 4,(Z) as a right Z-module and R as a
left Z-module.

The algebra 4,(R) thus constructed has the follow-
ing important property.

Proposition 12: The algebra A4,(R) is a free R-
module and it has a basis consisting of all the mono-
mials of the form

(P - (p)™(g)* - - - (g)" = pPg?,
where (p;)°* = 1, and (g,)° = 1.

(65)

Proof: Our proof will be restricted to the case of R
being a commutative field (i.e., commutative division
ring) of characteristic zero, since this is the only case
to be considered later on.

(A) First, we want to show that the monomials of
the form

pligd (66)
generate the R-module A,(R). Let us introduce a
filtration of 4,(R),

[4.(R))o < [4.(B)], < [4, (R = -+, (67)
defined by:
[4.(R)], = R, (68)
[4,(R)], = the set of all elements, in
A,(R), which can be written
as polynomials on {p, g4} with
coefficients in R and of degree < i. (69)
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We have, obviously,

4,(R) = U [4,(R)}: (70)
and we use mathematical induction on the index &
to prove that the statement of (66) is applicable to all
[4,(R)],. The statement is obviously true for k = 0.
We assume now, by induction, that the statement is
true for all k < k,. But, by using relations (62) and
63),
) (P> g5 = 04514,

[Pi’ qJ] = 09 [qia q:] = Os

we can always reduce any monomial of degree &, to
a monomial of the form (65) (i.e., with all p’s on the
left side) modulo [4,(R)], _,. This completes the
induction. ’

Finally, since 4,(R)is just the union of all [4,(R)];,
(66) is proved.

(B) Next, we can show that the different mono-
mials of type (65) are R-linearly independent. This
can be proved by contradiction; let

2 azpPg?” =0 (71)
{1,7)

where a;; € R and at least one of the q;; is nonzero.
Let us introduce a lexicographic ordering of (i, )
which represents the set

(il,”':in’jl"" ’jn)- (72)

Let (s,2) be the greatest set (according to the
lexicographic ordering) such that

a, # 0. (73)

Using the notation of “‘adjoint” mapping, we write

(adj 9)f = [«, f]. (74)

By operating the quantity
H (adj g™ T{ (adj p))" (75)

i= =

on the left of (71), we get

[Hl (adj 0" T (e pj)tilz)a,-,-p‘”q‘“ —0, (76)
i= j= 1,7

ie., )

H (= 1%, Day, = 0. (n
But the lhs of (77) cannot be zero by nature of q,,,
thus the contradiction,. Q.E.D.

X. THE FIELDS OF QUOTIENTS ASSOCIATED
WITH A4,(R) AND WITH UL

Before discussing the fields of quotients we state
two useful properties of the Noether ring; the proofs
of them are given in the appendices.
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2n generators

{p,q}
ring of integers
generates

(AA over Z) An(z>
(free R-module) An(R) = An(”) QD 2 R
4 AN
! \
] A
| filtration
i \
\ \\
\ \
\\(An(R))O( (An(Rg)l AR
\ \
\ ‘graded-nA
\ N
N . N \
{field of gquotients) D (R) ({properties) \
n <L 'y
\\\\ gr A (R)

Fic. 1. Field of quotients D,(R).

Proposition 13: Let R be a ring. If gr R is a (left)
Noether ring without zero-divisors then R is also a
(left) Noether ring without zero-divisors (see Ap-
pendix A).

Proposition 14: A (left) Noether ring without zero-
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{2n generators)
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divisors satisfies the (left) Ore condition (see Appen-
dix B).

Proposition 15: A,(R) is an Ore ring.

Proof: Consider the filtration given by Egs. (67)-(70)
and introduce its corresponding graded-ring structure

and gr P4(R) = [A, (R4, (R)];: 1 (78)
g 4,(R) = 3 g5 V4, (R). (19)

By Proposition 12, we see
gr 4,(R) <> Rp, q), (80)

where R[p, q] denotes the polynomial ring of (p, ).
But R[p, q] is obviously a Noether ring without zero-
divisors (because it is a polynomial ring); therefore,
due to isomorphism, gr 4,(R) is also a Noether ring
without zero-divisors. Then, by Propositions 13 and
14, we know that 4,(R) is an Ore ring without zero-
divisors. Q.E.D.

The above property permits us to construct the
associated field of quotients, to be denoted by D,(R).

commutative {indeterminates)
field
SN

integer

ring

FI x] (polyn. AA)
(BA over F[x]) An(z)
(free F[ x]-module) An, (F) = An,t(z) @k F[ x]

Fi1G. 2. Field of quotients Dy, «(F).

N
N .
filtration
N
N

AN
N

A

t
~
T N
AN
1
|
|
i
1
1
|
P D By ),
I

|
graded-AA

|
|
! |
| |
I b
(properties) :
\\ |
\
N ¥
N gr An,t(F)
~ 7/
\\ //
(Field of Quotients) D {F)

isomorphism

Fl {p.al
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commutative
field

{Lie algebra over F)

(Universal enveloping UL
algebra)
N
f N
N
| N
| N
I fi 1t{ation
! N
|
|
t
!
'
1
I
|
|
1

N\

(UL)Lo Ly, e
li

F

(properties)
i

(Lie field) D(L)
FiG. 3. Lie field D(L).

In particular, if the ground ring R is taken to be the
polynomial algebra Fx] on the set of indeterminates

{xl s T
with coefficients in a commutative field F, then we
have 4,(F[x]):

D, (F) = field of quotients associated with 4, ,(F)

(see Figs. 1 and 2).

Next, let us discuss the field of quotients associated
with UL, where L is a Lie algebra over a commutative
field F. The increasing filtration on which we define
the graded structure, gr UL, was given by (52) and
(53). The Poincaré-Birkoff-Witt theorem says that
gr UL can be expressed as the ring (or rather an
associative algebra) of all polynomials on m variables
(m = dim L). Therefore, gr UL is clearly a (two-
sided) Noether ring without zero-divisors. By Proposi-
tions 13 and 14, we conclude that UL is a (two-sided)
Ore ring without zero divisors. This permits us to
construct the field of quotients from UL; this field of
quotients will be referred to as Lie field of L:

D(L) = Lie field of L

x)=x

(see Fig. 3).
XI. A CONCEPT OF DIMENSION

We shall introduce some different concepts about
dimensions in the sense that they are of invariant
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nature but differ from the wusual definition which
will be denoted by “dim” to avoid confusion. We
shall define the new concepts for the case of an
associative algebra 4 over a commutative field F and
for the case of a field D (a division ring) over a com-
mutative field F. First, let « be any finite set,

o ={a, - Va,e A, (81)

> g}
and
(: N)y={p lp EF[u],peAd,dimp < N}, (82)

with F[a] being the ring of all the noncommutative
polynomials on «. Now we define

Dimz A = Supmln—[w

a N—-ow In

(83)

where lim refers to the least upper bound.
Similarly, for the case of a division ring D we form
any finite set

o={a, ,a), Va,eD, (84)
and form also
ab={a,-b,a,-b,--,ab}, YbeD, b#0,
(85)
then we define
Dimy D = Sup Infﬁln[di(w. (86)
a b Noow In N

As an illustration of the definitions we shall discuss
two examples which are also useful.

Proposition 16:
Dimp 4, (F)=2n+ 1. (87)

Proof: As in the definition of Dim, we consider a
set

o={a, ", Vaed, (F). (88)
In virtue of definition of 4, (F), the set
ﬁE{pla'.'5Pn5q1"”aqn9x1"”axt} (89)

is the set of generators, with F as the ground field
(instead of F[x]) for 4, (F). Thus, any element g, of
(88) can be written into the form of a polynomial on g.
Let m be the highest degree among these polynomials,
then obviously

dim («; N) < dim (8; mN). (90)

Next, we know the dimension of the subspace of
all polynomials of degree < N on j indeterminates is
just

;} Czl:+:‘vl = CJ{I-H'- 91)
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This result in fact also applies to polynomials on §,
even the polynomials are now noncommutative. The
reason for this is that any two of the generators
(from f) which do not commute with each other are
always pairs like {p,, ¢,}; in this case we have

Pigi =q:p; + 1 92)

——In (dim (8; N))
InN
1“ Clinsn

InN

Dimg A, (F) = Sup lim

B N-w

2 li

N A DN 2= 1)
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which does not change the dimension of the subspace
since the appearance of 1 on the rhs of (92) only give
rise to an extra term of Jower degree w.r.t. the gener-
ators.

Therefore, (91) applies, that is
dim (5 N) = Cy nsnrs

3)

) 1
= li .
N—*oo(ln N

= lim {——‘—-—[ln (1 + N
Nowo {In 2n +
= [im

Cn+0Cn4+t—-1---1

t)+1n(1+~é—rl—£—-:)+--~+1n(1+m}}

(N + 1))

1 N
i In + 1In
N-w [ln N( 2n +t

1 N2ﬂ+t
= lim (ln )
NooIn N

2n + !
= lim i—-— {2n+1-InN -

N-xIn N

- bim @Cn+1)InN
InN

N-ow

=2n -+t

On the other hand, from (90) and the definition of
Dim,
— In (dim (a; N))
In N
In (dim (§; mN))
InN

2n+t
CmN+(2n+t)

InN
=2n -+t

Dimy A, (F) = Sup lim

a N-ow

< lim

N-+ow
= lim

(99
Finally, (94) and (95) together imply

M+t <Dimpd, ()< +1, (96

therefore,

Dimp 4, (F)=2n+1t. QE.D. (97)

A property similar to Proposition 16 can be proved
for the field of quotients D (F) but we shall introduce
the concept of “leading term of a nonzero element
hed, (F)

N +"'+lnN)]
2Zn4+t—1

In [2n + D1}

4

Def: “‘leading term”: For any given nonzero
he A, [F), it is obvious that

3 integer i: m(h) € gr V4, (F), (98)
with 7;(h) # 0 and =,(h) being well defined. We recall
that the canonical projection , [defined by (41)] maps

mi hs hmod [A, (F)li, (99)

ie.,

mi(h) = hmod [4, (F));_, (100)

and we call 7,(h) the “leading part” of A, and it will
be denoted by A.
We have the following properties of leading terms:

Proposition 17:

(i) / is a homogeneous polynomial on p and g with
coefficients in F[x] for any & € A, (F).

(ii) Forany by, hye 4 AF),

PN

By hy = hy - by, (101)
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Proof: 1t is obvious.

Proposition 18: For d € D, (F), we can write d into
the form (not unique because of equivalence relation):

hit hy, h,e A, (F); (102)
then, the rational function
hofhy (103)

depends only on the element d and not upon the way
d is cast into the quotients.

Proof: Let k3! - hy be an alternative quotient form
for d, then it implies

hit-hy = h3' - hy. (104)
Taking their leading terms,
, (hi* - hy)” = (h3" - hy)",
1.¢., PN PN )
, (Y- hy = (h5%) - by,
ie.,
hohy = hyfhs, (105)

where (101) was used. Equation (105) proved the

proposition. Q.E.D.
Proposition 19:
(i) Ford,,d, € D, (F),
N L,
dy-dy=d - d,. (106)

(ii) The function d is invariant under inner auto-
morphisms of the field; i.e.,

A

d-d-dy =d (107)

Proof:
(1) We write d, and d, into the quotient forms
hyl- hand K71 - A, respectively. Then,

/\ —1 -1 M

di+dy=((hi" - h) - (hy" - b))
= (W )" - (gt )"
= ‘il ’ dZs

where we used (101).
(i) We have

(d-d-dV =d-d-(dy*'=d. QED.
Lemma: For any nonzero b e Dn [(F), the set J(b)

of all the distinct monomials

(pr- by -« (p, - by - (qy - b)Y+ - -
(@n - BYm e (x1- B - (x, - D)
=P@i,j,k; )= (p by (g-b) (x-b)* (108)
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is linearly dependent only if
degree () = — (109)

Proof: We prove this by contradiction. First, con-
sider

degree (b)) > —1 (110)

and assume a linear dependence among P(i, j, k; b)’s,
then

2 Cch(l Jik;b) =0, (111)
4,9,k
where C,;; are coefficients from F and
(i9js k) = (il) T, in:jl, e ajn’kla e ,kn)'
(112)

For convenience, hereafter, we denote the set of all
distinct P(i, j, k; b) by #(b), then

Awe A, (F): P, j, k;b) - we A, (F)

for VP(,j, k; b)ed(b). (113)
From (111), we have:
> CiwPi, ), k; by - w=0. (114)
(i,7,k)
Taking the “leading part” we get
S ConlPG,j k3 b) - W) = (115)

where the sum is now carried over all (i, j, k) such
that

degree P(i, j, k; b) = max {degree P(i, j, k; b)
with nonzero C;;,}. (116)

On the other hand, explicitly,

P(i,j, k;b)-w=(p-b)-(q-by-(x-b}f-w (117)

whose “leading part” is

(PG, j, k3 b) - w)" = pigxk(b)*w (118)

with

d= zlh+lh +Zkh

h=

(119)

In view of (118), it is clear that (115) is impossible
except if the C,;;’s are all zero. Further, we know the
mapping

ut i, YueD, (F)

preserves the “multiplication” composition of the
division ring; therefore ¥(b) is a linearly independent
set if

degree (b)) > —1.

Similarly, we can prove this for the case of

degree (b)) < —1. Q.E.D.
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Proposition 20:
Dimg D, (F) = 2n + t. (120)

Proof: First, we proceed as in the proof of Proposi-

tion 16; consider an arbitrary, finite set
a={a, " ,a}, a;€D,(F). (121)

The same argument used in the proof of Proposition
16 is applied here to establish

Dimg D, (F) < 2n + t. (122)
Next, we shall prove
Dimg D, (F) > 2n + t (123)

so as to establish the equality.

By the preceding lemma, for any nonzero A4,
be D, (F), the set $(& - b) of all distinct monomials

P(@,j, k; h-b)
is linearly dependent only if

N
degree (h-b) = —1. (124)
Thus, if

degree £ 5 0, (125)

then clearly the two conditions (124) and (109) are
not compatible. This means either $(b) or §(h - b) has
to be a set of linearly independent monomials. Using
this fact, and considering the set

y=B8VE@E-n, f=ipg. x5 (126)
we obtain easily (following the same argument as in
the proof of Proposition 16):

dim (yb; N) 2 C¥{fins (127)
which leads to

Dimg D, (F) > 2n + t. Q.E.D.

Proposition 21: If A is an associative algebra over a
commutative division ring (field) F with the property
that there exists an increasing filtration of 4,

Ay(=F)c 4, < (128)
with
A A; < Ay, (129)
such that its corresponding graded algebra
grA =3 AjA,_, (130)
=0

is isomorphic to the algebra of polynomials in ¢ inde-
terminates; then

Dimy (D(4)) = 1. (131)
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Proof: Proof follows that of Proposition 20.

Proposition 22:

(i) A, (F)«> A, (Fy<n=n, (132)
(i) D, (F)«<> D, [(F)<>n=n', t=1t. (133)
Proof: We know, by definition of 4,, ,(F), that

t=1t,

Cen (4, (F)) = Ao ,F)
and

Cen (An’,t'(F)) = Ao,t’(F)’

where Cen denotes the center.
An isomorphism between 4, , and 4,., implies
trivially

Cen (4,,(F)) <> Cen (4,,,+(F))
Ao,t(F) « Ao,r'(F)
which is possible if and only if

Le.,

Dimp (4,,(F)) = Dimy, (4,,,(F)),

ie., _—

(134)
On the other hand,

An,t(F) > An',t’(F)

requires necessarily

Dimy (4, (F)) = Dimg (4, «(F)),

L.€., 2n4+t=2n"+1¢".

Equation (134) and above imply

n=n" and =1t Q.E.D.
Remark: Proposition 22 gives the important result
that notwo 4, (F)and A, .(F) are isomorphic unless

n=n'"and t = t’, and similarly for D, ,(F).

Proposition 23: Let L be a Lie algebra over a com-
mutative field F, then

Dimg (D(L)) = dim L, (135)

where “dim” is the ordinary dimension and “Dimg”
is the one defined previously by (86).

Proof: The following facts:

(i) UL is an associative algebra over F,

(ii) UL has the graded structure given by (52),

(iii) According to Poincaré-Birkhoff~Witt theorem,
the graded algebra gr UL is the algebra of all poly-
nomials on m indeterminates (or “variables,” m =
dim L), allow us to use Proposition 21, therefore,
according to (131),

Dim, (D(L)) = dim L. Q.E.D. (136)
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XII. THE GEL’FAND-KIRILLOV CONJECTURE

We first note a few properties concerning the con-
cept of orbit before the statement of the Gel'fand-
Kirillov conjecture. The concept of orbitis well known;
it is defined for a manifold A acted upon by a trans-
formation group G, as:

0, = orbit of a pointv € M

={z|zeM,3geG:gv=12z}. (137

A connection between orbits and representations
was very extensively explored by Kirillov.* We note
here an important property:

Proposition 24: For an algebraic Lie algebra L,
dim Q(L) = even, (138)

where (L) denotes an orbit of general position in
the vector space dual to the adjoint representation of
the Lie group G, whose Lie algebra is L.

Proof: By dual space here we mean the representa-
tion $ of G, in the vector space of all real linear
functionals on L dual to the adjoint representation y.

Introducing the bilinear form B, on L w.r.t. a given
functional £,

B;: L x L—~F, (139)
given by
Bf: {X,}’} HBf(x5y) = (_fs [X,)’]) EF,
for vx, yelL, feQ. (140)

First, an orbit 2 containing the functional f can be

expressed in the form of the factor group,
GL/G; (141)

where G, is the stability group of f € Q. This is rather
obvious because, by definition,

G, ={g|7@Qf=/f8€G};

GL mod Gf

(142)
thus,
(143)

gives all the other transformations that send f to all
those elements, of the dual space, of the orbit Q. Tt
is easy to see that the Lie algebra L, of the Lie group
G, is simply the set of

{x|xeL,B/(x,y)=0,forallye L}, (144)

because, corresponding to the action of stability
group, we have its Lie algebra counterpart as “ad-
joint” mapping

(145)

4+ A. A. Kirillov, Dokl. Akad. Nauk SSSR 128, 886 (1959); 130,
966 (1960); 138, 283 (1961) [Sov. Math. 2, 588 (1961)].

(adjx)y = [x, y] = 0.
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Therefore, in the language of Lie algebra, we say
the subspace L, is orthogonal to L w.r.t. the bilinear
form B,; thus,

dim L, = dim L — rank B;, (146)
but, by (141),
dim Q = dim G, — dim G,,
dim Q = dim L — dim L;. (147)
We get finally that
dim Q = rank B;. (148)

But B, is obviously antisymmetric, remembering
that

Bf(x’ }’) = (f’ [xa y])a (149)
thus the rank of B, must be even, i.e.,
dim Q = even. Q.E.D. (150)

Remark: We also note for an algebraic Lie algebra
codim Q(L) = Dimg (Cen D(L)). (151)

where “codim’ means codimension of the sub vector
space.

Now we are in a position to state the Gel’fand-
Kirillov conjecture.

Gel’fand—Kirillov Conjecture®:

If L is an algebraic Lie algebra over a commutative
field F, then we have the following unique isomor-
phism:

D(L)y < D, (F), (152)

where
n = $(dim L — codim Q(L)) = } dim Q(L) (153)
and

t = codim Q(L). (154)
Discussions:
(i) Equation (153) is justified to be meaningful due
to Proposition 24.
(i) The conjecture was verified by Gel'fand and
Kirillov for the following special cases:
(a) Lisany nilpotent Lie algebra over an algebraically
closed F of characteristic zero,
(b) L is the Lie algebra of GL(n, F),
(c) L is the Lie algebra of SL(n, F),

51. M. Gel'fand and A. A. Kirillov, Dokl. Akad. Nauk SSSR
167, 503 (1966) [Sov. Math. 7, 403 (1966)]; Preprint, V. A. Steyklova
Institute of Mathematics, Akad. Nauk SSSR, 1965 [French transl.:
Publ. Math. France 31 (1966)]. In regard to the latter, I am grateful
to two persons: Professor A. Bohm, for helping in the translation
from the original, and Professor H. Bacry, for making a prepublica-
tion copy of the French version available to me.
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(d) L is a semisimple Lie algebra of rank two (no full
detail; the only indication of proof is mentioned
in Ref. 5).

XIII. PROOF OF THE CONJECTURE FOR
LIE ALGEBRAS gi(m, C) AND sl(m, C)
The conjecture can be proved for these two cases
and, in fact, the proofs are similar. To facilitate the
discussion, we prove first the following property:

Proposition 25: Let gl(m, C), be the Lie algebra of
all m x m matrices with last rows consisting of zeros
only; then

D(gl(m, C)o) <> Dyy(m1),0(C)- (155)
Proof: Let us first introduce a basis for gl(m 4 1, C),:

i=1,--,m k=1, ,m+1, (156)

€ik >

where ¢, has unity as the element of ith row and kth
column and zero everywhere else. We can show that
the following choice of canonical generators is the
correct one:

i=1",m,

(157)
P = eudi, (158)

We note that g;' is not defined in the ordinary
sense as a matrix (since det g, = 0), but it is defined
as a formal quantity whose rules of manipulation are
conformed to the equivalence relation of quotients

by Ore condition (cf. Sec. VII).
First, we have

[9:> 9,1 = 9:9; — 9:9:
= €;, m+1€5,m+1 —

=0

9: = € mt1s

i=1--,m.

€;.m+1€i,m+1

(159)

(by straight matrix multiplications). This also implies,
by definition of quotients,

9,4 = 4;7';, (160)

that is, ¢;* and ¢; commute.
Next, let us compute
[p:» 9,1 = p:g; — a;p;

= eiz'qi_lqi - qjeiiq;‘—l

= iinqi—l - qieiiq:l

— -1 1

= €;9;9:  — €jm+1€:;

h
0
= ii%‘h—l
= 4,1, (161)

where Eq. (160)
equality.

was used in obtaining the third
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Similarly, we can verify

[p:, ps1 =0, (162)
[bi» a;]1 = 854, (163)
and
[bikapa']=6kjpjs iaj’k= L., m, (164)
where
by = ez'qu'_l‘]k- (165)

Next, we introduce a matrix H whose entries
satisfy the condition

Zhii=0

and denote the set of all such matrices by J¢. It can
be verified that the mapping

’j=15..'5m’

(166)

a: ¥ — D(glim + 1, C)p)

defined by
satisfies the condition
a([H, H']) = [«(H), «(H")] for VH,H'€3. (168)
It is easy to see that
[O((H), qz] = 0: l = 1’ P (9 (169)
[“(H)>Pz] = 03 l = 1, Ty m, (170)
since we have, from (167),
[(H), q,] = E hilbiy s qi]
Ik
= Z hj36:4;
1.k
= ; h;:4;, (171)

where (166) and (163) were used. Similarly, we get
[o(H), p)] = 2 h;:p;
2

= 0, (172)
where (164) and (166) were used.
It is clear that the Lie field
D(glim + 1, C)y)
is generated by
{a(Je)“Dla“"pm’ql»“'sqm}' (173)

Now we can use mathematical induction on the
number m; i.e., we assume the lemma is true for m
and want to show it is also true for m + 1. But this is

not difficult to see since we can easily show
3 < gl(m, C),, (174)

because J consists of all m X m matrices such that
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the m conditions
th-j=0, =1

are satisfied. The isomorphism is, in fact, an obvious
one; we simply choose the correspondence

hu‘ =M,

(175)

ce,m

11 j=13”'9m,
(176)

i=1-,m—

and

m—1

hmi=~zM1’i’ j=1-,m, a77)
i=1

where M,; are matrix entries of any M € gl(m, C),.
By mathematical induction we assume now

D(gl(m, C)O) — Dém(m—l),o(c)' (178)
With (173), (174), and the fact that
a: UK — D(glim + 1, C)g) (179)

is injective (which can be proved by choosing a base
B’ for ¥ such that «(B') = {b};} with b}, = b;; — €.,

i=1,---,mandj=1, -, m~— 1), then we get
D(gl(m + 1, C)o) = Dyu(m-—1)4m,0(C) = Dymims1,0(C),
which completes the induction. Q.E.D.
Proposition 26:
D(gl(m, C)) = Dypim—1),m(C), (180)
D(sl(m, C)) = Dymim-1),m-1(C). (181)

Proof: This follows easily from Proposition 25.
First, it is well known® that

Cen [U(gl(m, C))] is generated by the generalized
A, (182)

where A, is defined as follows: choose the matrices
e;; [the (4, j)th entry of the matrix e,; is 41, whereas
the other elements of e;; are zero] as the base of
gl(m, C); then,

Casimir operators A, < -

A=Yey,, (183)
im1

Ay =3 eey. (184)
id

We note that ¢,; is a matrix and not just an entry of it.
Since D(gl(m, C)) is generated by

Ay,---, A, and D(gl(m, C),), (185)
Proposition 25 implies
D(gl(m, C)) = Dypim—1),m(C) (186)

8 I. M. Gel’fand, Mat. Sb. 26, 193 (1950).
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Similarly, D(sl(m, C)) is generated by

Ay,+ -+, A, and D(gli(m, C)y) (187)
and, by Proposition 25, we get
D(sl(m, C)) = Dypim-1),m(C). Q.E.D.

XIV. PROOF OF THE CONJECTURE FOR
NILPOTENT LIE ALGEBRAS

Let the L in this section be a nilpotent Lie algebra
over a commutative field F of characteristic zero.
Then the conjecture can be proved by means of
Proposition 28. First, we mention the following
theorem due to Dixmier.”

Proposition 27
() Cen [D(L)] = D(Cen UL),
(i) D(Cen UL) < D(R,[x]),

where R,[x] is the set of all rational functions of ¢
variables. ¢ is even (odd) if dim L is even (odd).
(iii) If L, is an ideal of codimension 1 in L then

either Cen UL, < Cen UL (190)
Cen UL, > Cen UL. (191)

(188)
(189)

or

Proposition 28:

AX1, " s Xps Vi " " s Vs 215" ", 2, € UL (192)

(where the integers n and ¢ depend on L) such that:
(i) D(L) is generated by:

Xy VirZy, with i,j=1,--+,n, k=1,---,¢
(193)
(i) x;, y;, and z; satisfy

[xia x]] = 0’

>yl =0,

[Zi’ zj] = 09
[x;,2;] =0, (194)

[yi’ zj] = 09

and
[xi’yj] = 51‘5W,
where w € Cen UL and w 3 0.

Proof: The proof is carried out by a mathematical
induction on dim L. Let L, be an ideal in L with

(195)

then we have, as according to Proposition 27 (iii), two
possibilities and they are treated separately as follows.

codim Ly = 1;

? J. Dixmier, Bull. Soc. Math. France 85, 325 (1957); Arch. Math.
10, 321 (1959).
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(A) Cen UL, < Cen UL. In this case,

3y e Cen UL: y ¢ Cen UL,. (196)
Let x € L and x ¢ Ly; then we can write
y=2ux"", u,€ UL, (197)
=0

with x° = 1 understood.
Since y is in the center of UL, by definition we have

[y,v] =0 forany veL. (198)
Thus (197) gives
[y, V}x" 4+ (nuplx, v] + [uy, 0Dx" 71 + -+ - =0
(199)
which implies
[, 0] =0, (200)
mug[x, v] + [uy, v] =0 (ete.). (201)

From (200) and (201), we conclude, respectively,
uy € Cen UL, (202)

and

nugx + u, € Cen UL. (203)

By mathematical induction we now assume that

Xy, Xps Vis ' " s Vns 2157 70> 2, € UL, (204)

Then from (203) we introduce

Z41 = nueX + uy € Cen UL, (205)

It can be immediately verified that

xla.“5xn1y1’...)ynyzla"',th\—l

satisfy the required conditions of (194). This com-
pletes our mathematical induction on z. Q.E.D.

(B) Cen UL, = Cen UL. The proof for this is
slightly more complicated and we refer to the original
paper of Gel’fand and Kirillov for details.

Proof of the Conjecture: Now we are in a position
to prove the conjecture, i.e.,

D(L) <> D, (),
for a nilpotent L over F. The proof is easily carried
out by putting simply
pi = xwt
and
9: =i

where w is defined in (194). Q.E.D.
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XV. FURTHER REMARKS

It is clear that the Gel’fand-Kirillov conjecture is
actually much more ambitious than the solid proofs
they gave for the case of

(i) glm, C),

(i) si(m, C),

(iii) nilpotent Lie algebras over an algebraically
closed commutative field of characteristic zero.

Gel'fand and Kirillov have also indicated in their
paper® that they have a proof for the case of a semi-
simple Lie algebra L of rank two over an algebraically
closed commutative field by direct construction of a
proper basis in D(L). They indicated the choice of
such a basis is facilitated by the fact that D(L) is
generated by the subfield spanned by the maximal
solvable subalgebra L' in L and by the subfield con-
sisting of the elements that commute with the elements
of L.

It is clear that algebraic Lie algebras cover many
more cases than the cases proved by Gel'fand and
Kirillov and, therefore, the conjecture leaves a large
domain as an open question subject to further
investigation.

For those who are interested in the Gel'fand-
Kirillov conjecture as an indication of possible
realizations of algebraic Lie algebras by p’s and ¢’s
satisfying the so-called ‘‘canonical commutation
relations” [i.e., relations (62) and (63)], the explicit
constructions are hinted at in the proof of Proposi-
tion 25 for the cases of gi(m, C) and si(m, C) which
are particularly interesting to physicists working in
particle physics or dynamic groups. The conjecture
also serves a useful purpose to identify a “dynamic
group” (i.e., if 4, (F)is known as an algebra gener-
ated by 2n generators p’s and ¢’s and ¢ indeterminates)
with an algebraic Lie algebra, up to isomorphisms,
under certain circumstances.

As to the general statement concerning classifica-
tion of algebraic Lie algebras, the present knowledge
seems to be,? if we restrict ourselves to an algebraically
closed ground field of characteristic zero, that the
following are the known cases of algebraic Lie
algebras:

(i) nilpotent linear Lie algebras,

(i) representations of diag (n, C) as derivations of
nilpotent linear Lie algebras, where “‘diag’ means
all the diagonal matrices,

(iii) representations of semisimple Lie algebras as
derivations of solvable Lie algebras.

81. M. Gel’fand and A. A. Kirillov, Dokl. Akad. Nauk SSSR
167, 503 (1966).
? G. Seligman (private communication).
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The proofs of some of the facts, e.g., si(n, C) is
algebraic, can be found in Ref. 10.
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APPENDIX A: PROOF OF PROPOSITION 13
The proof of Proposition i3 is as follows.

Proof: Consider an increasing filtration

RicRic Ry, (A1)
with
R R; < Ry, (A2)
and °
UR, =R (A3)
=0
We define, as usual,
gr “R = R/R,_, (A4)
and
gr R =Y gr R, (A5)
=0

Let B be an ideal of R, then we can also introduce
an increasing filtration inherited naturally from that
of R:

By< By <= By, (A6)

by requiring that

B, = BN R; (A7)

then, we can proceed to define the graded structure
associated with the increasing filtration we just
introduced for B:

grB = ﬁgr @p, (A8)
where =
gr B = B,/B,_,. (A9)
We can see that
grBC€grR (A10)
and also,
grByCgrB €. (All)

10 C. Chevalley, Théorie de groupes de Lie; Tome II: groupes alge-
briques (Hermann, Paris, 1955); G. Seligman, “Algebraic Groups”
(Yale University lecture notes, available from the Mathematics
Dept.).
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Since gr R is Noetherian by assumption,

dn:grB,=grB,,=""" (Al12)
We want to show, then, that
B, =B, , =" (A13)

Consider Vx € B, (let [, be the set of all nonnega-
tive integers) and let k € [, be such that

(k) _—
X € Bn+l = Bn+1 N Rki

and
. x¢B% Y =B, .. NR,,.
Since
g By = g8,

®,8r'B,., ®;8r'B,
gr’B,., =gr’B,, for Vjel,,. (Al4)
In particular, for j = k,

gr an+1 = gr an (A15)

(k—1)

Iy, € Bn:x mod Bg;_ll) = W mod Bn+1 s
~————— N—— e’

. egr®B,., egr*B, = gr*B, .,
i.e.,
x — y; € B¢V (A16)
Similarly,
gr k—an+1 = gr k_an H (A17)
therefore,

3y, € B,:x — y, mod B¥3? = ypmod B2 |
\—\/—'—/ ——— e

egr*'B,,, egt™'B, =gr*'B, ,
ie.,
dy,€B,:(x — y, — ¥ € B:f:lz)- (A18)
Proceeding in this manner, we get, finally,
ayl,w,ykeBn:[x—iyi}eB;‘lil. (A19)
Using -
g 'B,,, = gr'B,, (A20)
ie.,
B}, =B}, (A21)
we obtain, therefore,
k
Ar €B,ix — Zl}’z‘ = Vi+1> (A22)
but -
BiN=0 (© R,=0)
k+1
X =2§1y2- €B,. (A23)

Remembering we started with ¥x € B, 4, it follows
that

B,..=B3,. (A24)
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Next, it is not difficult to see that R of the theorem
does not contain any zero divisors: Consider any two
nonzero elements a@; and a, in R, and let &, and &, be
the smallest integers such that

a €Ry, (e, a1 ¢ R y) (A25)
and

@, ER,, (ie,a,¢ Ry 1)

Therefore, by the canonical projection mapping
defined in (41), we have, obviously, that

(A26)

e, (@3) # 0 (A27)
and
m,(@z) # 0. (A28)
Equations (A27) and (A28) lead to
7Tk1+k=(al Cay) = 7"k,(al) s mme,(as) # 05 (A29)
a;ra, #0. QUED. (A30)

APPENDIX B: PROOF OF PROPOSITION 14

The proof of Proposition 14 is as follows.

Proof: Let R be a Noether ring without zero

divisors, then, by definition any chain of ideals of R,
R,ER,E---ER, (B1)

terminates at some integer n. That is,
n: R, = R,. (B2)

Now consider the particular case of the (left) ideal
R, generated by the set of elements

{a,a-b,a-b%---,a b"}, (B3)

CHOW

where a and b are any two nonzero elements of R,
Therefore, (B2) allows us to write

n
a-b"+1=zc,--a'b‘,
=0

(B4)

where c; are elements in R and 5° = 1 (unit element
of the ring). Let k be the smallest integer such that,
in (B4),

. # 0 (e, ¢y = 0). (B5)

Equation (B4) can be written as

n
a-b"'=5%c¢a-b,
i=k

i.e.,
n .
a- bn+1—k — 2 cca- b‘t—k,
] i=k
Le.,
7 n
a-b"*—3 ¢ra-bt=¢-a,
. i=k+1
ie.,
n .
l:a~b”“k— Yera b b=c.a,
i=#+1
ie.,
h-b=c¢,a, (B6)
where
7 .
h=a-b"*— 3 ¢-a- b7 (B7)

i=k+1
Therefore we have, from (B6),

3¢, #0, ¢, heRic,-a=h-b,

which is the (left) Ore condition. Q.E.D.
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It is suggested, on the basis of soluble models, that generalized Bose condensation results from a
broken symmetry associated with a nonvanishing pairing amplitude with very large low-momentum
components, leading to a nonzero “pairing density” p, as well as a nonzero generalized condensate
density p.. For systems of interacting bosons it is proved that (1) nonzero p, implies nonzero p,, and (2)
p. = 0in one or two dimensions and, more generally, for geometries finite in one dimension and infinite in
the other two (films) or finite in two dimensions and infinite in one (pores). It is pointed out that this does
not exclude superfluidity in such geometries, but does show the need of a new mechanism to explain it.

There exist proofs''2 that the usual type of Bose
condensation cannot occur at any nonzero tempera-
ture unless the system is infinite in at least three
dimensions. This presents a problem for the theoret-
ical interpretation of experimental results, which
show, e.g., that superfluidity occurs at sufficiently low
temperatures in films of *He as thin as a few atomic
diameters.3*

However, the type of Bose condensation usually
assumed, namely “simple Bose condensation” (SBC)
characterized by the presence of a nonzero fraction of
the particles with momentum exactly zero, is only a
very special case of a generalized type of Bose con-
densation (GBC) characterized by the presence of a
nonzero fraction of the particles in an infinitesimal
neighborhood of the origin of momentum space.>
There exist simplified models which exhibit a thermo-
dynamic phase transition at a temperature T, > 0
below which GBC is present, but nevertheless SBC is
absent.>? It has been pointed out by Krueger? that
GBC might be present in restricted geometries, since
the existing proofs!* do not exclude this possibility.
The main purpose of the present paper is to show that
the hope of explaining the experimental results on
films and pores by such a generalization from SBC to
GBC is illusory; we extend Hohenberg’s proof?! to
show that the type of broken symmetry expected in the
case of GBC also cannot occur in restricted geometries.
This does not absolutely rule out GBC or, more
generally, superfluidity, just as the existing proofs!-2
do not absolutely rule out SBC. However, it does
show that the superfluidity observed in restricted

1 P. C. Hohenberg, Phys. Rev. 158, 383 (1967).

2 D. A. Krueger, Phys. Rev. Letters 19, 563 (1967).

3 E. Long and L. Meyer, Phil. Mag. Suppl. 2, 1 (1953).

4 D. F. Brewer and K. Mendelssohn, Proc. Roy. Soc. (London)
A260, 1 (1961).

® M. Girardeau, Phys. Fluids 5, 1468 (1962), Eq. (48) ff.

¢ M. D. Girardeau, J. Math. Phys. 6, 1083 (1965).

7 Reference 6, Sec. 4.

geometries cannot be associated with a broken sym-
metry of the type expected in a system with GBC, just
as it cannot be associated with SBC.
A system of interacting bosons has a Hamiltonian
of the form
H =3 3N, +V, (D
k
where N, = afa, and V is some functional of the
density operator®
P = Q713 e, p.,=ga.tak+.,. ©)
We assume periodic boundary conditions with
periodicity volume (or length or area) 2. In case a
degenerate phase of the type associated, e.g., with
superfluidity is present, the usual grand canonical
ensemble does not lead to correct results for thermo-
dynamic averages of observables which have an
infinite susceptibility to a degeneracy-breaking per-
turbation; in this case the grand-canonical average
should be replaced by the Bogoliubov quasiaverage®

Tf ( . .e—ﬁHe)
R 3
< > Tre_pHE ()

where
H =H—-u> N, +7. 4)
K

and V. is an appropriate symmetry-breaking term
which vanishes as ¢ — 0. This limit is to be taken
after the thermodynamic limit (2 — oo for fixed p).

GBC is characterized by a nonvanishing condensate
density p,, where p, is defined by®-¢

p. = lim lim lim therm Q™' 3 (N,)

ko0 €0 k<ko

)

8 In the n-particle Schrodinger representation, this means that
V = W, - - -r,). This includes two-particle interactions as a special
case, as well as any interactions with the walls.

® N. N. Bogoliubov, Physica 26, 1 (1960).

993



994

M. D. GIRARDEAU

and “lim therm” denotes the thermodynamic limit. Then the Schwartz inequality, with o, = (NOE, B, =

One can also define a condensate pairing order
parameter or “‘pairing density” p, by®

p. = limlim lim therm Q™ Y [(aa_)l.  (6)
ko—20€-0 k<ko
The symmetry-breaking term is taken to be
Ve =3 o(k)eaa_y, + e*al,a)), (7

k

where o(Kk) is a real, even function of k. The motivation
for the definitions (6) and (7) is that the known models
which exhibit GBC (p, > 0 for T < T,) also have
p. >0 for T<T,, provided that the symmetry-
breaking term is of the form (7). This is rather obvious
for the model of reference® which contains pairing
interactions even before inclusion of the symmetry-
breaking term. However, it is also true for the plane-
wave Hartree-Fock model.” This model remains
exactly soluble in the thermodynamic limit after
addition of V,, and the solution has the property that
l{aya_y )| — (Ny) as k—0; this is shown in the
Appendix. On the other hand, (a,a_y) would vanish
identically if averages were taken with an ordinary
grand canonical ensemble.

In fact, any Bose system with p, > 0 exhibits GBC.
To prove this we note that the quasiaverage (4'B),
defined according to (3), satisfies the necessary prop-
erties of an inner product, the operators 4, B, - - -
being interpreted here as elements of a vector space.
Thus, the Schwartz inequality

[(4'B)|* < (ATA)(B'B) ®)
is satisfied. Taking 4 = af, B = a_, gives
Kawa )I* < (aaiialsa )

= (<Nk> + IXN_p = <Nk>2 + (Nw, (9)

the last equality following from the assumption that
the geometry of the system is symmetrical enough
that (N,) = (N_,). Now

(N + (NOB?2 > (N2 + (N, (10)
so that

Hawa_dl < (M) + (N
Then (5) and (6) imply
0 < p, < po + lim lim lim therm Q7' 3 (NpE. (12)

Ko—0 €0 k<ko

(1

Define an inner product

(O(, /3) Ekz O(kﬁk'

<Ko

(13)

10 One might be tempted, instead, to define a generalized order
parameter in terms of the values of (a)). However, the spatial
homogeneity of a liquid implies that {a) = 0 for k 5 0.

1, gives
0 < lim lim lim therm Q! 3 (N}
ko—0 €—0 k<ko
< ptlim f(ky) =0, (14)
ko—0
wherell
b
fike) = [lim therm Q' 3 1} . (15)
k<ko
Hence (12) reduces to
pe 2 pe 20, (16)

In particular, p, > 0 implies p, > 0.
We now prove that p, > 0is impossible in restricted

geometries. The proof is a modification of Hohen-

berg’s proof?! of the impossibility of superconductivity

in one or two dimensions. We start with the Bogoliu-

bov inequality?—1

«T [IC, ADP*

W4, 4 > : (17)
: ({1c, H, €
where « is Boltzmann’s constant. Defining
C=py, A= %S(k)aa—kalu (18)

where S(k) is a function which will be specified later,
one has by (1), (2), (4), (7), and (17) that

1 kZ SK)[S*(k) + S*(q — k)]
+ %Q‘lg 1S(K) + S(q — K)I* (N
+ Q7 SRS K)oy

KT (A7 [S(k)+S(q—K)(apa_)
> k
= pq2—2ﬂ—1g [o(k)+o(q—K)](e(aya_) +€*(a’ al)
(19)

where p = Q7UN) = Q71 3 (N,). Choose S(k) to
vanish for k > kg, and to have unit modulus and phase
opposite to that of (ga_,) for k < k,:

ISE)| =1, Sk)ma_) = {aay)l, k < ko,
Sk) =0,k >k,. (20)

If one applies the three limits involved in the defini-
tions (5) and (6), then most of the summations in (19)

11 For systems of one, two, or three dimensions, f(k,) is equal to
(kolm?, (ki/mt, or (k3/6m?)3, respectively.

12 N. N. Bogoliubov, Physik. Abhandl. Sowjetunion 6, 1, 113,
229 (1962).

13 H, Wagner, Z. Physik 195, 273 (1966).

4 N. D. Mermin and H. Wagner, Phys. Rev. Letters 17, 1133
(1966).
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will vanish for fixed g # 0 provided that
limlim lim therm Q7' 3 (N> =0, q #0,
ko—0e—0 k<ko

lim lim lim therm Q7 > [aq,_ay o)l =0, q # 0.
ko0 €~0 k<ko
(21)

These conditions could be violated only if there were
GBC into the neighborhood of q # 0; however, we
are assuming that GBC, if present at all, occurs in the
neighborhood of the origin of k space. Thus (19)

reduces, with (5) and (6), to
2

lim lim lim therm F(q) > 728 — 4o, (22)
kp—0€~0 q
where
F@Q=Q"'3 T SM)S*K)alal wae . (23)
k<lo k' <k

Multiplying (22) by e*** and integrating over the
region of momentum space satisfying ¢ < g,, where
qo is independent of , ¢, and k,, one finds in the
thermodynamic limit
lim lim | f(r — r")o(r, go) d’r'
ky—0€—~0

Tp? e~

Lo g~ ypeatrian, (4

p Je<a 4

where f(r) is the Fourier transform of F(q):

F(q) = f R dr

>

(25)

and
o(r, qo) = f e 4 (26)
a<qy

here » is the number of dimensions of the system (I,
2, or 3). The explicit forms of (26) are

o(r,qo) = 2rtsin(gyr), v=1,
= 2mqyr Y (qer), v =2,
= 4mr3[sin (qyr) — qo¥ cos (gor)], » =3,
(27)

where J; is the Bessel function of order one.

To obtain a bound on the left side of (24), we sub-
stitute for the @, and af in terms of the Bose field
operators y(r), ¥'(r) of which they are the Fourier
transforms, obtaining, with (23), (25), and (20},

F(g) = Q7 f (e = £ o e,

S, — 1) = f S = r)s*(r — 1y)

x (' (r)y (O p)p(r)) dry d*ry,
s(r) — Q—l Z e—iﬂkeik-r’

k<ko

(28)

where #, is the phase of (@a_,). The dependence of
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9, on k is determined by the geometry of the system
and the interparticle interactions. The simplest case
(analogous to S-wave pairing in superconductors) is
that in which &, = 9, independent of k. Then by (26)

s(r) = 27) e Pa(r, ko) 29

in the thermodynamic limit, so that

Sl —1y) = (277)’2vf0(|r’ — Tgf, ko)o(|r — 1y, ko)

x (' ()Y OpE)p(r) d'ry d'ry. (30)
The Schwartz inequality (8) implies

'y (v pE)]

< [ )Y EpEpE 1 )y @pE)weE)?

= [p(r)p(x)) — (p(e)a(x — r)lt
X [(p(r)p(®)) = \p(r S’ — )]}
= [{p(e)p)IE Kpr)pr DI, (31
the last equality (when inserted into an integral)
following from the facts that (p(r)) is finite and that the
square root of the Dirac delta function integrates to
zero. Since the density—density correlation function
(p(r)p(r’)) is integrable (in fact, everywhere finite),
it follows that the sameis true of (' (r)p! () )p(ry)).
To proceed we separately consider the small- and
large-distance contributions to (30). From (27) one
sees that as k, — 0, o(r, k,) vanishes like k for all
finite . Hence the contributions to (30) from finite
values of r; and r; vanish in the same limit. On the
other hand, o(Jr — 1y|, k) and o(Ir’ — 1y, k,) exhibit
a damped oscillatory behavior as |r; — r| > c© and
[r, — r'] — oo for fixed k,. Noting that the density-
density correlation function must approach the un-

correlated form at large separations,

(p(r)p(r)) =27 P

(32)

and making use of (27), one can estimate the contri-
bution to (30) from the region ry > rq, 1, > ry, where
ro is large but finite, as

© 2
y=1: [pf x7'sin x dx:‘
koryp
= lp silkoro)l* 3> Gp)’,
4] 2
y =2 l:pf Ji(x) dx]
korg
) 2
~ [pf x~¥ cos x dx] —> I7pt,
kor ko0
© 2
y=3: l:pf x7(sin x — x cos x) dx:l
koro

= indeterminate. (33)
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We thus conclude that f(r, — r,) is finite and of order
p® for v =1 or 2. It is unlikely that this conclusion
would be changed in cases where the pairing amplitude
does not have S-wave symmetry, giving an angular
dependence of 4, ; this would be expected to increase
the cancellations in the integral (28), making f(r, — ry)
still smaller.

Substitution of these estimates for f(r, — r,)into (24)
and repetition of the same argument leads to the con-
clusion that the integral on the left side of (24) is itself
finite and of order p* for the cases of one and two
dimensions; thus,

—iq-T
e e

T
o) > <L2[ =
14 a<aqo 4

dvq - %ch(r’ q())a

y=1or2. (34)

The integral on the right side diverges at low momenta

in both one and two dimensions. This is compatible

with (34) only if
p.=0,

v=1or2. (35)

This completes the proof of the impossibility of a non-
zero pairing density in one or two dimensions. For
n =13, no such conclusion follows, and in fact
counterexamples are known.>” Since SBC is a special
case of GBC, our proof also excludes SBC for » = 1
or 2, although the simpler proofs!'? are certainly
adequate for that purpose. The connection between
our proof and a proof of the impossibility of SBC
becomes clearer if one regards the order parameter in
the case of SBC as |(a2)|/CQ2 = p,, rather than the usual
choice of {a,) as order parameter.

The generalization to the case of pore geometries
(d x dx L, L— o) and film geometries (d X L X
L, L — ) is straightforward. It is clear from Figs.
1 and 2 and the definition (20) of S(k) that, as soon as
ko < w/dand g < m/d, the sums on the left side of (19)
and in the numerator of the right side will have con-
tributions only from the plane through the origin of
k space (v = 2) or from the line through the origin
(v = 1). Thus the proof reduces in all essentials to that

Fi16. 1. Geometry of k space, seen edge on, for a film of thickness d.
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-«-— T . . . .
2n
dl
*«— J_ .‘_gll_.,. . .
dl
. . 430 . .
. - . [ ] .
] . * . L]

F1G6.2. Geometry of k space, seen end on, for a pore with dimensions
dy X dy.

already given. We conclude that films and pores also
cannot have p, > 0. If d is large enough that

kT > 2m*h2[md?

at the experimentally relevant temperatures, then the
combined process of integration over individual planes
or lines and summation over different planes or lines is
well approximated by integration over a three-
dimensional k space, so that the thermodynamic
properties become experimentally indistinguishable
from those of a system macroscopic in all three
dimensions, except for a rounding of the thermo-
dynamic singularities in a temperature interval of
order 27%%/kmd? about the 4 point. In such a case,
one expects that true symmetry breaking, i.e., p, > 0,
would be replaced by a “nearly-broken symmetry” in
that the pairing amplitude (a@a_,) (or, in the case of
SBC, {a,)) will retain its bulk value as ¢ is decreased,
until € becomes so small that the symmetry-breaking
term makes an energy contribution (per particle)
small compared to 2#24%/md?2.

The experimental observations? do in fact show that
the logarithmic specific-heat singularity disappears as
the temperature falls below ~2n2A%/kmd?, and the
specific-heat anomaly becomes more diffuse as the
temperature falls. The results on the flow properties of
thin films are, however, quite different. It is observed3-
that even for films a few monolayers thick, there is a
well-defined temperature 7, below which the film flows
as a superfluid at sufficiently low velocities. For such
thin films 7, is considerably lower than the tempera-
ture of any observed specific heat anomaly® and the
specific heat does not exhibit any observable anomaly
at T = T,.

How is this observed superfluidity to be reconciled
with the proofs of the impossibility of a broken sym-
metry in such geometries? It would seem that the
crucial point here is that the existence of Bose-
Einstein condensation, either simple or generalized,

1 D, L. Goodstein and W, D. McCormick, Phys. Rev. Letters
16, 8 (1966), plus other references cited there.
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has not been shown to be necessary!® for superfluidity.
The Landau criterion!” shows that a necessary con-
dition for superfluidity is that the quasiparticle
excitation spectrum E(k) must satisfy

min k—E(k) > 0. (36)
k

In all presently known many-boson models which
satisfy this criterion, Bose-Einstein condensation
plays a crucial role. However, (36) could arise as a
result of some mechanism other than Bose condensa-
tion, or it could arise from a relaxed definition of
condensation in which not all the limiting processes
involved in (5) and (6) enter.
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APPENDIX: BROKEN SYMMETRY IN THE
HARTREE-FOCK MODEL

Taking H in (4) to be the plane-wave Hartree-Fock
model Hamiltonian,? one finds

H, = 2n(N — Dpa + 3 (3k° — N,
k
+ 27073’ NNy
Kk’
+ > o(k)eaya_, + e*aIaT_k). (A1)
k
Write

NNy = (Ny — m)(Ny — ny)
+ (ne Ny + n,N) — nyn., (A2)

where the n, are c-number parameters to be deter-
mined. Then

He = HO + H17
Hy=2m(N — Dpo — 27Q7 "0 X' nyny
Kk’

+ X wlN, + 3 o(k)eaay, + *ald')),
k k

H, =27Q7% 3 (N, — n)(N, — n,), (A3)
where K
wk) = 3k* — p + 47Q 7% 3 ny
=
= 1k* — p + dmpo — 47Q7an,.  (A4)

Then H. may be replaced by H, in computing thermo-
dynamic quasiaverages (3) with a fractional error
which vanishes in the thermodynamic limit, provided

16 It is perhaps not superfluous to mention that it is not sufficient
either, since an ideal Bose gas in three dimensions has po>0
(hence p. > 0) for T < T, yet it is not superfluid at any tempera-
ture.

17 L. Landau, J. Phys. (USSR) 5§, 71 (1941), Sec. 4.
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that the n, are taken to be'®

_ Tr (Nye o)

AS
Tr e ?Ho (A3)

ny

H, can be diagonalized by a Bogoliubov trans-
formation:

UHU = E, + 3 o(k)N,
k

Ey=2m(N — D)pa — 270" 3" myny

kk'

— 13 k) — oK), (A6)
o(x) = [W(k) — 4 | *W)E,
where
U_lakU =(1- |(pk|2)—%(ak - (pkaT—k),
UaiU = (UaU)',
~ w(k) — o) (A7)
T 2eo(k)

The thermal averages of N, and a,a_, are easily com-
puted®® and found to be

_Tr (Nye#Ho)

W = m Tr e #Ho
_wK) —o® wk) 1
T 2w(k) w(k) foR — 1 (A8)
and
T —BH

(aa_y) = %‘)
_ _ €*ok) 2
-5 [1 + S 1]. (A9)

In view of (A4), Eq. (A8) is really a transcendental
equation for my, which is to be solved simultaneously
with the equation

Q' In,=p, (A10)

k

which determines u. It can be shown that in one and
two dimensions, the solution is such that no Bose
condensation, either SBC or GBC, occurs at any
nonzero temperature.?® On the other hand, a straight-
forward extension of the previous analysis? shows that
in three dimensions, if € is small enough and « < 0,
the system will exhibit GBC at all temperatures
T < T,, where T, reduces in the limit ¢ — 0 to the
condensation temperature of the ideal Bose gas. Thus
for T < T, in three dimensions, n, becomes very large

18 . Wentzel, Phys. Rev. 120, 1572 (1960).

1 In view of (A6), these are most easily computed with the aid of
the identity Tr (Oe=8E0) = Tr (U-10 UeBU-1HyY),

20 This is true in spite of the fact that the plane-wave Hartree—-Fock
Hamiltonian cannot be expressed in the form (1).
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in a very small neighborhood of k = 0, corresponding
to the fact that Bw, becomes very small in that
neighborhood.” Then it follows from (A6) that w(k)
differs infinitesimally from 2 |¢| o(k) in this neighbor-
hood.?! Thus by (A8) and (A9) one finds, upon
replacing €™ by the first two terms of its power-
series expansion,

m ~ 2 |e] o(K)xT/w?(k),

(aa_,) ~ —2e*a(K)xT/w?*(k), (Al1])

for T < T, and k — 0. More explicit results can be
obtained by solving (A4) for n, after the substitutions
o = —Ja|, w(k)=~ 2]|el o(k) [the latter following
from (k) ~ 0]. This gives

m= 4k — KQfAral, T<T,, k<k, (Al2)

where
ky = {2[u + 4mp o] + 2 el o]} (A13)

21 We assume that a(k) > 0.
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Then, by (All),
(aa_,) = —1e (k2 — k*)Q/4m |,

T<T, k<k, (Al4)
where € = |¢| ¢”’. Equations (5) and (6) then give
pe=p.=fp, T<T,
Pe= P = 0, rT>T, (AIS)

where!!
(1 —f)p = 2.612(xT2m)}, T < T,,
kT, = 2m(p[2.612)},

(Al6)

and
lim k, = [15Qm)%p [«//Q), T <T,. (Al7)
€0

The infinite susceptibility of (@@ ,) to the sym-
metry-breaking perturbation ¥ is clear in this model;
with € = 0 a grand canonical ensemble calculation
gives {aa_,) = 0; on the other hand, if (gqa_,) is
interpreted as the quasiaverage (3), it is not zero and
in fact gets large like (V) as k — 0, for arbitrarily
small but nonzero e and T < T,.
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The perturbation theory of Bogoliubov and Mitropolsky for systems having a single rapid phase is
generalized to systems having several rapid phases. It is shown that one can avoid the classic problem of
small divisors to all orders in the perturbation theory. The method has the advantage of providing a single
approach to many problems conventionally treated by a variety of specialized techniques.

1. INTRODUCTION

The techniques of perturbation theory for non-
linear systems, initiated by Poincaré three quarters
of a century ago, have been extended and developed
by many workers. One such technique, the method
of averaging, was introduced by Krylov and Bogoliu-
bov thirty years ago.! The essential feature of this
method is the separation of a given motion into a
secular motion plus a rapidly fluctuating motion of
small amplitude; the given motion is then expressed
in terms of the solution of a system of differential
equations which describe the secular motion alone.

* Supported in part by the National Science Foundation.

t Present address: E. G. and G. Inc., Arlington, Va.

1 N. N. Krylov and N. N. Bogoliubov, Introduction to Non-Linear
Mechanics (Academy of Sciences of the Ukranian S.S.R., Kiev,
1937), trans. by S. Lefschetz in Annals of Mathematics Studies, No.
11 (Princeton University Press, Princeton, N.J., 1947).

A wide variety of physical problems may be handled
by this method, e.g., Case in a recent publication has
shown how the method can be applied to time-
dependent perturbation theory in quantum mechanics.?

Bogoliubov and Mitropolsky have presented a
form of the method of averaging, called the method
of rapidly rotating phase, which is especially conven-
ient for systems in which a single variable, called the
phase, has a rapid secular motion.* Our purpose in
this paper is to extend this method to systems with

2 K. M. Case, Suppl. Progr. Theoret. Phys. (Kyoto) 37, 1 (1966).
See also R. Y. Y. Lee, “On a New Perturbation Method” Thesis,
The University of Michigan, Ann Arbor, 1964.

3 N. N. Bogoliubov and D. N. Zubarev, Ukrain. Mat. Zh. 7, 5
(1955); N. N. Bogoliubov and Y. A. Mitropolsky, Asymptotic
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998

in a very small neighborhood of k = 0, corresponding
to the fact that Bw, becomes very small in that
neighborhood.” Then it follows from (A6) that w(k)
differs infinitesimally from 2 |¢| o(k) in this neighbor-
hood.?! Thus by (A8) and (A9) one finds, upon
replacing €™ by the first two terms of its power-
series expansion,

m ~ 2 |e] o(K)xT/w?(k),

(aa_,) ~ —2e*a(K)xT/w?*(k), (Al1])

for T < T, and k — 0. More explicit results can be
obtained by solving (A4) for n, after the substitutions
o = —Ja|, w(k)=~ 2]|el o(k) [the latter following
from (k) ~ 0]. This gives

m= 4k — KQfAral, T<T,, k<k, (Al2)

where
ky = {2[u + 4mp o] + 2 el o]} (A13)

21 We assume that a(k) > 0.
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Then, by (All),
(aa_,) = —1e (k2 — k*)Q/4m |,

T<T, k<k, (Al4)
where € = |¢| ¢”’. Equations (5) and (6) then give
pe=p.=fp, T<T,
Pe= P = 0, rT>T, (AIS)

where!!
(1 —f)p = 2.612(xT2m)}, T < T,,
kT, = 2m(p[2.612)},

(Al6)

and
lim k, = [15Qm)%p [«//Q), T <T,. (Al7)
€0

The infinite susceptibility of (@@ ,) to the sym-
metry-breaking perturbation ¥ is clear in this model;
with € = 0 a grand canonical ensemble calculation
gives {aa_,) = 0; on the other hand, if (gqa_,) is
interpreted as the quasiaverage (3), it is not zero and
in fact gets large like (V) as k — 0, for arbitrarily
small but nonzero e and T < T,.

VOLUME 10, NUMBER 6 JUNE 1969

Nonlinear Perturbations*

TiMorHY P. CorFeyt AND G. W. ForD
Department of Physics, The University of Michigan, Ann Arbor, Michigan

(Received 12 June 1967)

The perturbation theory of Bogoliubov and Mitropolsky for systems having a single rapid phase is
generalized to systems having several rapid phases. It is shown that one can avoid the classic problem of
small divisors to all orders in the perturbation theory. The method has the advantage of providing a single
approach to many problems conventionally treated by a variety of specialized techniques.

1. INTRODUCTION

The techniques of perturbation theory for non-
linear systems, initiated by Poincaré three quarters
of a century ago, have been extended and developed
by many workers. One such technique, the method
of averaging, was introduced by Krylov and Bogoliu-
bov thirty years ago.! The essential feature of this
method is the separation of a given motion into a
secular motion plus a rapidly fluctuating motion of
small amplitude; the given motion is then expressed
in terms of the solution of a system of differential
equations which describe the secular motion alone.
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several rapid phases and to succinctly describe how
the method works, first in the nondegenerate case, and
then in the more interesting degenerate case. In a
following paper one of us (T. P. C.) will use the
method to discuss the perturbation by a weak, trans-
verse, spatially periodic magnetic field of the motion
of a charged particle gyrating in a uniform magnetic
field.*

2. NONDEGENERATE PERTURBATION THEORY

We consider the following set of coupled differential
equations®:

xl‘=€Ai(x5¢)s i=1929"'9r’ (213')
Py = 0;(x) + Bi(x, ), j=1,2,-"",s, (21b)
where ¢ is a small parameter, x = (x;, "', Xx,),

$ = (9, -, v,), and the 4,’s and B,’s are periodic
functions of each of the y,’s with period 27. The dot
represents differentiation with respect to time.

When ¢ = 0, the x,’s will be constants and the ¢,’s
will be linear functions of time. When e is small but
finite, the x,’s will experience a slow secular growth
on which is superimposed small-amplitude rapid
fluctuations. Similarly, the w,’s will experience a
rapid secular growth on which is superimposed small-
amplitude rapid fluctuations. Our aim is to separate
this secular motion from the rapid fluctuating motion.
To do this we seek a solution in the form
i=12--- (2.2a)

5r’

[ve]
X;=y; + Zlean('n)(y, $),

yi= ¢+ 2EGIW ) J =12 s (2.20)
where the F{*’s and G\"’s are periodic functions of
each of the ¢,’s with period 2. We further require
that the new variables y; and ¢; satisfy the following
differential equations:

Vi =2 €"a(y), i=1,2-,r (23a)
n=1
(};]. = w,-(y) + Zleﬂb(jn)(y)’ j= 1,2, s, (2.3b)

where the right-hand sides of Eq. (2.3) are required
to be independent of the ¢,’s. The idea here is that the
yi and ¢, exhibit only secular motion, since they are
solutions of a system of differential equations which
are independent of the rapidly increasing (or de-
creasing) phases ¢,. The rapid fluctuations of the
x; and y; about the y, and ¢, are given by the terms
in the series in (2.2). We must now show that we can
4T P. Coffey, J. Math. Phys. 10, 1362 (1969).

5 The generalization to the general case where the right-hand
sides of (2.1) are power series in e is straightforward.
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construct the function F{™, G, a{™, and b{™ so that
(2.2) is indeed a solution of the set of differential
equations (2.1).

If we insert Eq. (2.2) in Eq. (2.1) and then use Eq.
(2.3) we find, upon equating equal powers of e,

Lo OFMy, )

a(y) + o = Ay, §), (240)
k=1 0%,
s aG(_l) ,
k=1 a¢k
w doLy)
—B(y,¢)+2F (v, d)—== oy (2.4b)
I
from the first power of ¢, and
LR 3w 04 | L 04,
(2) +z w, zG(l) + 2 (1)
0, =1 2y,
r F!l) s
—_ ;U L_ -3 b;c ) OF ,
=3 0y, =1 aqﬁk
(2.5a)
(q) (2)
+ zwk a(ﬁk
_1oS Fopm 095 P, (2) aw
= Fo———+2F
D) g z: aylaym gl ay,
+ EG(U aB + z (1) aB
1 Oy 0= oy,
r aG(-l s (1)
_ a{l) F) zb(l) oG , (z'sb)

=1

oy, = 0
from the second power of ¢, and so on. We thus
obtain a sequence of equations for the determination
of the unknown functions.

Each of these equations is of the general form

9F(y, )
0y

where a(y) and F(y, ¢) are to be determined and
A(y, $) is a periodic function of the ¢, which is
known in terms of the solutions of the previous
equations. Note that the dependence upon y is trivial,
the y, behaving as parameters in this equation, so we
may suppress this dependence for the moment and
write the equation in the form

i oF(¢)
O

This equation, viewed as an equation for determining
F(), is a first order, linear, inhomogeneous partial
differential equation with constant coefficients. Solu-
tions of such an equation exist only if the inhomo-
geneous term is orthogonal to all solutions of the

= Ay, ¢), (2.6)

a(y) + E w(y) ———

= A(P) —a @7

k=1
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homogeneous equation:

s
Zwk

k=1

0F(¢)
04y

But the solutions of this equation are all of the form

= 0.

(2.8)

F@§) = exp |13 puk] 29)
where, because F(¢) must be periodic in each of the
é,, the p, must be integers and, because (2.9) must
be a solution of (2.8), these integers must satisfy the
identity

> pyw, = 0. (2.10)

k=1
In the nondegenerate case we assume there are no
sets of integers satisfying this identity except for the
trivial set in which all the p, are zero, i.e., F(¢)is a
constant. If there is a nontrivial set of integers satis-
fying (2.10) we say there is a degeneracy; we discuss
this case in Sec. 4.

We see, therefore, that in the nondegenerate case a
must be chosen so there is no constant term on the
right-hand side of (2.7); F(¢) is then the solution of
the resulting differential equation. To exhibit this
solution more explicitly, we return to Eq. (2.6) where
the y dependence is indicated. The given function
A(y, ), since it is periodic in the ¢, , must be expres-
sible in the form

Ay, ) = 3 A(y)e™?, 2.11)

where the sum is over all sets of integers p =
(p1>p2> "> ps) and
p-P E}glpkﬁl’k- (2.12)

The function a(y) must be chosen to cancel the terms
corresponding to p = 0, in which all the p,, are zero:

a(y) = Ayy)
1 27 27 o
B (277')31; dqle; de, - L d¢sA(Ya $). (2.13)

The solution of (2.6) is then

Fiy,$)= —i3 4D piv +/(», 214
prw

»

where the prime indicates that the term p = 0 is
absent from the sum and
prw Ekglpkwk(y)- (2.15)

The function f(y) in (2.14) is arbitrary; the solution of
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an inhomogeneous, linear, partial differential equa-
tion is determined only up to an arbitrary solution of
the homogeneous equation. We usually choose f(y)
to be zero.

Thus, we see how the two functions a(y), given by
(2.13), and F(y, ¢), given by (2.14), are determined
from the single equation (2.6). Since each of the equa-
tions in the sequence for the determination of the
functions F{"(y, ), G\"(y, &), a”(y), and b{™(y) is
of the form (2.6), we may, in the nondegenerate case,
successively solve to determine these functions. To
be more explicit, we first note that the given functions
A (x,¢) and B,(x,¢) in (2.1) are periodic in each of
the y, and so may be expanded in the form

Afx, ) =3 A, (x)e™?, (2.16a)
P
B(x, ) = X B, y(x)e®¥. (2.16b)
p
Then from (2.4a) we find
ai’(y) = 4, y) (2.17)
and
A; .
¢ = =i 520 e (a4g)
p P
Using this solution in (2.4b) we then find
b(y) = B,.o(y) (2.19)
and
GP(y. $)
= 0w (y)
D 5T Ay
s |B® 5 O v 020
= — et? .
) prw (p- ‘-'~’)2 ’ )

and so on. The expressions become increasingly
cumbersome, but we can, in principle, solve to obtain
explicit expressions for the F{, G{™, a{™, and b{™ so
(2.2) is a solution of the system of equations (2.1) to
any desired order in e.

3. THE VAN DER POL EQUATION

As a simple example illustrating the working of the
general method for the nondegenerate case, we con-
sider the van der Pol equation

Z4e(2—1Di4+2z=0. 3.0

We cast this equation into the standard form (2.1) by

introducing variables x and 4 through the substitution:
z = xcos y,

2= —xbsiny, (3.2)
that is,
x = z% + 22,

p = —arctan Z/z. (3.3)
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Forming the time derivative of both sides of this last
pair of equations and using (3.1) and (3.2) on the
right-hand sides, we find

Xx = 2ex(1 — x cos? ) sin®
= ex(1 — }x — cos 2y + }xcosdy) (3.4a)

p =1+ e(l — xcosy)sinycosy

=1+ ¢[(} — 1x)sin 2y — ixsin4y]. (3.4b)

These equations are in the standard form (2.1) for
applying the methiod of rapidly rotating phase, with
€ a small parameter.

According to our general method, we seek a solu-
tion in the form

x=y+ FU(y, ¢) + €FB(y, ) + -+, (3.5)
p= ¢ + GG(“(}), ¢) + €2G(2)(y, ?5) 4o (3.5b)
where
y = ea(l)(y) + €2(1(2)(),) + -, (3.6a)
¢=1+eV(y) 4+ &bP(p)+---. (3.6b)

Inserting (3.5) in (3.4), using (3.6), and equating
powers of €, we get the following sequence of equa-
tions.

aF(l)
aV 4 3 = y(1 — }y — cos 2¢ + 1y cos 4¢),
(3.7a)
aG(l) )
P 4 _a; = (} — 1y)sin2¢ — Lysindd, (3.7b)
from the first power of ¢, and
aF(Z)
a® 4 _ag)_ =(1 — 4y — cos 2¢ + 1y cos 4)F"Y
+ (2y sin 24 — y*sin 44)G™
— g oF% —pv oF® (3.8a)
oy 0¢
aG(2)
b 4 e —(}sin2¢ + } sin 4¢)FY

+ [(1 — 3y) cos 2 — 4y cos 441G"
_ b(l) aG(l) _ H aG(l)
¢ ay

from the second power of ¢, and so on.
We solve this sequence of equations as indicated in
the previous section. From (3.7a) we find

al(y) =y — 1),
FO(y, ¢) = y(—4 sin 2¢ + 5y sin 4¢),

(3.8b)

(3.92)
(3.9b)
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while from (3.7b) we find
bN(y) =0, (3.9¢)
GV(y) = —3(1 — $y) cos 2¢ + 35y cos 4. (3.9d)
From (3.8a), using the solutions (3.9), we find

a®(y) = 0, (3.10a)
F(y, ¢)
= y2(35(y — 5) cos 2¢ — ¢ cos 4¢ + 5y cos 6¢),
(3.10b)
while from (3.8b) we find
1 3y 11y°
PP = — -4+ =2 — =, 3.10¢
W 8 + 16 256 ( )
G?(y, ¢)
2
= — MsinLﬁ — wsinm}g
128 512
y3 —2y) . y' o
—_— 64 — sin 8. (3.10d
T b g indé (G100

These expressions, when inserted in (3.5) and (3.6),
give the complete reduction of the problem through
second order in e.

The method of rapidly rotating phase does not in
general lead to an explicit solution of the original
set of differential equations. Rather, it is a method
for separating the secular motion from the rapid
periodic fluctuations and reducing the problem to that
of solving the differential equations for the secular
motion alone. The solution of these equations, i.e.,
in the general case the equations (2.3), may be a very
difficult problem, but in the case of the van der Pol
equation it is quite simple. Using (3.9a) and (3.10a),
the differential equation (3.6a) becomes

y=el(l — 1ty (3.11)
through second order in e. The solution is
4y(0
i) = ——20) G.12)

¥(0) + [4 — p(0)]e=t

Here we see the well-known feature of the van der Pol
equation: for long times the amplitude approaches a
constant independent of the initial amplitude. In-
serting this solution in (3.6b) we can integrate to find

() = $(0) + (1 - B)t

- —€%
+ < log ¥(0) + [4 — y(O)]e
16 4
1— e

¥(0) + [4 — y(0)]e"

11e ,
+ — 0 3.13
) ¥40) (3.13)
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Here we see there is a shift in the frequency of the
rapid phase together with a slow secular shift of the
phase.

This discussion of the van der Pol equation is only
intended to be illustrative of the method. We refer,
for example, to a recent paper by Struble and Fletcher,
who give a much more thorough discussion of the van
der Pol equation using a somewhat different method.®

4. DEGENERATE PERTURBATION THEORY

In the degenerate case we must consider what
changes must be made when there is a nontrivial set
of integers satisfying (2.10). More generally, we must
consider the situation when

p - w| < O(e). (4.1

That is, the case when the factors in the denomina-
tors of our solutions, e.g., (2.13) or (2.16) or (2.18),
are small of order e. When this occurs the successive
terms in the series (2.2) are no longer small if e is
small; they no longer represent small amplitude
fluctuations of the given motion about the mean
motion. This so-called problem of small divisors is,
of course, closely related to the degeneracy problem
for which the divisors are zero.

The solution of this problem is already indicated by
our discussion of Eq. (2.6) in the nondegenerate case.
There we saw that the function a(y) has to be chosen
to cancel the terms in A(y, ¢) which correspond to
solutions of the homogeneous equation (2.8). In the
nondegenerate case, the only such term was the con-
stant term, but in the degenerate or near degenerate
case we must cancel all the terms corresponding to
sets of integers satisfying (4.1). That is, we generalize
to allow a(y, ¢) to depend upon those combinations
of the ¢; which give rise to small divisors and then
choose a(y, ¢) to cancel those terms in A(y, ¢).

Our procedure is formally similar to the nondegen-
erate case. We seek a solution of (2.1) in the form

xi=yi+§16"Fi-”’(y,¢), i=1,2,r (42a)

v, =¢;+ Zle"Gi-"’(y, ), j=1,2,--+,s, (4.2b)

where the F{"(y, ¢) and G{™(y, ¢) are periodic func-
tions of each of the ¢,. We further require that

Vi=2ea"(y, $), i=12-",r, (432
n=1

9é:i = wj(Y) + lenbgin)(y’ ¢)9 J=12,s
(4.3b)

¢ R. A. Struble and J. E. Fletcher, J. Math. Phys. 2, 880 (1961).
See also N. Minorsky, Ref. 2, pp. 219-224 and pp. 329-338.
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Inserting (4.2) in (2.1) and using (4.3) we find,
upon equating powers of e,

s (1)
a(s, ) + Son(y LoD
=1 0,

9G"(y, )
Oy

=B +3 a‘“Ty(y—) FO, &), (4.5)

= Ay, $), (44

B, ) + Z0u)

and so on. The sequence of equations we obtain
differs from that in the nondegenerate case only in
that the a{"(y, ¢) and b{"(y, ¢) depend upon ¢ as
well as y. The formal solution of these equations is
straightforward. Using again the expansions (2.16),
from (4.4) we obtain:

a(y, )= >

|pew] < OCe)

A (y)e™?, (4.6)

where the sum is over all sets of integers fulfilling (4.1),
and

A; 5(y) eile
[pw|>0() P W

F(y, ) = —i , @

where the sum is over all sets of integers not contained
in the sum in (4.6). Continuing, from (4.5) we obtain

by, d)= Y B, (ye®* (4.8)
|p-w| < Ofe)
and
Gy, §)
" Ow,
Z—QAl,p(y)
. B;(y) .i=1 oy, e
= —] — 1 ew~d>
lp-wfZ oG L P o (pr w)
4.9)

It should be clear that in this manner we can
successively solve the equations for the determination
of the FI™(y, &), GI(y, &), a™(y, ), and b(y, )
to obtain explicit expressions in which small divisors
do not occur. Of course, the equations (4.3) for the
determination of the secular motion are more com-
plicated than the corresponding equations in the
nondegenerate case; they explicitly involve certain
combinations of the ¢,. However, these equations
still describe the slowly varying secular motion,
since those combinations of the ¢, which do appear
are themselves slowly varying. Thus, if the combina-
tion (p - ¢) appears in (4.3), then

P -$P)= (- w) <0,

i.e., this combination is slowly varying in exactly the

(4.10)
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same sense that the y, are slowly varying. The basic
idea of the expansion (4.2), or of (2.2), is the separa-
tion of the secular 12otion from the rapidly fluctuating
motion, and this separation is preserved in the degen-
erate case.

There is, however, a serious difficulty in our
general formulation of the degenerate perturbation
problem. This is the question of deciding which
combinations of the ¢, are to be included in the secular
motion. For any particular set of w,, we can always
find a set of integers p, such that (p- w) is as close
as we please to any real number. That is, the values
of (p - w) are dense in the whole range

4.11)

This means that we cannot, in general, make a sharp
separation between the terms for which [p- w| < O(e),
which we put into the secular motion, and the re-
maining terms, which we put into the fluctuating
motion. We can do so only if the coefficients 4, ,(y)
and B; ,(y) vanish sufficiently rapidly for large values
of |pl = (p® + p2 + * + - + p%= The point here is that,
for the most general functions 4,(x, ¢) and B;(x, ¢)
in Eq. (2.1), it is not possible to sharply separate the
secular motion from the periodic fluctuations; when
these functions are such as to allow a sharp separation,
the method we have outlined will work.

—o<prw<

5. CONCLUSION

The method of rapidly rotating phase which we
have presented here is applicable to a wide range of
physical problems. On the one hand, it can be shown
to be equivalent to classical perturbation theory of
Hamiltonian systems, at least in the nondegenerate
case.” On the other hand, Rayleigh-Schrodinger
perturbation theory in quantum mechanics is also a
special case. In both cases the treatment of degeneracy

" For a proof see T. P. Coffey, “Analytical Methods in the Theory
of Non-Linear Oscillations,” thesis, The University of Michigan,
Ann Arbor, 1966.
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or near-degeneracy is generally simplest by the method
of rapidly rotating phase. Thus, the advantages of the
method are its generality and its simplicity.

Of course, not all perturbation problems can be
cast into the form of a set of coupled differential
equations in the standard form (2.1) appropriate
for the method. In general, we cansay that the method
is suited for the discussion of small perturbations of
periodic or multiple-periodic motions, but we cannot
precisely characterize such problems.

As we remarked earlier, an aspect of the method
which may cause difficulty in applications is that the
Egs. (2.3) or (4.2), which describe the slow secular
motion, may not be appreciably easier to solve than
the original equations. (Here we are speaking of the
finite versions of (2.3) or (4.2) which are obtained by
truncating the series on the right.) The point is that the
method is designed to separate the secular motion
from the fluctuating motion; it gives no help in the
discussion of the equations for the secular motion.
Thisis acharacteristic feature of all averaging methods.

We close with a few remarks about convergence.
1t should be clear that the method of rapidly rotating
phase is asymptotic in the sense that the approximate
solution is intended to be valid for long times, i.e.,
for times of order €1, the characteristic time of the
secular motion. What can be proved is a typical
asymptotic convergence theorem: With suitable re-
strictions on the perturbing functions, the approximate
solutions obtained by solving the differential Eqgs.
(2.3) or (4.2), truncated at a finite order in ¢, and
inserting the resulting solution in (2.2) or (4.1), also
truncated, differ from the exact solution by an error
which is small but which grows in time like exp {cet},
with ¢ a constant.® This is a rather weak theorem, but
we have not been able to improve it in the general case.
The question of the convergence of the infinite series
in Eqs. (2.2), (2.3), (4.2), and (4.3) is still open.

8 For a proof, see Ref. 7.
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The phase-integral approximation of the Green’s function in momentum space is investigated for a
particle of negative energy (bound state) which moves in a spherically symmetric potential. If this po-
tential has a Coulomb-like singularity at the origin, it is shown that any two momenta can beconnected by
an infinity of classical trajectories with a fixed energy. The summation of the usual phase and amplitude
factors over these trajectories is the approximate Green’s function. If there is orbital precession, there are
not only poles along the negative energy axis, but also weaker singularities which are not examined in
detail. The poles are found at the energies which are given by the semiclassical quantum conditions:
angular momentum = (/ + })% and action integral for the radial motion = (n + 4)2##, where / and n
are integers > 0. The residues at these poles give the approximate bound-state wavefunctions asaproduct
of the asymptotic formula for Legendre polynomials with theasymptoticsolution of theradial Schrédinger
equation. It is conjectured that the occurrence of poles in the approximate Green’s function is a direct
consequence of the periodic character of the classical motion.

INTRODUCTION

The present work continues to pursue an idea
which was first discussed in an earlier paper® (to be
referred henceforth as I). The phase-integral approxi-
mation, commonly known as WKB method, was
applied to Schrédinger’s equation in order to find
the approximate Green’s function for single electrons
in an atomic potential. Attention was focused on
momentum space (rather than coordinate space)
because there was good reason to believe that such a
procedure would improve the approximation for
bound states. This hope was completely vindicated in
the case of the hydrogen atom where not only the
correct bound-state energies, but even the correct
bound-state wavefunctions were obtained as the
residues at the poles of the approximate Green’s
function in momentum space.

The formalism in I can be used to discuss the
phase-integral approximation for the Green’s function
in any spherically symmetric potential. The corre-
sponding calculations will be carried out and discussed
in the present paper. The emphasis will be again on
momentum space, because classical mechanics in
momentum space forms a much more convincing
basis for an approximation to quantum mechanics in
the case of negative energies. The reason is simply that
any two momenta p’ and p” can be connected by an
infinity of classical trajectories with fixed negative
energy E, provided the potential V" has singularities of
the Coulomb type, ie., V' ~|q|™ for small g. The
phase-integral approximation F(p"p’E) for the Green’s
function F(p"p'E) does not have any of the obvious
limitations which beset the phase-integral approxi-
mation G(q”q’E) of the Green’s function G(g"q’'E) in
coordinate space.

! M. C. Gutzwiller, J. Math. Phys. 8, 1979 (1967).

The singularities of F(p"p'E) will be examined in
order to find the approximate eigenvalues and eigen-
states of the particle in the potential V(g). It was
found in I that F(p"p'E) has only poles along the
negative E axis in the case of the pure Coulomb
potential. It will turn out, however, that F(p”p'E) has
not only poles, in general, but other singularities of a
weaker kind like branch cuts. The poles of F will be
determined in this paper. They are given exactly by the
ordinary quantum conditions: angular momentum
M = (l+ %)i and action integral for the radial
motion § p, dr = (n + $)2nh with integers /and n > 0.
The corresponding approximate eigenfunctions are
the asymptotic expression for the Legendre poly-
nomials and the asymptotic solution of the radial
Schrodinger equation. These results hold equally well
in momentum and in coordinate space. We find,
therefore, the well-known formulas for the WKB
method in a completely different manner without the
need to make certain additional assumptions which
are usually necessary for the separation of variables.

Nevertheless, it is only fair to make the following
remarks. The spherical symmetry of the potential
V(q) has been used not only to solve the equations of
motion in classical mechanics, but also to make use of
the periodicity in the angular and radial motion.
Indeed, it seems at this point that the phase-integral
approximation for the Green’s function has poles only
if the classical motions are periodic in some sense.
If the periodic character of the classical orbits is
complete as in the Coulomb potential where all orbits
are closed, one has only poles. In the more general
case where orbital precession occurs, there are weaker
singularities besides the poles. When the classical
trajectories have no periodicity at all, the poles will
presumably disappear from the approximate Green’s
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function and only weaker singularities remain along
the negative E axis. The understanding and the calcu-
lation of these weak singularities presents, obviously,
a challenge which is not met in this paper. It would
appear that the geieralization of the WKB method to
nonseparable potentials is found by tackling this
difficult problem.

The results of this paper do not seem to throw any
light in that direction. This is particularly regrettable
because the approximate wavefunctions from the
poles of F cover only a limited domain in momentum
space exactly as the approximate wavefunctions in
coordinate space cover only the classical domain and
have stiong singularities at its boundary. The original
motive for going into momentum space seems thereby
lost. Actually, the capability of F(p"p’E) to be different
from zero for any pair of momenta p’ and p” is hidden
in the weak singularities. They have to be investigated
if one tries to go beyond the ordinary WKB method
even in the case where the separation of variables is
feasible as for a spherically symmetric potential.

The present paper has been arranged as follows.
The notations and results of I are recalled in Sec. I.
The possibility of connecting any two momenta by an
infinity of trajectories at a given negative energy is
discussed in Sec. 2. The principal argument is purely
geometric because the trajectories in momentum can be
put into a one-to-one correspondence with the geo-
desics on a surface in Euclidean space which is
topologically equivalent to a sphere. A complete
enumeration of all the trajectories from p’ to p” is
accomplished in Sec. 3. The number of “conjugate
times” between p’ and p” is also determined because
it fixes the extra phase losses which occur every time
the trajectory touches a focal line.

The sum over all classical trajectories can then be
written formally in Sec. 4 with the help of the repre-
sentation that was established in the preceding section.
This summation is transformed with the help of
Poisson’s formula in Sec. 5. The result is particularly
simple if we consider only the discontinuity of
F(p"p'E) across the negative E axis. One of the new
variables of summation is immediately recognized as
the discreet angular momentum (/ + $)A. The other
variable corresponds to the radial quantum number #.
The poles of F(p"p’E) are finally obtained in Sec. 6
and are found from the ordinary quantum conditions.
The residues are simply the products of the corre-
sponding approximate wavefunctions for p’ and p”,
including the correct angular dependence.

1. THE BASIC FORMULAS AND NOTATIONS

The semiclassical approximation F(p"p’E) will be
constructed for the quantum-mechanical propagator
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F(p"p'E) of a particle which starts out with a momen-
tum p’ and ends up with a momentum p” while
propagating with energy E. The classical Hamiltonian
H(pg) is given and we can, therefore, calculate the
classical trajectories in momentum space. Along a
particular trajectory which goes from p’ to p” at the
energy E = H(pq) we can calculate the virial

1ere = - adp. )
4

The approximate propagator F(p"p’E) is given by
summing over all classical trajectories from p’ to p”
with energy E, namely,

Fo'pE) = — — (DD}

27Th2 classical paths
. T
X exp I:l ; — phasesj|. 2)

D, is the following 4 by 4 determinant

0*T o°T
op'dp” Op'dE
Dy = pop OPeR, 3
PT  PT
0Edp” OFE?

The “phases” in the formula (2) are related to the
number and multiplicity of conjugate times along the
particular trajectory in the following manner. Suppose
that the particle starts at time # = 0 with momentum
p’ and coordinate ¢'. Consider the trajectories of the
same energy which start simultaneously with momen-
tum p’, but whose initial coordinate lies in a element
of 2-dimensional surface dQ’ around ¢’. At any later
time ¢ > 0, the momenta of these trajectories lie in a
surface element d€2 of momentum space around the
momentum p of the particle. In general, dQ will again
be two-dimensional; but at certain special times,
called ““conjugate times,” the dimension of 4Q will be
reduced by 1 or 2; these are the simply or doubly
conjugate times. The trajectory of the particle is then
tangent to a focal surface or focal line. The “phases”
are given by =/2 multiplied by the number of con-
jugate times along the trajectory from p’ to p”, each
counted with the proper multiplicity.

The physical significance of these extra phases in
(2) is the following. Each focal surface or focal line
represents a boundary for those classical trajectories
which start with momentum p’ and energy E. The
particle is allowed, however, to “tunnel’” beyond this
boundary. The net effect of this quantum-mechanical
penetration into the classically inaccessible region is a
loss of phase. It is as if the particle had been able to
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penetrate by an eighth of a wavelength before being
reflected back into the classically accessible region by
an infinitely hard wall.

The Hamiltonian is assumed to be the sum of
kinetic and potential energy

H(pq) = p*2m + V(q). “

In this paper, V{g) is assumed to be spherically sym-
metric. Moreover, V(g) is assumed to be a mono-
tonically increasing function of r = |g|,so that one
can invert the relation between V and r. The inverse
function will be written as r(¥). Each classical
trajectory lies in the plane which is defined by the
momenta p’ and p”. Also, each classical trajectory is
characterized by its angular momentum A in addition
to its energy E. The coordinates in the plane of the
trajectory are chosen such that M > 0 for the shortest
trajectory.

The equations of motion can readily be integrated in
polar coordinates. Thus, let p = |p| and # be the polar
angle of p in the orbital plane, with % = 0 for p’. The
projection ¢ of g along p is the conjugate variable for
p and the angular momentum A is the conjugate
variable for . The new Hamiltonian in the orbital
plane is given by

=i§;+ V([02+A:—:T), (5)

which is to be considered as a function of p, o, and M.
The equations of motion

do dp
= =+H,, £=_p, 6
dt ?7 dt ©)

can be greatly simplified if the time ¢ is eliminated, and
if p (or o) is used as parameter after eliminating o (or
p) with the help of energy conservation H(paM) = E.
The resulting integrals, however, have singularities
whenever p (or o) reach their extreme values com-
patible with the fixed energy E and angular momentum
M. These singularities are harmless and can always be
circumvented by going from p (or o) as parameter of
integration to its conjugate variable o (or p).

The quantities of interest to the propagator (2) can
now be written as

o
T(p"p'E) =f’ oH,dt + M(y" — 7"), )
o
N == =£, Hy dt, ®
1 P’P” Sin'l? . t” ng
— =———+-H H] Hyar — dt. 9
D, M » [ MM (Ha )G:I 9)
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Lower indices always mean partial differentiation,
whereas primes or double primes indicate that the
quantity is to be evaluated at the beginning or at the
end of the trajectory, respectively. The integral in (9)
can be transformed with the help of the identity

[ (=] o
v \H,), v \H, ), H:H, ' H.H,

P

(10)

which is valid for n = 0, 1, 2 and serves to avoid the
singularities in the integrand of (9).

The conjugate times for ¢" are determined by either
one of two conditions which are sometimes satisfied
simultaneously and then yield a doubly counting
conjugate time. One condition requires the vanishing
of sin n, whereas the other condition requires the
vanishing of the integral in (9) or, equivalently, the
vanishing of 0%/0M taken at constant p’ and p”.
The occurrence of conjugate times coincides with the
vanishing of (9). Since the —4 power of (9) enters into
the amplitude of F(p"p'E), the phases in (2) can be
interpreted as follows. Each time D, changes sign as
one follows the particle along its trajectory, the —%
power of Dy implies a factor e="/2,

2. THE CLASSICAL TRAJECTORIES IN
MOMENTUM SPACE

The classical trajectories in coordinate space from
g’ to ¢” at the energy E can be obtained from the
variational principle

o
6], 2mlE — V@l ldgl=0  (11)

a
due to Jacobi (cf. Ref. 2), The variation is to be
taken over all rectifiable curves from ¢’ to ¢”. The
first factor in the integrand of (11) is the absolute
value of the momentum of a particle at g with total
energy E. The stationary value of the integral gives
the action | p dg along the particular trajectory from
g tog”.

Since we are interested mostly in the trajectories in
momentum space, it is natural to ask for a generali-
zation of (11) to momentum space. For spherically
symmetric potentials one finds in analogy to (11) the
variational principle

" p2
af r(E - —) dp| = 0.

D’ 2m
The stationary value of the integral equals the classical
virial T(p"p'E). The proofs of either (11) or (12) are

(12)

2 D. Laugwitz, Differential and Riemannian Geometry (Academic
Press Inc., New York, 1965), p. 172.
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straightforward and can be omitted. The simplicity of
(11) comes from having p parallel to dg along the
trajectory, whereas (12) is guaranteed if g is parallel
to dp along the trajectory, i.e., if the potential is
spherically symmetric.

The variational principles have a simple geometric
interpretation. In (11) we consider the inside of the
sphere V(g) < E as endowed with the Riemannian
metric 2m[E — V(q)] dg®. The trajectories are then
identical with the geodesics in this Riemannian space.
Similarly, we endow the momentum space with the
metric [r(E — p?/2m)]2 dp®, so that the trajectories
can equally well be considered as the geodesics of that
second space. If the potential ¥(g) has an infinity at
g = 0, the point ¢ = 0 has to be removed from the
sphere V(g) < E. There is no such difficulty in
momentum space since r = 0 is only reached for
[pl = oo.

The trajectories in momentum space can be further
investigated and understood if an additional assump-
tion is made. ¥(g) is from now on assumed to have an
atomiclike singularity for small r, i.e.,

V(g) ~ —Zye¥r, (13)

Since the potential is spherically symmetric, nothing is
lost by considering the particular plane through the
origin and the two end points in either coordinate
space or momentum space. The crucial question arises
whether either one of these 2-dimensional subspaces
with their Riemannian metrics can be mapped iso-
metrically onto a surface in 3-dimensional Euclidean
space. If so, we would gain much better insight into
the geodesics between the two given end points.

This kind of isometric mapping can be accomplished
for the momentum space in the following manner.
Let the vector p be given by (p cos @, p sin ¢) with
0< p< +wand0 < ¢ < 27 There is a one-to-one
relationship between p and r which is given by

p2m + V(r)=E

for small r.

(14)

for a fixed value of £ < 0. Since our mind is used to
thinking in coordinate space rather than momentum
space, r is preferable as a parameter when it comes to
intuitive understanding. Therefore, we shall use r
rather than p to define the isometric surface for
momentum space.

Let us consider a cylindrical coordinate system
(R, @, z)in a Euclidean space. The isometric surface is
described by giving R and z as functions of r only, and
identifying ¢ with the polar angle in momentum space.
Thus the isometric surface has rotational symmetry
around the z axis, and the circles of constant z corre-
spond to the circles of constant p (or constant r) in
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Fic. 1. The Kepler orbits in momentum space through a given
initial momentum p’ and with energy E. There is exactly one
trajectory connecting any given pair p” and p”.

momentum space. The Riemannian metric in momen-
tum space has to agree with the natural metric of the
surface (R(r)cos ¢, R(r)sin ¢, z(r)) in Euclidean
space, i.e.,

ri(dp® + p?do?) = dR? + R*d¢? + dz2. (15)
With the help of (14) we find immediately that
R = r{2m[E — V(OI}E,
(45)2 = 2m (d—(-@ - E). (16)
dr dr

As a particular example, let us consider the Cou-
lomb potential V(r) = —Z,e?/r. The second equation
(16) gives z = (2m |E|)*r if we chose z(0) = 0. The
first equation (16) then yields R = (—z2 + 2az)} with
a = [mZje![2 |E|J5. The isometric surface for mo-
mentum space turns out to be a sphere of radius a in
the case of a Coulomb potential. The mapping from
momentum space onto this sphere is a simple stereo-
graphic projection, so that circles are mapped into
circles. In particular, the great circles of the isometric
surface are mapped into those circles in momentum
space which intersect the circle p = (2m |E])* in
diametrically opposite points as shown in Fig. 1.
Thus we find again the result of I about the shape of
the Kepler orbits in momentum space.?

The second equation (16) requires that the derivative
of r¥(r) be larger than E. Such an inequality can be
proved in the stronger form d(rV)/dr > 0 if we make
more detailed, but physically reasonable, assumptions

® The circular shape of the Kepler orbits in momentum space is,
of course, a classical result. It seems, however, that only very few
books on classical mechanics mention this important fact. Among
them is A. Sommerfeld, Lectures on Theoretical Physics, Vol. 1:
Mechanics (Academic Press Inc., New York, 1952). A recent dis-
cussion of Kepler orbits in momentum space and many relevant
references can be found in a series of papers by A. Norcliffe and
I. C. Percival, J. Phys. B, Ser. 2, 1, 774, 784 (1968).
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about V. If we let Z(r) be the number of elementary
charges inside the sphere of radius r around the
nucleus, the electrostatic potential V{(r) is given by

(17)

Z(r) is assumed to be a nonincreasing function of r.
Its limit for r — 0 is Z,,. The decrease of Z(r) from Z,
with increasing r describes the screening of the nuclear
charge Z, by the electron cloud. We find from (17)
that

drV) _ e dzZ dr >0,
dr o drr
where the integral is a nonincreasing function of r.
Thus, d(rV)/dr reaches its maximum at r = 0 where it
is given by the integral —e? {°(dZ/dr) dr[r. We shall
assume that this integral converges or, equivalently,
that the screening charge density (4=r2)~1 dZ/dr goes
to infinity less fast than r—* as r approaches zero.
Thus we arrive at the inequality

(18)

2 o0
am |E| < (45) < 2m|E| —2me2f dzdr
dr o drr

(19)
and z(r) is, therefore, a monotonically increasing
function of r with a bounded slope no less than
(2m |E|)L. The profile of the isometric surface, i.e.,
the plot of R versus z, is essentially given by the plot
of R versus r; in particular, the maxima and minima
of R can be obtained from the latter plot. Also, the
shape of the profile at its two ends, r = 0 and r =
ro = r(E), is well represented by the behavior of R(r)
which goes to zero as (r)! and (r, — r)}. The rt
dependence for small r is a direct consequence of (13).

An instructive example of a typical profile is given
by the potential for a nucleus of charge Z, which is
screened by an infinitely thin shell of electronic charge
Z, — 1 at a distance r = b from the nucleus:

V() = —€é[Zyfr — (Z, — 1)/b],

= —eé¥r,

for0 < r < b,
for b <r. (20)

Since the potential is Coulombic in each region, we get
two spheres, of radii Ry, for the inner region and

Example Zo=3, E=-¢2/8b FI1G, 2. Cross sec-
tion through the iso-
metric surface of a
hypothetical Li atom
where the nuclear
charge 3e is screened
by a thin shell of
electronic charge —2e
at a distance b.

t
I
I
I
)
L
|
]
|

4 /mZooe/2
[E[+Z7¢%/b
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Fic. 3. A one-parameter family of
curves on a sphere between given end
points whose least upper bound for the
lengths is realized by a geodesic of
index 1, i.e., not a shortest connection.

R, for the outer region. They join at a radius R
which is given according to (16) and (20) with r = b.
The values of z cover a range z;, for the inner region
and z,,, for the outer region. For small energies, i.e.,
|E| < €?/2b, and a nuclear charge Z, > 2, one finds
that z,, > Ry, and z,,; > R,,,. The resulting profile
is shown in Fig. 2 for a hypothetical Li atom where
Z, =3 and E = —e%/12b. The discontinuous deriv-
ative dR/dz in this profile at r = b is obviously due to
the concentrated screening charge. If the screening
charge were smeared out over a shell of nonvanishing
thickness, the derivative dR/dz would be continuous.
But even with such a discontinuous profile the geo-
desics are still well defined. The presence of a screening
charge is seen to introduce a region of negative
curvature into the isometric surface and we have to
reckon with such negative curvature in typical atomic
potentials.

The variational principle (12} is, therefore, identical
to finding the geodesics on a surface in 3-dimensional
Euclidean space which is topologically equivalent to
a sphere. We can immediately conclude that there are
an infinity of classical trajectories connecting any two
given momenta p’ and p” at a fixed energy E. These
trajectories can be distinguished by the signature (i.e.,
number of negative eigenvalues) of the second varia-
tion, also called the index. The existence of a trajectory
of index 0 is intuitively obvious, whereas the existence
of a trajectory of higher index can be inferred from
Morse’s theory.! For example, if we consider all
families of paths between two given endpoints of the
type depicted in Fig. 3, the least upper bound for the
lengths of the paths in all these families is realized by
a geodesic of index 1. By considering appropriate
families of paths depending on 2 and more parameters,
we find geodesics of index 2 and more.

The topological arguments of Morse show the
existence of at least one trajectory of each index
> 0. It is clear, however, that an isometric surface of
the type given in Fig. 2 may give more than one trajec-
tory of index 0, namely, when the two end points lie
near the “waist-line,”” as shown in Fig. 4. Also, if we
apply the Morse argument as shown in Fig. 3 to end

4 J. Milnor, Morse Theory (Princeton University Press, Princeton,
N.J., 1963).
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FIG. 4. Geodesics of arbitrary
length, but of index 0, i.e.,
shorter than any neighboring
curve, and of index 1, on an
isometric surface which is typical
for effective atomic potentials.

points near the waistline of the isometric surface, the
existence of at least two trajectories of index 1 be-
comes apparent. The screening charge is, therefore,
shown to give more trajectories of given index
between given end points than the simple Coulomb
potential.

The procedure which gave an isometric surface of
rotational symmetry for momentum space can be
applied equally well to coordinate space. The first
formula (16) remains the same, but the second for-
mula (16) has a different right-hand side. If one takes
for ¥(r) the Coulomb potential, the new expression
on the right-hand side is found to become negative
for values of r in the neighborhood of r = ry = r(E).
Our construction fails, therefore, to give an imbedding
of the whole Riemannian space 0 < r < ry into the
3-dimensional Euclidean space.

It seems likely that no other construction would
succeed, even if we abandon the requirement of a
rotationally symmetric imbedding. Indeed, if we had
any imbedding for the whole space, it would be
intuitively compelling that any two end points can be
connected by a trajectory which has the index 0. Since
we know the shape of all these trajectories in coordi-
nate space, however, we can check immediately
whether such a shortest, physically acceptable tra-
jectory does exist. We have given in Fig. 5 a sketch of
all Kepler orbits with the same major axis (same
energy) through a given initial point. These orbits fill
an ellipse with the origin r = 0 and the initial point
as foci, and which touches the limiting circle r = r,.
The points outside this ellipse cannot be reached by
any Kepler orbit. We expect, therefore, that the
approximate Green’s function in coordinate space is
more complicated than in momentum space for
energies £ < 0.

3. THE TRAJECTORIES BETWEEN TWO GIVEN
MOMENTA

The representation of the classical trajectories as
geodesics on a surface in 3-dimensional Euclidean
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space gives a vivid picture of the situation and ties our
problem to some important results of modern mathe-
matics. In order to perform explicit calculations it
seems more convenient, however, to revert back to
a more conventional presentation. In any case we
think that it can only be of help to our understanding
if the same situation can be viewed in more than one
way.

The new representation involves a Cartesian space
whose three mutually orthogonal axes will be labeled
by an angular momentum M, an angle # which varies
from — oo to 4 o0, and a radius r which varies from 0
to ry = r(E). The angular momentum M is the one
associated with a particular trajectory. The angle 7 is
the polar angle of the momentum p (or the coordinate
g) for the particular trajectory in momentum space (or
coordinate space), and we shall think of it as varying
monotonically (either increasing or decreasing) if we
keep going along the same trajectory. The radius r
gives the distance |g| from the nucleus along the
trajectory or, equivalently, r gives the total momentum
p = |p| with the help of Eq. (14).

The equations of motion result from the Hamilton-
ian (5) if we remember that r = (02 + M?/p?}. In
addition to dM/dt = 0, we get the following equations:

_ g _Mdav M 4V
dt M gt dr 2mr(E -~ V)dr’
dr 1( do  Mdp
m—=-l0— ——7—
dt = r\ dt p"‘dt)

op

=22 = LM — V) — MY,
mr

21

where we have used (14) to eliminate p. The double

FrG. 5. The Kepler orbits in coordinate space through a given
initial position ¢’ and with energy E. Only positions ¢” inside the
elliptical region can be connected with ¢’ by a trajectory.
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sign in the last equation is fixed by the sign of o.
Since o is the projection of the vector g onto the direc-
tion of p, the double sign is determined by the sign of
the scalar product pq. Every time r reaches a maximum
or a minimum as ¢ varies monotonically the sign of
pq changes. After having chosen a particular sign for
pq at t = 0, there is no ambiguity left.

In order to investigate the set of trajectories which
go from p’ to p”, we imagine that all those solutions of
(21) which go through r = r’ and = 0 at ¢ = 0 are
appropriately plotted in the (M, 7, r) space. Because
of the ambiguity in the sign of pg at = 0, each plane
M = const carries two trajectories. The trajectories in
two planes M = const, whose angular momenta are
equal but of opposite sign, are identical except that
the direction of motion with increasing time is opposite.
We can, therefore, restrict our attention to the
trajectories with M > 0, i.e., the trajectories with
counterclockwise motion.

The time can be eliminated between Eqs. (21) and
the angle 7 can be expressed as an integral over r:

J r d (£)dV/dr M

LT 2w = vy e~ v) - M
The double sign takes care of the changing sign of pgq
as r goes through the extremal values compatible
with M and E. These are given by the condition
2mr(E — V)= M?, and r varies between two solu-
tions of this equation in a range for which

2mr3(E — V) > M?

and which contains the initial 7’.

Since r[2m(E — V)]} = R(r) has, in general, a
local minimum A at 7 in the region of electrostatic
screening, there are various cases to be distinguished
accordingly as R(r') Z M, where we will assume that
we have only one such local minimum. Since R(r)
vanishes at r = 0 and r = r,, the equation R(r) = M
has two more solutions, 7; and 7,, besides 7, where
i, < 7 < 7. If [M| < M, the variable r in (22) can
vary between two limits r; and r, with ry < 7 < 7y <
ry. If |M|> M, we have either 7, <r' < F or
F<r' <F,. In the first case r varies between two
limits r, and r, such that 7, <r, <r' <ry, <F,
whereas in the second case the limits #, and r, are
restricted by 7 < r; <r’ <ry <F7,. Thus, the tra-
jectory goes through the whole electrostatic field if
M| < M. But if |M|> M, the trajectory is either
restricted to the inside of the screening charge (if
7, < ¥ < Fyor to the outside (if 7 < ¥’ < Fy).

As r goes from ry to r, and back to ry, the angle 7
increases by an angle 2y, which is given by the integral

T2 dv/dr M
y= r 2 213 °
n  2AE—=V)RmrE — V) — M?]

(22)

(23)
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The electrostatic screening has the effect of making y
larger than =, the value which is obtained for the pure
Coulomb potential. This so-called precession of the
orbits depends very much on the type of trajectory,
whether it goes through the whole electrostatic field
or only through the region inside or outside the
screening charge. In any one of these cases there is
a strong dependence on the angular momentum
M. Two limiting cases are of particular interest and
will be discussed in detail, the case of very small M
and the case of | M| close to M.

For [M| K M, Egs. (21) tell us that dy/dt is small,
whereas dr/dt remains bounded away from zero as
long as r does not approach r = 0 or r = r,. The
corresponding geodesic on the isometric surface of
the previous section gets closer to the meridian as
M is smaller. It is intuitively clear that as M goes to
zero, the geodesic approaches the “south pole” for
small » and the “north pole” for r close to r,. The
angle y goes to 7 as M vanishes so that there is no
precession in that limit. This result will be derived
directly from Egs. (21) in Appendix A. The necessity
of the assumption (13) will become evident once
more.

If | M| is very close to M, the derivative dn/dr given
by (22) becomes very large as r gets close to F. The
corresponding geodesic keeps winding around the
“waist” of the isometric surface while gaining little
height z, as shown in Fig. 5. This occurs in both
cases [M| S M. Obviously, the gain 2y during one
period can become arbitrarily large. The precession as
a function of M in the neighborhood of M will be
discussed in Appendix B. If we expand
R(r) = r2m(E — V)]t = M + (u(2)(r — F)* + - --

s

the leading contribution to ¢ for each passage near 7
becomes

=[5, (%)%log | 5(7\2%) '

If [M| < M, the trajectory passes the radius 7 twice in
each period so that it will have twice the contribution
(24). If |M| > M, the trajectory passes near the radius
7 only once in each period so that it will have just the
contribution (24). If x4 becomes very large as in a
potential with a strongly localized screening charge,
the contribution (24) to y becomes small again if we
keep the difference |M — M| fixed. A potential like
(20) shows, therefore, no infinitely large precession,
as one expects from an isometric surface of the type
shown in Fig. 2. The occurrence of an infinitely large
precession is easily understood with the help of the
isometric surface, although an estimate like (24) still

(24)
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requires integrating the equations of motion. The
trajectories in coordinate space do not allow this
kind of geometric insight. _

The approximate Green’s function F(p"p'E) depends
on the absolute values p’ = |p'| and p” =|p’|, or r’
and r” according to (14), as well as on the spherical
distance { between p’ and p”. The angle { is defined to
lic between 0 and 7, whereas the angle n = 7" — 7’
can be anywhere from — oo to 4 0. A solution of the
Egs. (21) is an acceptable trajectory from p’ to p” if
n = { mod 2=. For > 0 we may call the trajectory
direct, and for # < 0 indirect, because the two main
examples of each case are n = {and 5 = — (27 — {).
The direct trajectories have M > 0, whereas the
indirect ones have M < 0. Finally, it should be
remembered that the approximate Green’s function
F carries the particle forward in time as it goes from
p’ and p”, and that the virial T(p"p'E) in (2) is, there-
fore, positive for the direct as well as for the indirect
trajectory. This is borne out by the formula (7) to-
gether with the above description of the relevant
trajectories.

The solutions of the equation 5 = { mod 2= can be
obtained as follows. We consider again the trajectories
through r =r’ and 5 =0 in the (A, %, r) space.
Their intersections with the plane r = r” form a set of
curves which is shown in Figs. 6 and 7 for two typical
situations. The intersections of these #-vs-M plots
with the set of horizontal lines = { mod 2= give the
values of M for a trajectory from p’ to p”.

Since Figs. 6 and 7 are fairly complicated, it may be
useful to discuss their origin. In order to accomplish
this, the trajectories through r = r” and = 0 can be
projected onto the plane M = 0. Figure 8 shows the
situation schematically when R(r') < M. We have
assumed that the precession y increases with in-
creasing |M| which is, indeed, natural as long as
| M| remains below M. Figure 6 can be obtained from
Fig. 8 if we follow along a line r = r” and note the
angular momentum M of the trajectory which goes
through a particular value of the angle . M is a
monotonically increasing function of the direction
cosine for the particular trajectory at % = 0. The
range of M in Fig. 6 is determined by the smaller
among R(r') and R(r"). If we had no precession, the
triangular regions in Fig. 8, which are bounded by the
lines # = multiple of = and two envelopes, would
reduce to points. Also, the branches of the #-vs-M
plot in Fig. 6 would stay horizontal, instead of turning
away from the M axis.

Figures 9 and 10 should be superimposed on each
other, but they are separated to keep the confusion of
the trajectories from becoming total. In both Figs. 9
and 10 we have R(r') > M, but in Fig. 9 only the
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FiG. 6. The angle 1 between 4T
initial and final momentum, p’
and p”, is plotted as a function
of the angular momentum M | |
for the trajectory from p“ to p”. 3, |
The energy E is given and the I
absolute values of p” and p” are
fixed so that M never reaches the I l
critical value M. For M <0,
these curves have to be inverted 27 l
through the origin. ‘

T
o I M M
7 o
5w l l l
AN
FiG. 7. Same as an I | X
Fig. 6, but the ab- | .
solute values of p’
and p” are now fixed
so that M can exceed 34
the critical value M.
Also, there is an inter- i
val for large M with l
no precession at all. 2| ‘
' |
o M Mo i M

F1G. 8. Schematic plot of the trajectories through a given initial
momentum {2m[E — V(r’)]}}, assumed to be so small that none of
the trajectories can have an angular momentum as large as M.
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trajectories with |M| < M, and in Fig. 10 only
trajectories with |M| > M, are plotted. The infinite
precession for | M| = M produces the envelopes which
touch the horizontal lines r =7 and r =7, if F <
r' < Fy as in Figs. 9 and 10. Again we can follow a
line » =r" and notice the angular momentum M
associated with a particular angle 7, in order to
construct the 5-vs-M plot. If R(r") < M, nothing new
is obtained as compared with Fig. 6. If 7/, <r” <F
whereas 7 < r’ < F,, the range of |M| in the #-vs-M
plot is still limited to A because the trajectories
with |M| > M are either limited to 7, < r < 7 or to
F <r < F,. Therefore, only the case 7 <r" <7,
produces a #-vs-M plot like Fig. 7 which is quite
different from Fig. 6. The infinite peaks at M = M
are actually less dramatic than might appear from
Fig. 7 since they have only the logarithmic infinity
which is indicated by formula (24). We have assumed
that the precession y decreases with increasing | M| >
M, which is reasonable since the trajectory stays
outside most of the screening charge. In Fig. 10 we
even assumed no precession at all for |M]| larger than
some critical value M, such that if R(r) > M,, the
potential ¥(r) is again purely Coulombic. The various
branches in Fig. 7 all come down again into the range
of 7 from which they originated at M = 0.

If we were interested in the approximate Green’s
function G(¢"¢’'E) in coordinate space, we could con-
struct similar pictures, with some significant dif-
ferences, however. Most notable would be that the
trajectories in Figs. 8, 9, and 10 would not cover
the whole strip between r = 0 and r = r,, and that the
branches in Figs. 6 and 7 would not form one con-
tinuous curve, but would be disconnected.

-
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FiG. 9. Same as Fig. 8, but now »'{2m(E — V(")I}¥ > A, and

lies between 7 and r,. Only the trajectories with M < M are plotted
to avoid confusion.
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o] T 2r 37 ar Sw 3.4

F1G. 10. Same as Fig. 9, but only the trajectories with M > M
are plotted. There is a family of trajectories without orbital preces-
sion, i.e., with periodicity 2.

4. THE SUMMATION OVER ALL THE
POSSIBLE TRAJECTORIES

On the basis of the preceding discussion we can now
make the complete enumeration of all the trajectories
from p’ to p” which is required in formula (2) for
F(p"p’E). To be definite we shall assume that p” < p’
or, equivalently, r’ < r”. In the opposite case we can
use the symmetry relation

F(p'p'E) = F(p'p'E),

which is a direct consequence of the formula (2). The
amplitude factor (9) can be written as

(25)

_1_ _ pp Sing {‘_1! [2mr2(E —V) - MZ]%;I
Dy Mr'r" \dr
dV " a
x [ 1 2E—V—M”}(l) 26
(o (e —v) = ] (ZL) - 26)

with the help of (5) and (14). The derivative (0%/0M),,. -
can be obtained directly from Fig. 6 or Fig. 7. It will
be shown in Appendix C that this expression remains
finite throughout the trajectory, except near M where
(On/oM), ,» ~ (M — M) as can be recognized
from (24).

In addition to y as given by (23), we shall use the

angles
o =JT dr »

n 2E — V) 2mrE — V) — M7?
dv/dr M

= nd
p f "AE — V) 2mrE — V) — M

dv|dr M

@7

which can be considered as a function of »’ and M

(respectively, r” and M), always at a fixed energy E.
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Similarly, we have the virials corresponding to «, §,
and y given by

tom 0} = U f ’ “ o [2mr2(n;r2—d¥;d: M
(28)

again to be considered as functions of r’ and M
(r” and M, respectively) and in the case of 6 as func-
tion of M only. In case of ambiguity all radii r, <
r'<r” <r, are assumed to be larger than the
screening radius 7.

For any particular trajectory from p’ to p” we can
immediately determine two integers 4 and » as follows.
We write = 24w + {, where 0 < { < =, to obtain
A and 5 = 2vy + 6, where 0 < 0 <y, to obtain ».
There are four different types of trajectories accord-
ingly as 6 is made up of the angles «, 8, and y. In terms
of the spherical distance { between p’ and p”, we find
that

® Qv+ Dy —a— =2+
(i) Qv+ )y —a+ =241,
(iii) Q+l)y+a—f=24nr+1
@iv) v+ Dy +a+ =21+ L
Since «, 8, ¥, and 4 have the same sign as M, positive
for direct and negative for indirect trajectories, where-

as 0 < { < =, the integer v is always > 0. The virial
along the four types of trajectories is given by

T('PE)= v+ )0 + 0 % 7,

(29)

(30

with the same signs in front of ¢ and + as in front of «
and f in (29). The four types can easily be recognized
on sketches like Figs. 8, 9, and 10.

The four types of trajectories (29) are associated with
the various branches of Figs. 6 and 7 in the following
manner. Because of the absence of orbital precession
for M = 0, the behavior of the #n versus M is partic-
ularly simple at M = 0 and can serve to characterize
each particular branch. Two such branches come
together at each multiple of = for M = 0 correspond-
ing to type (i) and (iv) at even multiples of =, and to
type (ii) and (iii) for odd multiples. This fact results
from Appendix A where the angles «, §, and y are
shown to go to the values +7/2, +-7/2, and + = in the
limit M — 0, with the upper sign for M > 0 and the
lower sign for M < 0. Furthermore, it is evident from
Figs. 8, 9, and 10 that the type (iii) meets the type (ii)
from above (below) for M > 0 (M < 0), as indicated
in Figs. 6 and 7, although it does not always have to
be that way. Similarly, the type (i) meets the type (iv)
from above (below). As we follow any branch (type)
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from M = 0 out to the largest value of M which is
compatible with r" and r”, type (i) meets with the
nearest type (ii) and type (iii) with the nearest type
(iv). Therefore, if one starts with the lowest (highest)
branch for M > 0 (M < 0) which is of type (i), the
next higher (lower) branches in Figs. 6 and 7 come in
the order (ii), (iii), (iv), (i), (i), etc. Even across the
peaks at M = # in Fig. 7, this identification of the
branches is easily accomplished, and we shall use it
from now on whenever it seems convenient.

The identification of the branches in Figs. 6 and 7
is important because it helps in finding the number of
conjugate times between p’ and p” for each trajectory.
The contribution from the angular motion, i.e., the
number of times the angle n goes through a multiple
of =, is given by 24 for the direct trajectories and
2 |A| + 1 for the indirect trajectories. Again consulting
Figs. 8, 9, and 10, the rules for the contribution of the
radial motion become evident. A conjugate time for
the radial motion along any trajectory is located
wherever the trajectory touches one of the various
envelopes. For small M that number equals 2» for
type (i), 2v + 1 for types (ii) and (iii), and 2» + 2
for type (iv), provided (07n/0M),, >0 at M = 0.
The last condition may not hold, particularly for the
types (ii) and (iv) if there is little precession or if »
is small. In that case, the numbers 2» + 1 and 2v + 2
have to be reduced by 1. This initial number of con-
jugate times due to the radial motion changes only
when going from M = 0 to the maximum value of M
along any branch in Figs. 6 and 7, if the slope
(0n/0M), - changes sign.

Let us assume that a particular branch, whatever its
type, starts with (0%/0M),,» >0 at M = 0. If we
move away from the 7 axis by increasing M for M > 0
or by decreasing M for M < 0, one conjugate time is
lost when the slope (97/9M), - becomes negative.
This conjugate time is regained as soon as (9%/0M),, -
becomes positive upon moving further away from the
7 axis. It will be lost again if (9%/0M), ,- becomes
negative once more, and so on, until M reaches the
extremal value which is compatible with r’ and r”.
There the slopes in Figs. 6 and 7 are positive for the
branches of types (i) and (iii), negative for the
branches of types (ii) and (iv), so that the number of
conjugate times does not change as we go from a
branch of type (i) to one of type (ii), or from types
(iii) to (iv) at the extreme value of M. Finally, if the
slope (95/0M),,» < 0 at M = 0, we may think of it
as having already changed from positive to negative
and, therefore, having caused the loss of a conjugate
time. In this manner, the index of a particular trajec-
tory, i.e., the total number of conjugate times between
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p’ and p”, can be obtained if we know the type of
trajectory, the sign of the slope (97/0M), ., as well
as the integers 4 and ».

In order to evaluate the formula (2) for F(p"p'E)
we have first to find the solutions of the Egs. (29);
ie., givenr’,r”, {, and E, we have to find all the triples
(4, », M) which satisfy one of the four equations (29).
For each triple we can evaluate T(p"p'E) according to
(30), the phases according to the above rules, and
(On/oM)y,r = 2v + D)y £ a £ B, where the dot
indicates the partial derivative with respect to M,
to be inserted into (26). In this manner we obtain the
formula

F(pl/ /
1 © @iv)
- 2ark? vgo MEZO % g
x (20 {ﬂ/— R2mrE — V) — Mz]%}
r'r” dar
{—— 2mrE — V) — Mz]%}
Qv+ 1)y +a+ B])—*
M

I AL S

—(A+ Drsgn M

— Tagn [ + Dj F 4 F ]+ 5}. (31)

5. THE ORIGIN OF THE QUANTUM NUMBERS

The last expression (31) for the approximate Green’s
function in momentum space has to be investigated in
order to find its singularities. This can be accomplished
most directly by examining Egs. (29) in the limit of
very large » so as to find the conditions for £ and M
which make the terms in (31) all add up in phase.
Since we would like to find also the behavior of
F(p"p’E) “between” the singularities, a more circui-
tous, although formally more elegant, route seems
preferable.

The first step is to rewrite (31) so as to get rid of
the annoying limitation » > 0. If we keep the ex-
pression (31) as it stands, but add to it all the terms
that arise from allowing » < 0, we find the following:
Each term with v < 0 can be interpreted as (—1)
times the complex conjugate of a term with » > 0. In
this correspondence a term with » < 0 which belongs
to the angular momentum M and the type (i), (ii),
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(iii), or (iv), is associated with the term »t =
—2(» + 1) 2 0 of angular momentum M* = —M
and of type (iv), (iii), (ii), or (i). Indeed, Egs. (29)
can be written as v + )y Fa F f=2ir+ { in
abbreviated form, and become
vt + 1yt L at & =24n+

after replacing (2» + 1) with —(2v* + 1) and M with
—MT, etc. Similarly, the phase of (31), i.e., the inside
of the braces in exp i{ }, can be rewritten in terms
of v+, M, etc. as

@+ Lot £
h

+ m(A + 1) sgn Mt

+0" + it Pr

+ Teen [0 + 1 £+ 7]~ ’—2* +

Therefore, if we formally let (2» 4+ 1) < 0in (31), we
get terms with (2¥™ + 1) > 0 whose phases have the
wrong sign plus an extra 7. Formula (31) can then be
used in the form

© @iv)

2 222

27kt 9o MZ0 (D 2

2Im F(p'p'E) =

(32)

"o

to give the discontinuity of F(p"p’E) across the E axis.

The next step replaces the summation over 4 in (32)
by a summation over an integer / that will turn out to
be the angular quantum number. To this end we shall
first change the meaning of 2 and make it a continuous
variable which is a function of M for any fixed »
and given type (i), (ii), (iii), or (iv) in accordance
with Egs. (29). Then we shall replace any integration
over A by an integration over M extending through the
range which is compatible with r’, r”, and E. Thus we
write the following sequence of equations in somewhat
symbolic form:

3= fd/l S 8 —A)

A=—w

=—fdM|(2v+1)y'¢ozq:ﬁ'|
2

-+ 00
x > exp{—ill[2v + 1)y Fa F f — {]sgn M},
[=—o0
(33)
with 2774 to be replaced by v+ )y Fa F f — ¢
wherever it occurs in (31) and (33).

The sgn M has been inserted into (33) for conven-
ience. The new exponential in (32) becomes, after
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inserting (33), X exp i{(?.v + 1)[% — g -+ %))’j]

CXP"{(ZV—!_I)G:FG:FT—(V-{-%:F;{?Fi)rr i} .
£ — 3802y + 17 F o4 F Bl
— I+ D2y + 1)y FoaF flsgn M
m FII-Z—+ | F|T-T-0+p8|!
+[(l+%)l—z:|5gnM E 4 vz P4 2
T . . 5 m (36)
T4 sgn [ + Dy F & F Al + E} The sum over » is evaluated with the help of Poisson’s

) formula®
The quantities 8, o, 7, y sgn M, « sgn M, § sgn M,

y, &, p are even functions of M, so that only the term SO0k) = > j dx(x)e 2Tz, 37
[(l + $){ — =[4] sgn M changes its sign with M. The v n
summation over M in (32) can be carried out and gives  where both summations g0 from — 0 to + o0 and 50

the { dependence does the integration over x. The integral is treated in
cos [(I + 3L — =/4] the context of the theory of generalized functions.
N ’ (34) With the abbreviation
(sin {)
if we include the { dependence of the amplitude, A= Q2+ Dy + 2n+ Dr — 20/, (38)
of (31).

For /> 0, this function of { is actually the first the integral to be evaluated is given by
term in the asymptotic expansion of the Legendre
polynomial P,(cos 6) for large /. According to Whit- f
taker and Watson,> we have for the normalized
Legendre polynomial

+o 1 .
dx |2x + )7 + 8|} exp i{[(2x + )+ a]%
y

-

L dA
— Zsgn[x + )y + 5]+6—j+n7r}
4 2y

2 + 1y .
P, e
(o) Pieostd =(2nly|)%|m%exp,(m+%%)
PA+1)  cosl+ DL — =] |
I . (35 —1. f A
TU+b U+ ain? ) o e 39)

The first factor goes to 1 in the limit / = oo, so that

(34) corresponds to 277 times the normalized Legendre ~Where 0 stands for F« F . The sum from (i) to (iv)
polynomial for large /> 0. The functions (34) for Iis trivial at this point and we get the final expression
[ < 0, unfortunately, have no such interpretation. i cos [(I + D — m/d]

Since the functions (34) with / > 0 are presumably a  Im F(p"p'E) = —— 3 —
complete, although not an orthogonal, system in the mh (sin {)
interval 0 < { < m, the functions (34) with / < 0 are < 3 (=1 [dm Y277 M
not independent. < | AI%
The summation over » can be carried out by writing v Movid
= X —(2mE - V) — —
Im F(p"p'E) “ :|:p dr(m( ) rz):l}
—i_cos[(1 + P — mf4] 3 o A
= aM g_ 1 “m_T
(27Th)2 ; (Sin (:)i- M0 % g X COS [ﬁ (l + 2)0( + 2y 4}
Prpu dV . . 1}/ dV M2 % " —';'
x |-EL |\ 22 QmNE — V) — M?Y? & -
{Mr’r"[dr Q@mr¥( ) ) X ”:p o (2m(E V) r2” }
dv alw BA
X | — Qmr*E — V) — Mz)%} } X O [Z — (41 il Zj|
|:d7' § ﬁ ( + 2)/3 + 2}/ 4 ’
x |2y + 1) F o F I} A > 0. (40)

® E. T. Whittaker and G. N. Watson, A Course of Modern Analysis* & M. J. Lighthill, Introduction to Fourier Analysis and Generalized
(Cambridge University Press, Cambridge, England, 1927), 4th ed.,  Functions (Cambridge University Press, Cambridge, England, 1958),
p. 316. p. 69.
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The second line depends only on r’, and the third line
only on r”, as can be checked with the help of (27)
and (28). The summation over n is limited to the
region where yA > 0.

If we are interested in F(p"p’E) itself, not only its
imaginary part, all the steps in the preceding deriva-
tion remain the same except that the integral (39) goes
now only from 2x + 1 = 0 to oo, exactly as the sum
over ¥ in (37) goes only from 0 to co. The integer n
still takes on all values from —oo to +oc. The
expression (40) remains the same with the exception of
the factor (27 || M)} - A=%, which is replaced by a
much more complicated function of y, 4, and A.

Since we are interested in the discontinuity of
F(p"p'E) across the real E axis, it is convenient to
rewrite (4) so as to give it the appearance of being just
such a discontinuity. Accordingly, we should try to
introduce complex values of the energy E. It is
obvious, however, that this would be difficult to
achieve because the potential ¥ is not necessarily an
analytic function of r, and most of our reasoning
depends on writing expressions like r(E — p?/2m), etc.
Therefore, we take another approach where the integer
n appearing in (38) can take on arbitrary complex
values although # is restricted to integer values in (40).
The quantity A becomes complex, and we can write
each term in the summation over / and » as the dis-
continuity across the real axis of an integral with a
factor

@nlp M}

QaM)t (A
( N

—3
- ) instead of
7l \y

The function (A/y)~# is defined in the whole complex
A/y plane with the exception of the positive real axis.
(A/p)¥is defined to be positive just above the positive
A/y axis and negative below.

6. THE SINGULARITIES OF THE APPROXIMATE
GREEN’S FUNCTION

The eigenstates for the bound electron can be
obtained from the poles of the Green’s function along
the negative real E axis. We shall use this approach
to determine the approximate eigenfunctions from the
singularities of the approximate Green’s function. If
one examines the expression (40) for the discontinuity
of F(p"p’'E) across the negative real E axis, he finds
Dirac ¢ functions of the energy [corresponding to the
poles of F(p"p’E) in the complex E plane]. But besides
these strong singularities there seem to be weaker ones,
corresponding to branch-cuts in the complex E plane,
which have no counterpart in the exact Green's
function, nor are they easily calculated and inter-
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preted. We shall, therefore, determine only the strong
singularities in this work.

Before discussing the general case, we shall dispose
of the special circumstance where there is no orbital
precession in some closed domain of energy E and
angular momentum A. This may happen if the
potential is purely Coulombic in some domain of the
radius r as for example in the case (20). The formula
(40) breaks down in that domain of E and M, because
y = 0. If we go back to (39), however, we find
immediately that the right-hand side becomes a Dirac
d function of A, so that we can concentrate (40) on
A = 0. Also the terms &Af2y and BA[27 disappear
from the arguments of the cosines in (40). The summa-
tion over / and n can be performed subject to A = 0O as
given by (38). This leads to another Dirac d function
which relates the angle { with «, 8, ¥ (assumed to
equal 7). Thus, the integration over M becomes
trivial, and we are left with the same result as in I,
restricted to the closed domain of E and M where
y =0.

It should be noted that y = 0 implies that the action
6 does not depend on M, so that the quantum con-
dition A = 0, or 20 = 2x/ times an integer > 0, fixes
only the energy. This fact follows from the general

formula
5,
677 p'p”

where the action T along a particular trajectory is
written as a function of p’, p”, and #. If this formula is
rewritten in terms of T and » which are now considered
to be function of p’, p”, and M, one finds that

(o~
oM Jop” oM Jorv-

This last relation can also be checked directly with the
help of (30) and the integrals (23), (27), and (28). As
a special case we find that My = df/dM, so thaty = 0
implies df/dM = 0.

If we exclude the case where y vanishes identically
in a closed domain of E and M, the integrand in (40)
can still present difficulties in the neighborhood of
special values of M. Whenever the integral over M
seems to diverge, we shall treat it with the help of the
theory of generalized functions. In this manner we can
eliminate two critical values of M as sources of
singularities in (40). A first critical value M arises
where y = 0 because y occurs in the argument of the
cosines in (40). If A 0 and 3 5 0 at M, we can use
4= (M — M) as variable of integration in the
neighborhood of M. The resulting integrand diverges

(41)

42)
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with a —% power of u and gives, therefore, a finite
result.

A second critical value M, arises where A =0
because of the — power of |A] in the integrand of
(40). If we assume that dA/dM # 0 at M,, we can
conclude also that y % 0 and M 5 (I 4+ $)4 because

of the relation
dA 1 M
— =29{l + - ——}|,
M 7( 2 h)

which again follows from (42). Actually the change of
the arguments in the cosines of (40) comes out equally

simple:
i[f — U+ P+ “A} (;“;)A

aM i Z_y - ;
v+ = (%)A (44)

(43)

d A
M

i.e., the phase of the cosines in (40) is actually station-
ary at the critical value M, where A = 0. Again, the
integral around M, diverges with a fractional power,
and leads to no singularity. This remains true even
when the two critical values M and M, coincide, i.e.,
if simultaneously y =0 and A =0, because the
divergence remains fractional.

If A =0 coincides with M = (I + })A, then the
expansion of A in powers of M — (I + })h starts with
a quadratic term. If simultaneously y # 0 for M =
(I + 1A, the arguments in the cosines of (40) remain
well behaved. The divergence of the integrand goes
as the —3 power of M — (/ + })i and one ends up
with a singularity. This singularity is a Dirac §
function of A and is hard to recognize directly from
(40). In discussing this singularity it seemed, therefore,
more convenient to consider the expression (40) as
the discontinuity across the real » axis of the complex-
valued function which was defined at the end of the
preceding section, If the integrals (40) are calculated in
this form, one obtains a pole in the complex n plane
rather than a d function along the real # axis.

If A is expanded around M = (/ + })4, one finds
that

A= nt m =28 B g

(45)

The subscript / indicates that M has been replaced by
(! + $)Ah. The quantity w is defined by

w=0—9yM
=Jr2dr dv/dr
n 2AE-7)

if we transform the variable of integration to p as

2mrXE — V) — M2E;  (46)
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given by (14), w becomes simply | o dp between the
limits p; and p,. Since o, as defined in (5), is the
projection of ¢ along p, the quantity « is the action
integral for the radial motion. Indeed, by a partial
integration the expression (46) can be written in the
more familiar form [ dr[2m(E — V) — M?/r2]t from
ry to ry. The condition A =0 for the singularity
becomes, therefore,

ZJ 2dr[2m(E —-V)—- Mz/rz]’}' =(n+ 3)2nh (47)
in addition to M = (I 4+ })h. Equation (47) is, of
course, the well-known quantum condition for the
radial motion. Usually, it is obtained by treating the
radial motion as a l-dimensional problem after
Schrodinger’s equation has been separated into angu-
lar and radial coordinates. This leads to the replace-
ment of M2 by I(/ + 1)A? rather than by (/ + $)%42, as
in the present derivation, and consequently to erro-
neous results even for the simple hydrogen atom.

The evaluation of the integral (40) in the neighbor-
hood of A = 0 is fairly tricky. As shown in Appendix
D, the result can be written as

lfdM (2W—W(é)—%= sgn p M
Iyl y w, — (n + H=h

which multiplies the second and third line of (40) with
M everywhere replaced by (/4 $)4. Formula (48)
represents the leading term of the singularity which is
given by (47).

If the last formula is inserted into (40), we get the
following approximation:

(48)

F(p"p'E)
o $ @+ D cos [ + DL — 4]
= (sin O}

.3 AU seny
n W; — (n + %)ﬂh

(o= 5] 3

=0T (-3

(49)

with @’ and o” integrals like (46) taken from r, to
r’ and from r” to r,. The factor between the two
summation signs is the asymptotic formula for

(21 + 1/4m)P(cos {),

X

as is evident from (35). In polar coordinates (p, 6, p)
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for p we have

2[ 1 +l /Wi r ’
* L pcost) = 3 Y89 AEY). (50)

w m=—

where Y,,,(0¢) are the normalized spherical harmonics
(cf. Ref. 7). The { dependence in (49) represents,
therefore, the sum over the 2/ 4 1 eigenstates of the
total angular momentum (/ + $)4.

The sum over » for a given value of / has also a
simple interpretation. It constitutes the phase-integral
approximation for the Green’s function of the I-
dimensional Hamiltonian (5) with M fixed to the
value (/ + %)A. The conjugate variables are p and o,
and the action is defined by | o dp. These are different
from the Hamiltonian and the action corresponding to
the usual radial variables p, and r. But the two treat-
ments are similar in that neither p nor p, cover the
full range from O to co because of the centrifugal
potential which prevents the particle from getting into
the center r = 0 and increasing its kinetic energy
indefinitely. The assumption (13) is crucial at this
point since the centrifugal potential is able to over-
whelm the attractive potential V(q).

The radial dependence at the main singularities of
F(p'p'E), as given by (49), corresponds exactly to the
results of the ordinary WKB method. The present
treatment does not go beyond the usual one, although
the discussion of momentum space is new, and there
are fewer ad hoc assumptions. The apparent advan-
tage of momentum space for the phase-integral approx-
imation can only be exploited if a way is found to
understand not only the d-function singularities of
F(p"p'E) but also its branch-cuts.
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APPENDIX A

The absence of orbital precession for small angular
momentum can be shown most directly if we break up
the integral (23) for y into three parts: from r, to r’ as
in o of formula (27), from r' to ", and from r” to r, as
in B. The intermediate points r’ and r” are arbitrary
and independent of M. Since the integral of (27) is
well behaved, except near r, and r,, the integral from
r’ to r” vanishes as M goes to zero.

In order to discuss the integrals « and §, we intro-
duce the variables £, near r, and &, near r, through the

7 Reference 6, p. 328.
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common formula
cos & = M/r2m(E — V)]t (A1)

with the understanding that &, = 0forr =r;, & =0
for r =r,, and 0 < § < 7/2 in both cases. Since

dr M
dé = — I
r 2mrA(E — V) — M¥:
__av/ar M dr . (A2
2E — V) 2mr(E — V) — M?
we can write the formulas
o = (arc cos ———-—)
ri2mE — V)Y,
f’ M dr (dV/dr 1
+ % 9,
n2mrE — V) — MP\E — v r)
= larccos ————
p ( ri2m(E — V)]%),,,
» 1 [2mr¥E — V) — M}

whose integrands are sufficiently well behaved even in
the limit A = 0. In the case of «, the assumption (13)
has been used in order to show that the integrand is
regular.

As M approaches zero, while r’ and r” remain fixed,
the arguments of the arc cos become small. Therefore,
we can write the expansion
arc cos x

=qf2 —arcsinx =72 —x —x36 + -+, (A4)
with x = M/r[2m(E — V)]} for r =" and r = r".
Thus, we get

*= % B ’M|:(r[2m(E1— V)]%),,
‘f r[2m(Ed - V)]*‘(gV—/dlr/ - %)] o

#= 5= (e ).
e

v r2m(E — V)]%] o

(A5)

« and § approach =/2 as M vanishes, independently of
r’and r”, and y approaches .

APPENDIX B

If M is close to M, we shall compute 7 according to
(22) under the assumption that r’ is close enough to
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7 so as to guarantee the expansion 2mr¥(E — V) =
M[M + u(r — F)? + - - -] throughout the interval from
r'" to r. Also, we assume that all the factors in the inte-
grand of (22) can be replaced by their value at 7,
except the root in the denominator. Thus, we find for
M < M that

~<[z7 =) ])

< Mdr
{WW—M+W—W#’
- dVv/dr Ml Wi =) —F)
R a7 L7 Ky e

if we keep only the leading terms as M approaches
M. If M > M, we find, similarly, for § in (27) that

pe i[z%):lf

y f’ M dr
QM — M + pr — P
where the upper limit of integration r, is given by the
condition wu(r, — F)2 = M — M. The leading term
turns out to be

dvjdr 7 (M} P — it
p 2[5 (T 1oe (M=) 9
2E — V)1i\2u M-M
In both (Bl) and (B3), the distances 7 —r’, r — F,
and 7 —r” can be replaced by any characteristic
radius such as 7 to give the formula (24).

(B1)

(B2)

APPENDIX C

The equivalence of the formulas (9) and (26) can be
demonstrated as follows. First, we find from (5) that

H, =M

pr dr
By differentiating with respect to M and o we get

2%
with = ((;2 + %) . (C1)

1dv  MPAV  MPdV
H —_—— - C2
MM = pir dr  pr*dr® P dr 2
) _MEV MV M
(Ht,)(,_pr2 dr? Sdr  pld’r dr
We can combine these two expressions into
HZM
[t = () )
- (LA Ay o dp
p’r dr  p*®r dr /o dV/dr
1 M? J (M
=(—+—=)dp =) dp, (C4
(ng + p40'3) P aM(pza) P (C4)
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where o in the last step is considered as a function of
E, M, and p, which follows from (5). The formula (22)
can also be written as { M dp/p?c if we remember that
p dp = m(dV|dr)dr according to (14). Since this
change of variables does not involve M, the formulas
(9) and (26) become, indeed, equivalent after H, and
H! have been expressed in terms of " and r”.

Since o is the projection of g along p, it vanishes
when p reaches its extremal values because p is
perpendicular to the radius vector g. As is apparent
from (C4), the integrals (9) and (26) do not converge
when ¢ vanishes. The troublesome term comes from
the integral over (H},/H,),, and can be eliminated
with the help of formula (10). This requires the calcu-
lation of (H},/H,),, which proceeds exactly as the
calculation (C3), but turns out to be more complicated.
The important feature is, however, that o does not
occur in any denominator anymore. The integral on
the right-hand side of (10) is, therefore, as well be-
haved as the integral over H;,,. The singular parts in
(9) and (26) are isolated in the last two terms of (10).
More specifically, since both H,, and H, are well
behaved near the extremal values of p, the singularities
in (9) and (26) arise from H, and H in the denomina-
tors of (10). If p" is assumed to approach an extremal
value of p, but not p’, formula (9) shows that 1/D,
approaches the finite value

1 P’P” SiI“? ” N2yy/ "

DT_’ M (HM) Ho’/Hp-

Also, (07n/0M),,» has the leading term (H" )2/H”H”

which depends only on the end point p”, but not on
the preceding trajectory.

(C5)

APPENDIX D
In view of (45) we can write

2@t Dm =20k _ Ly ypap 4o,
¥ h

(D1)

where » is assumed to have a small imaginary part e.
Since we assume 2w,/fi to be close to (2n + 1), the
ratio Ay is always negative when M is sufficiently far
away from (/ + })A. With our conventions about the
discontinuity of (A/y)~% along the real positive A/y
axis, the integrand in (48) is always positive (after
including the factor i) when 4/ is not close to (/ + $)4.
If Re [(2n 4+ D=k — 2w,]/y < 0, the integral be-

comes
n + 1)k

J‘dM{Zwl - :
Y

=

3
-2

+IM =+ %)h]z}
3 %
x R*Q2nmM)

: x (r.f). (D2)
(¥l
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The “regular factors” (r.f.) represent all the remaining
terms which appear in (40) and have no singular
behavior at M = (I + 4)Ai. The —% power has been
written so as to make it obviously positive, as it has
to be in this case, even when M is close to (/ + })A.
Since the main variation comes from the —3 power in
(D2), the leading term is obtained if the “regular
factors” including (2mM)}/|y| are replaced by their
values at M = (/ 4+ })A. The integration over M is
trivial and gives the expression on the right of (48)
times the “regulat factors” at M = (I + $)A.

If Re [(2n + D)wh — 2w,]/y > 0, we get two inte-
grals, one where A/y has a negative real part and one
where the real part of A/y is positive. The integrand of
(48) is positive in the former region, as in the preceding
case, but it is purely imaginary in the latter region. In
conformity with the definition of the —§ power, we
get

JQM@M—4I+am2+

20, — (2n + 1)77;1)—%
4

3 3
X M— x (r.f.) + isgn (e—)
|71 y .
xfdM«”“+”7”‘2wt+M4—a+%mﬂ
3 3 v |
B*Q27M)
X ——Wl x (r.f), (D3)

where first integral goes over [M — (I + $H)A)? >
[(2n + D)mh — 2w;]/y, and the second over

M — (I + DAP < [@2n + Dk = 2w)]/7,
in the limit of very small e.

Each integral is really divergent at the limits of
integration, and we have to perform the formal
integration by parts which is used in the theory of
generalized functions so as to arrive at a finite result.®
Thus, we introduce the new variable

__ M—(4pi
“ 7 1@ + Dk — 2051

1, (D4)
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and the first integral becomes

25 sgn y [ f 2du d ((%M)* x (r.f.))
Qn + Dk — 20,0 @ du\ @+t
L 2 @rM)? x (r.f.)} D5)
Je @+t 7

where the factor 2 takes into account the double
range of integration, for M > (/ + })# and for
M < (I + })h. The part which is integrated out has
to be evaluated at some upper limit of x > 1 and does
not contribute to any singular behavior near M =
(I + k. If we take the derivative with respect to u
in the first part of (DS5), we get a contribution from
the derivative of 2nM)? x r.f. and one from the
derivative of (2 4+ w)~%. In the former contribution a

factor {[(2n + 1)mh — 20,]y}}t appears as soon as we

revert to M as variable of integration, thereby lowering
the singular behavior near M = (/ + })#. Therefore,
only the derivative of (2 + wy~t is of interest and we
are finally led to the expression

24t sgn y
2n + Dmh — 20,

2du =%
Wt @+t
(D6)

QM) x (t.f) f ’

After the elementary integral is evaluated, we find
again the formula (48) times the “regular factors” at
M=+ Hh

The second integral in (D3) is treated exactly the
same way, but the integrated part [corresponding to
the second term in (D5)] cannot be thrown away be-
cause it is to be evaluated at w =1, not u » 1.
Therefore, it contributes to the main singularity at
M = (I + Hh. After taking the derivative with re-
spect to # [corresponding to the first term (D35)] and
keeping only the leading term, it turns out that the
two parts cancel each other exactly. Only the first
integral in (D3) contributes to the leading singularity.
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The dynamics of systems described in Hartree-Fock approximation is studied near a stationary point
of the free energy. It is shown that the second-order free-energy functional is a constant for the linearized
self-consistent equation of motion. This leads to the stability criterion derived by Mermin. A simple
collision model is constructed and is shown to satisfy the H theorem. It exhibits the effect of critical slowing
down. The formalism is shown to be applicable to superconductors.

1. INTRODUCTION

The stability properties of many-particle systems
described in Hartree-Fock approximation! have been
studied by Thouless.? The relation between thermo-
dynamic and dynamic stability in the finite tempera-
ture case has been investigated by Mermin.? It is the
purpose of this paper to extend their work in several
directions. Our first objective is to study the linearized
self-consistent equation of motion from a formal
point of view. It is shown that the second-order
free-energy functional is a constant of the motion.
This leads to the stability criterion already derived by
Mermin. Also, a more general class of constants of the
motion may be found.

The self-consistent equation of motion for the
single-particle-density matrix derived in the thermal
Hartree-Fock approximation is formally time-revers-
ible. One may hope that corrections to the approxi-
mation lead to a collision term in the equation of
motion. A simple collision model is constructed which
satisfies an H theorem, i.e., it leads to a monotonic
decrease in free energy. Moreover, it is shown that the
model implies critical slowing down near a critical
point.

Although the self-consistent field approximation
often is a very good approximation away from the
critical point, it usually breaks down in its immediate
neighborhood. Only in the case of superconductors is
the approximation valid up to very close to the critical
point.* For this reason it seems worthwhile to show

* On leave of absence from the Institute for Theoretical Physics,
Rijksuniversiteit, Utrecht, The Netherlands.

1 For a general introduction see J. G. Valatin, Lectures in Theoret-
ical Physics, Boulder, 1961 (Interscience Publishers, Inc., New York,
1962), Vol. 1V, p. 1; D. J. Thouless, The Quantum Mechanics of
Many-Body Systems (Academic Press Inc., New York, 1961); D.
Pines and P. Noziéres, The Theory of Quantum Liquids (W. A.
Benjamin, Inc., New York, 1966), Vol. I.

2 D. J. Thouless, Nucl. Phys. 21, 225 (1960); Nucl. Phys. 22, 78
(1961).

3 N. D. Mermin, Ann. Phys. (N.Y.) 21, 99 (1963).

4 L. P. Kadanoff er al., Rev. Mod. Phys. 39, 395 (1967).

that the formalism may be extended to incorporate
the pairing effects present in superconductors.

2. THERMAL HARTREE-FOCK APPROXIMATION

According to a general statistical-mechanical defi-
nition, a many-particle system with Hamiltonian ¥
in contact with a heat bath at temperature 7T in a state
described by the statistical operator ¥ has a free
energy®

F = SpT¥ + kgTSpS In 7. 2.1

The free energy takes its minimum value ¥, =
—kgzTIn Z in the equilibrium state characterized by
the canonical distribution 7., = exp (—p¥)/Z, where
Z = Spexp (—pJ¥) is the partition function and
B = 1/kgT. We shall consider a system of fermions
with Hamiltonian (in obvious notation)
=73 Kicle, + 12 V(ij | kDcfefee,. (2.2)
The two-particle interaction ¥ may be taken to have
the symmetry properties
V(i | kI) = —V(ji| kI) = V(ji | Ik) = V(kI| ij)*.
(2.3

In Hartree-Fock approximation, one considers states
given by statistical operators of the form

T =exp[—Y Qcc;]/Spexp [—3 Qcfc;], (24)
where Q is an Hermitian matrix. For these states the
reduced density matrix p defined by p,; = Spfcjc, is
related to Q by

p=[expQ+ 1]L 2.5)

The free energy (2.1) for these states becomes a
functional of p given by

F(p) = &(p) — TS(p),
8(p) = Tr pK + } Tr pW, (2.6)
8(p) = —kp[Trplnp + Tr (1 — p)In (1 — p)],

% See, e.g., J. M. Blatt, Theory of Superconductivity (Academic
Press Inc., New York, 1964).
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where the trace involves a sum over single-particle
states and where W is determined self-consistently by
p according to
Wo =23 V(ij | KDpy. @7
Writing p = py + Pl;:c one may expand the free-
energy functional in terms of p;, so that F(p) =
Fo+ F, 4+ Fo+ -+, and ask for p, for which the
free energy is stationary, i.e., for which the first
variation &, vanishes identically. From (2.6) it follows
that the first-order energy &, is given by Tr p,H,,
where Hy = K + W, is determined self-consistently
from p, by (2.7). The first-order entropy 8, is given by

8= —kgTrpflnp,—In(l—py)]. (28)
Hence the free energy is stationary for p,, satisfying
po = lexp (BH) + 11 2.9)

This is a Fermi-distribution of quasiparticles (for
convenience, the chemical potential has been included
in K, so there is no restriction from the total number
of particles).

The second-order free-energy functional 5, deter-
mines the thermodynamic stability of the state p,.
At this point, it is convenient to introduce a Hilbert
space § with kets |a) given by matrices a of the same
dimensionality as p and with a scalar product defined
by

(@| by = Tr a*b. (2.10)

In this notation, the matrix W given by (2.7) defines a
linear operator U on § by

Wy = Ulpy. 2.11)

U is Hermitian in the scalar product (2.10) on account
of the symmetry properties (2.3). The second-order
energy functional is given by

& = & (p1| Ulpy).

The calculation of the second-order entropy functional
from (2.6) is complicated by the fact that the matrices
po and p; in general do not commute. First variation
of the identity [¢(p), p] = 0 yields

(2.12)

(90, p1] + [91, pol =0, (2.13)

so that in the representation where ¢, and p, are
diagonal

((pl)ij = Yo Poi (pl)ij- (2.14)
Poi = Po;
Moreover, expanding ¢ as ¢ + ¢, + @, + -+ -, one
may show that Tr pyp, = —4 Tr p,¢,. Hence one
obtains .
8, = E (P} G |py), (2.15)

B. U. FELDERHOF

where the linear operator G is defined by its action in
the representation where p, and H, are diagonal as

€ —€;
(Gla); = — 7, —f]- Qijs (2.16)

where ¢, are the eigenvalues of H, and

Ji= lexp (Be) + 117,

the eigenvalues of p,. A more formal definition of G
not bound to a particular representation is obtained
as follows. Corresponding to any Hermitian, positive-
definite, and bounded matrix p = exp /, define the
linear operator ®(p) by

®(p) |a) = (Lle““s”ae”ds>. 2.17)

It is easily shown that ®(p) is Hermitian and positive-
definite. In terms of its inverse, the operator G may be
written

G = kpT[®(py) + OI(1 — ppl.  (2.18)

G is also Hermitian and positive-definite. From (2.12)
and (2.15), it follows that the second-order free-
energy functional ¥, is given by

5 =% {pl FlP1>,

where F = U + G is a Hermitian operator.

(2.19)

3. DYNAMICS IN HARTREE~FOCK
APPROXIMATION

In Hartree-Fock approximation, p satisfies the non-
linear equation of motion
op
ih—= [H’ ]a
ot P
where H = K 4 W depends self-consistently on p.
From (2.9) it follows that a stationary point of the
free energy p, is a time-independent solution of this
equation. Linearizing about p,, one obtains for p, the
linear equation

3.1)

.0
lhaitl = [Hy, p1] + [Hy, pol.

In the notation of the previous section, this may be
written

(3.2)

., 0
lha P = S |pw), (3.3)

where S is a linear streaming operator. Defining the

Hermitian operator C by

Cla) = |la, pD)s (3.4)
one obtains from (2.11), (2.16), and (3.2) that the
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streaming operator is given by

S=C(G+ U)=CF 3.5

C and G commute, but C and U do not, so that S is a
non-Hermitian operator.

From the fundamental relation (3.5), one may
derive some useful properties of the linearized motion.
In particular, we shall be interested in the constants
of the motion. We ask for operators 4 with expecta-
tion values (p,| 4 |p,) which are independent of time.
From (3.3) it follows that the necessary and sufficient
condition for this to be valid for all p, is S*4 = AS,
or, using the fact that C and F are both Hermitian,

FCA = ACF. (3.6)

An obvious solution of this equation is 4, = FS”,
when 7 is a positive integer or, by linear combination
A = Fg(S), where ¢(z) is an arbitrary function of z,
analytic at z = 0. The most important of this class of
constants is F itself. Evidently, the second-order
free-energy functional &, is constant in time. As an
immediate consequence, one may derive a stability
criterion. Suppose one has found an eigenmode
lpey for which S |p,) = Aw |p,), with a corresponding
solution of (3.3). From the fact that {p,(¢)| F|p.(¢))
does not depend on time, it follows that

{pol Flpy) =0

Hence, for unstable modes, §, vanishes identically.
Consequently, the stationary state p, is dynamically
stable if F is positive-definite. This is a sufficient but
not a necessary condition for dynamic stability, as is
evident from the fact that p, is also dynamically stable
if F is negative-definite.

Further constants of the motion may exist. Suppose
there is an Hermitian matrix 4 which commutes with
H,. Hence it follows that

S*|g) = FClg) = Fllg, po]) = 0,

which implies

if o # ot 3.7)

(3.8)

S*lg)Xql = lg)q! S, 3.9

so that Q = |g)(q| is a constant of the motion. More
generally, suppose g does not commute with Hy, but
corresponds to a broken symmetry, i.e., g is the gener-
ator of a transformation which leaves the equilibrium
free energy invariant,

Por = e”‘qpoe_“‘q = po + iAlg, pol + - -,
F(pos) = F(po)- (3.10)

To second order in A, this implies, since p, is a
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stationary point,
{1 poll FIg> pol) = 0. (3.11)

If the equilibrium is stable but indifferent against the
symmetry operation, the free-energy operator F is
positive-semidefinite, and from (3.11) one may infer
that (3.8) holds. Hence again Q = |¢){g| is a constant
of the motion. From (3.11) it also follows that

S1lg, po)) = 0. (3.12)

Hence |[g, py]) is a (collective) eigenmode of zero
frequency (Goldstone’s theorem®).

4. RELAXATION TOWARDS EQUILIBRIUM

The nonlinear self-consistent equation of motion
(3.1) does not describe the approach to equilibrium of
the system. It is easily shown from the commutator
nature of the right-hand side that both the energy
&(p) and the entropy S(p) are constants of the motion.
One may hope that corrections to the Hartree-Fock
approximation lead to a collision term expressed
solely in terms of p. Thus we formally write

op 1

P [H, p] = Rp,
where the relaxation operator R is a nonlinear oper-
ator acting on p which one expects to be such that an
H theorem is valid ensuring a monotonic decrease of
free energy,

4.1

oF 0F
—_— —Tr - R < 0’ 4‘2
> 5 (Rp) < 4.2)
with equality only if
8F
5__ =H+ kgT[lnp ~In(1 — p)] =0, (4.3)
p

i.e., at a stationary point p,.
In the neighborhood of p,, the equation of motion
(4.1) may be linearized to

%lpo = R+ iS/A) Iy = —M |py),  (4.4)

where R’ is the Fréchet derivative of R at p,. We de-
fine an Onsager operator L by

M = LF = (B + iC|h)F. (4.5)

If the relaxation mechanism is such that R’ = BF

satisfies a detailed balance relation expressed by
Bt =B, (4.6)

and if furthermore B is positive-definite, one may

¢ J. Goldstone, Nuovo Cimento 19, 154 (1961); H. Stern, Phys.
Rev. 147, 94 (1966).
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derive an H theorem for the linear regime

os,

Py —}{pl (MTF + FM) |py)

= —(p| FBF |p;) <0, (4.7)

where the equality sign obtains only for F|p,) = 0.
We restrict ourselves to stable equilibrium p,; hence
F is positive-semidefinite and

lpr) =0 and |p) =idllg, pD).  (4.8)

The latter case corresponds to a broken symmetry;
in this case the parameter A is determined by the
initial conditions.

The actual construction of the relaxation operator
R requires a detailed kinetic theory. We shall here be
content with a single relaxation-time model and show
that this model has the desired properties. A natural
choice is

1
Rp = '; P — pioch 4.9

where 7 is a relaxation time and p,,, is defined by

Poc = lexp (BH) + 1]72,

where H is determined by p according to (2.7) and
therefore contains the local self-consistent field rather
than its equilibrium value. By comparison with (2.9),
it follows that (4.10) is of the form of the equilibrium
density matrix, but is not self-consistent.

This collision model satisfies the H theorem (4.2).
In order to prove the inequality, it suffices to show that

(4.10)

Tr(np—1Inpe)p — poc) 20, (411

with equality only for p = p),,. This monotonicity
property is proved by writing

Ploc = exp a,
p(3) = exp (a + Ab),

and defining the function f(4) by

f(}‘) =A"Tr (in P(A) —In Ploc)(P(z) - Ploc)

p=rp), (412

= Tr b(e**® — &%), (4.13)
Differentiating with respect to 4, one obtains
dffdA = (b] ©(p(%)) |b), (4.14)

where we have used the notation (2.17). Since df/dA >
0 and f(0) = 0, it follows that f(1) > 0, which proves
(4.11).

In the linear regime, the H theorem (4.7) is satisfied.
Linearizing (4.9) about a stationary point p,, one

B. U. FELDERHOF

obtains

R'1p) = 1‘(;» + o [[exo 10 = sprtp,

x exp (sBH,) ds}p0)>. 4.15)

Hence,

R =11+ G'U), (4.16)

where [ is the unit operator and we have used (2.12)
and (2.19). Writing R’ = BF, we obtain
1
B==G™. 4.17)
T
Since G™! is Hermitian and positive-definite, the
operator B in this model has the desired properties
derived previously.
It is of interest to note that this model exhibits the

effect of critical slowing down. The relative free-
energy decrease is bounded by

_31n$2<2_/3<p1|F2|p1)
ot T 1 {py| Flpy ’

where we have employed (4.7), (4.17), and (2.19).
Near the critical point, the free-energy minimum
becomes very shallow and hence the right-hand side of
(4.18) becomes very small for a class of density
matrices. Hence the corresponding transport processes
become very slow near the critical point.?

(4.18)

5. EXTENSION TO SUPERCONDUCTORS

The formalism of the previous sections may be
extended to incorporate the pairing effects present in
superconductors. For simplicity, we describe the
electrons by the Gor’kov Hamiltonian® and omit the
Coulomb interaction. The class of Hartree~Fock
statistical operators defined in (2.4) must now be
generalized to include pairs of operators ¢;c; and ¢f¢;
in the exponent. If the one-electron Hamiltonian is
independent of spin, one may use the reduced density
matrix (in r-representation),

G DpED) ' Hp?))
G Dyt rl)) @' Dytl))

where y*, y are the electron-field operators and the
pointed brackets indicate average over the statistical
operator related to p by (2.5). The reduced density
matrix (5.1) satisfies a self-consistent equation of

p(r,r') = ( ) (5.1)

7 M. Fixman, in Advances in Chemical Physics, 1. Prigogine, Ed.
(Interscience Publishers, Inc., New York, 1963), Vol. VI; K.
Kawasaki, Phys. Rev. 150, 291 (1966).

8 See, e.g., P. G. de Gennes, Superconductivity of Metals and Alloys
(W. A. Benjamin, Inc., New York, 1966).
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motion of the form (3.1) with H given by
H(r,x') = (J@e(r, r) 0 )
0 —RXr, 1)
(Ul(r, n A
A¥@r, 1) —Us(r, 1)
where J¢,(r, r') is the one-electron Hamiltonian, in-
cluding the chemical potential. U,(r, t) are the self-
consistent Hartree-Fock potentials (¢ =1, ) and
A(r, t) is the pair potential,
Ua(r, t) == V(’/’+(f, 0)’/’(1', G)))
A(r, t) = = V{p(|)p(1)), (5.3)
where V is the strength of the Gor’kov interaction.

If one introduces the Hermitian matrices D,(x) defined
by

)5(.- —r), (.2

0
0 1)6(){ — i —r),

D(x;r,r') = 6é(x — r)é(r — '),

1
Dy(x;r, ') = (

(5.4)

where 6 = (0., 0,, 0,) are the Pauli spin matrices, one
may write H in the form H = K + W, where K is the
first matrix in (5.2), and W is the second matrix, which
may also be written

W=V 3, f dxD,(x) Tt (p — O)D(x). (5.5)

The sign operators 7, are defined by

n=+1, n=n,=n=-1, (5.6)
and the matrix O by
00
o, r')= (0 1)(S(r —-r'). (5.7)

In (5.5), the difference of p and O has to be formed
before taking the trace in order to avoid divergencies.
The free energy is again a functional F(p) given by
(2.6), with p replaced by p — O in the expression for
&(p)-

One may again define a Hilbert space. The energy
operator U defined by (2.11) in this case is given by

U= 3, f dx | D, (XD,

which is obviously Hermitian in the scalar product

(5.8)
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(2.10). From (2.12) and (5.8), one obtains the second-
order energy functional

b= f axIIA, D + Un(x, OUL(x, D] (5.9)

The second-order entropy functional 8, may be cal-
culated explicitly from (2.15) and (2.16) in a repre-
sentation where H, is diagonal. In the spatially
homogeneous case, it is convenient to first trans-
form to a plane-wave representation and to define

ok, k) = % fexp (—ik - v)p(r, r') exp (ik’ - ¥') dr dr’,
(5.10)

where U is the system volume and each element
p(k, k') is itself a 2 X 2 matrix. Below the transition
temperature, the system condenses into a super-
conducting state p, characterized by a spatially homo-
geneous order parameter A, , which may be chosen real
and is to be determined self-consistently. In this
representation, Hy is given by

) Ao O xr 5.11
Ao —f(k)) k. k' ( . )

where £(k) = A%k?/2m — u, with m the electron mass
and u the chemical potential. Finally, one may
diagonalize Hy(k, k) by a 2 x 2 transformation and
calculate 8,. According to the theory of Sec. 3, the
second-order free energy & — T'S, is a constant of the
linearized motion.

The undetermined phase of the equilibrium order
parameter implies a broken symmetry. We have
chosen A, real and hence the matrix ¢ which generates
the transformation leaving the equilibrium free energy
invariant is given by

4k, k') = 0,0, - (5.12)

From Sec. 3 it follows that Im { A,(x, t) dx is the
corresponding constant of the motion.

Hy(k, k') = (
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The next-nearest-neighbor two-dimensional Ising model is cast into a form which resembles a one-
dimensional interacting many-fermion system. An approximation, which has previously been shown to be
successful in giving the critical properties of the two-dimensional ferroelectric problem, is used. From
the approximate expression obtained, the critical indices are foundtobea =a’' =0, 8 =4, Which
agrees with the results obtained from series expansions and plausible physical arguments. The critical
temperature obtained agrees to within 69 of the series expansion results.

I. INTRODUCTION

For many years now, it has been known that the
algebraic and combinatorial methods used to solve
exactly the two-dimensional square-lattice Ising model
break down when one tries to extend them to three-
dimensional or nonplanar-type lattices. Not only do
the techniques fail for these more complicated lattices,
but they have not been useful in obtaining approximate
or perturbation solutions. Recently, the combina-
torial or Pfaffian method has been recast into a form
which resembles a one-dimensional many-fermion
system.! It is found that the expressions obtained for
lattice problems which are soluble by the Pfaffian
technique resemble a noninteracting fermion system
and hence can be evaluated exactly, whereas the
lattice problems that have not been solved resemble
interacting fermion systems, Although these latter
expressions cannot be treated exactly, the similarity
to many-fermion problems enables one to use the
techniques of quantum many-fermion theory to gener-
ate approximate solutions.

One problem that has already been considered in
this formalism is the two-dimensional ferroelectric
and antiferroelectric problem,? where it was shown
that the first-order or free-fermion approximation
reproduced correctly most of the critical properties of
this model. In this paper, we examine an unsolved
model, the two-dimensional next-nearest-neighbor
Ising model and look at the critical properties as given
by the first-order approximation. It is found that the
results agree very well with the series-expansion results
of Dalton and Wood.?

In Sec. II, the partition function for the next-
nearest-neighbor Ising model is written as the vacuum-
to-vacuum expectation value of a time-ordered product
of exponentials of Fermi operators. This expression

1 C. A. Hurst, J. Math. Phys. 7, 305 (1966); R. W. Gibberd and
C. A. Hurst, ibid. 8, 1427 (1967).

2 R. W. Gibberd, Phys. Rev. 171, 563 (1968).

3 N. W. Dalton and D. W. Wood, report of work prior to
publication.

is called the S matrix and cannot be evaluated exactly
because of the quartic terms of Fermi operators that
appear. However, the S matrix may be written as a
perturbation series about this term, and in Sec. III the
critical indices and critical temperature are calculated
from the first-order approximation to the S matrix.
Since the critical point T, is determined by the
temperature at which the partition function has a
singularity, and since the critical indices are deter-
mined by the nature of the singularity, in making this
approximation we are assuming that the analytic
structure of the exact S matrix is directly related to the
analytic structure of the approximate .S matrix. This
assumption is the basis of many calculations in quan-
tum field theory, where, for example, in the case of
strongly interacting particles, the perturbation method
is inapplicable because the perturbation series cannot
necessarily be expected to converge. However, despite
this, many people!* consider that the singularity
structure of some of the first few perturbation terms
may contain useful information about the analytical
properties of the complete S matrix. This indeed
appears to be the case for the model considered here,
since we obtain « = «' = 0, § = } from the first ap-
proximation. These are the results obtained by series ex-
pansions, and are also expected from the conjecture
that the critical indices should not be affected by
the minor details of the interaction, and hence should
be the same as the simple square lattice. Thus, we can
assume that further approximations to the S matrix
will not change the critical indices. In the conclusion in
Sec. IV, we indicate what this approximation means
in terms of counting closed polygons on the lattice.

II. THE PARTITION FUNCTION

In this section the partition function of the next-
nearest-neighbor Ising lattice is cast into the field-
theoretic formalism. In this lattice the jth spin interacts

4 See, for example, R. J. Eden, P. V. Landshoff, D. I. Olive, and

J. C. Polkinghorne, The Analytic S-Matrix (Cambridge University
Press, London, 1966).
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FiG. 1. Each spin interacts with eight
neighbors with interaction strengths
Jyand J,.

with its eight nearest neighbors as shown in Fig. 1.
The horizontal and vertical interaction strength is
denoted by J;, and the diagonal interaction as J5.
Following the combinatorial approach of Kac and
Ward,? the partition function Z can be written as

Z= z g(r, S)xrysa

where x = tanh 8J;, y = tanh /J,, and g(r, s) is the
number of closed polygons that can be constructed
from r horizontal and vertical bonds and s diagonal
bonds on the lattice. Green and Hurst® have shown that
the counting of closed polygons on a planar lattice is
equivalent to the vacuum-to-vacuum expectation value
of a product of Fermi operators. However, the above
lattice is not planar because the diagonal bonds cross
each other at a nonlattice point, and to overcome this
it is first necessary to introduce an extra lattice point as
shown in Fig. 2.

(o] [¢] o
X X

oo o Milmmin
X X

o e} o

Now assigning fermion creation and annihilation
operators according to the creation and annihilation of
bonds on the lattice, where the particular ordering
of the operators chosen is shown in Fig. 3, we can
write the partition function as

N
Z ={0|TT (1 + all possible products of operators
=1 corresponding to all possible vertices at
the original jth lattice point)

X (1 + a3*aj_p0 + af*al_,,
+ a?*a?*a?—m+1a?—-m) |O>; (1)
where |0) is the vacuum state defined by a, |0) = 0.
The terms in the second bracket of the above

5 M. Kac and J. C. Ward, Phys. Rev. 88, 1332 (1952).
¢ H. S. Green and C. A. Hurst, Order-Disorder Phenomena
(Interscience Publishers, Inc., New York, 1964).
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\ . .
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J
3
/GJ-m

F1G. 3. The bonds and their associated Fermi operators for the
original and extra lattice points.

expression represent the allowed vertices at the in-
serted lattice points, and correspond to those shown
in Fig. 4. The other possible vertices at this lattice
point are not included, since they would produce
graphs which were not on the original lattice. Using
the Fermi anticommutation rules, we can write Eq.
(1) in the following form:

N
Z=0iTew | SHO) +HG|10. @

where T is the usual time-ordering operator which
orders the operators associated with site j from j = 1
toj = N. It can be shown that for this model

Hy()) = yai*(xad* + ya3* + xa}*
+a§+al,+a + a}—l)
+ xa’*(ya3* + xa}* + at
+ai_, +a} + a}y)
+ yai*(xa;* + aj + i, + ai, + ajy)
e+ g+ + )
+ a?(a?-_m + al, + d})
+ a} (a5, + ajy)
+ aj.ai + aj*ai, + af*ai .,

FiG. 4. The allowed vertices at the inserted lattice point.
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and
Hl(]) = 2a?*a§*a§—m+la3’—m' (3)
Equation (2) is an exact expression for the partition
function, but it is also intractable because of the
presence of the quartic term H,y(j).

1. AN APPROXIMATE SOLUTION

Although the expression in Eq. (2) is not easily
evaluated exactly, it is very amenable to the approxi-
mations used in quantum field theory. In ‘particular,
first- and higher-order Green’s-function techniques
have been developed’ which allow one to make many
different approximations. In this section we are going
to make the simplest approximation possible, which,
however, gives surprisingly good results. The approxi-
mation is to neglect completely the H,(j) term in Eq.
(2) and to evaluate Z, , which is given by

N
Zi=0ITep| SHIG| 0. @

This expression can be evaluated using the tech-
niques given in Ref. 1, where the calculation is
straightforward though tedious. However, Green® has
already done an equivalent calculation of Eq. (4)
using the Pfaffian technique and so we here only
present the results:

1 2 1
N IBA=
where
D, ¢) = (1 + x)*(1 + y*)* + 16x°y(1 — y?)
+ 2x(1 — xX)[4y* — (1 = y*)7]
X (cos 6 + cos ¢) — 2y(1 — x*)(1 — ¥
X [cos (8 + @) + cos (0 — ¢)]. &)
The derivatives of this expression have been eval-
uated by Green and Hurst® in terms of the complete

elliptic integrals of the first and third kinds. Using
these results, the average energy E, which is defined by

L ” [) “ 46 d¢ log DO, $),

E=———1log2Z,
N op

can be written as
ETy=ET)+ A(T—T)log|T—T,+ -,

for T close to T,. Thus the average energy per spin is
continuous at the critical point, and the specific heat
has a logarithmic divergence at 7' = 7.

The magnetization can also be calculated for this
approximation, and the equivalent calculation has been
done by Green.® Using Green’s Eq. (76), it can be
seen that as T — T,, the magnetization goes to zero
such that g = §.

7 R. W. Gibberd, Can. J. Phys. 47, 809 (1969).
8 H. S. Green, Z. Phys. 171, 129 (1963).
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TaBLE 1. Values of J,/kT, for different values of a = Jy/J;:
(a) results from this paper; (b) results of Dalton and Wood; (c)
results of Fan and Wu.

o @ (b) ©

0 0.4407 0.4407 0.4407
0.1 0.3879 0.3870 0.3864
0.2 0.3484 0.3451 0.3444
0.3 0.3174 0.3118 0.3109
0.4 0.2922 0.2849 0.2834
0.5 0.2711 0.2625 0.2605
0.6 0.2532 0.2436 0.2411
0.7 0.2377 0.2274 0.2244
0.8 0.2242 0.2134 0.2099
0.9 0.2123 0.2010 0.1972
1.0 0.2016 0.1902 0.1859
1.2 0.1834 0.1669
1.4 0.1684 0.1514
1.6 0.1557 0.1386
1.8 0.1449 0.1278
2.0 0.1356 0.1185

To obtain the critical temperature we use the
following equations, which Hurst® has shown will
determine the position of the singularity in log Z:

DG, $) =0, ©
oD, ) _ 2 _
=g DO =0 ™

Taking the solutions of Eq. (7) as 6, ¢ equal to
either 0 or =, then Eq. (6) becomes

1 —2x — 2y — x% — y* — 4xy + 2x)?

+ 2x%y 4 xB2 =0
or

1+ 2x — 2y — x% — y2 4 4xy — 2x)?
+ 2x%y 4+ x%2 = 0.

These equations were solved numerically for dif-
ferent values of «, where « = J,/J;, and the results are
shown in Table 1 and Fig. 5, where the critical
temperature divided by the critical temperature of the
square lattice is plotted against «. In a recent preprint
Fan and Wu!® have used a transformation due to Lieb,
where the next-nearest-neighbor lattice is transformed
onto a square lattice. Using techniques similar to those
described here, they make an equivalent approxima-
tion and obtain the approximate critical temperatures
shown. It is surprising to see how good both approxi-
mations are, and we conjecture that Fan and Wu’s
result is an upper bound and ours a lower bound to the -
exact result. We also note that for « = 0 and in the
limit « — 4-00, the approximation presented here
gives the exact critical temperature, whereas the
approximation of Fan and Wu is exact for « = 0, but

% C. A. Hurst, J. Chem. Phys. 38, 2558 (1963).
10 C. Fan and F. Y. Wu, report of work prior to publication.
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Fig. 5. Plot of values for critical temperature against different
values for a. (See Table 1.)

is too high in the case « = co. However, our approxi-
mation does not give any exact results for the anti-
ferromagnetic region.

1IV. CONCLUSION

It can be shown that the first-order approximation
which we have considered here counts all the closed
polygons that can be drawn on the lattice, but those
which contain an odd number of vertices of the
crossed type shown in Fig. 4 are counted with a
negative weight. It appears from the results obtained
in this paper that the analytical behavior of the
partition function is not greatly affected by the in-
correct counting of some of these graphs. As already
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mentioned, there are, in other fields of physics,
precedents for assuming that the partial summations
of graphs will contain the correct analytical behavior.
However, one would like to have a criterion which
would indicate when the neglected terms do not
contribute.

In conclusion, we mention that a similar S-matrix
expression can be derived for the three-dimensional
Ising models. However, the simple approximation of
neglecting the perturbing Hamiltonian H; does not
give such realistic results as the two-dimensional
problems. This probably relates to the perturbing
Hamiltonian containing in three dimensions a much
larger number of quartic terms than in the two-
dimensional cases. Thus, a more sophisticated approx-
imation is required.

Note Added in Proof: The author has recently shown
that such first-order approximations as considered
here give rigorous lower (or upper) bounds to the
critical temperature when based on a high- (or low-)
temperature expansion. Hence the conjecture men-
tioned in Sec. IIT is correct.
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The Brans-Dicke gravitational scalar field is geometrized in the spirit of the Rainich-Misner-Wheeler
geometrization of electromagnetism. Geometric equations are derived which imply that the Brans-Dicke
field is present and an explicit expression is given for this field in terms of geometrical quantities.

The general theory of relativity geometrizes the
gravitational field in the sense that the properties of
the gravitational interaction are described in terms of
the geometry of space-time rather than as an inde-
pendent field. The appeal of this approach led to
attempts to geometrize other fields, notably electro-

* Work supported in part by the National Science Foundation.

magnetism. However, the fact that the charge-to-mass
ratio of particles varies in nature meant that charged
particles do not follow geodesics, and one can there-
fore distinguish electromagnetic effects from geo-
metrical effects. The program of geometrodynamics!

1J. A. Wheeler, Geometrodynamics (Academic Press Inc., New
York, 1962).
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takes the point of view that what we call charge is only
a gross feature ascribed to some geometry, in the same
manner as we ascribe a mass to the Schwarzschild
solution, even though there may be no real source
present. Thus geometrodynamics restricts our con-
siderations to source-free regions of space-time. The
geometrization of source-free electromagnetism was
first carried out by Rainich? and was later elaborated
by Misner and Wheeler.® The important feature of
their approach to geometrization is that the field
considered, e.g., electromagnetism, leaves such a
characteristic imprint on the geometry that one can
determine what field is present from a knowledge of
the geometry. Geometric equations are found which
guarantee that only electromagnetism is present and
one finds a prescription for extracting the field from
the metric. The program has been extended to other
fields, e.g., the massless scalar field* and neutrino
field.®

The program of geometrodynamics rests on the
foundations of general relativity. Recently, however,
observations of the solar oblateness by Dicke and
Goldenberg® have cast doubt as to the validity of
general relativity. An alternate theory of gravitation,
the Brans-Dicke” or scalar-tensor theory, can be
made to agree with the consequences of the solar
oblateness measurement by a suitable choice of
coupling constant. This theory is no longer purely
geometric, however, since it requires the introduction
of a real scalar field ¢ in addition to the metric.® In
this paper we show that this Brans-Dicke scalar field
can be geometrized in the spirit of geometrodynamics.

In a source-free region, in standard units, the
Brans-Dicke equations can be derived from the
requirement that the variations of the action

A= f [R + o(@ug O~ d'x (1)

with respect to ¢ and with respect to g,, vanish. This
leads to the field equation for ¢ (where we have
defined ¥ = —In ¢, which is real since ¢ is positive):

Wi — PP + Q)R =0 )
and the gravitational field equations
Ruv = lF;u;v - (1 + w)\F;u\F;v + %guv(qu - lF;lIFJ)

3)

2 G. Y. Rainich, Trans. Am. Math. Soc. 27, 106 (1925).

3 C. W. Misner and J. A. Wheeler, Ann. Phys. (N.Y.) 2, 525 (1957).

4 D. R. Brill, Nuovo Cimento Suppl. 2, 1 (1964).

5 R. Penney, J. Math. Phys. 6, 1309 (1965).

% R. H. Dicke and H. M. Goldenberg, Phys. Rev. Letters 18, 313
1967).

7 C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961).

8 The theory retains the postulate that particles follow geodesics,
50 one cannot observe @ directly from the equations of motion.
However, one can perform a Cavendish experiment to measure G
and thus ¢.
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whose trace is

R =3%4 — (0 + )V ¥ (4)

The identity (R,, — }g,,R)” = 0 leads, from (3),
to the requirement that V" satisfy the equation

(0 + DY, IWE — ¥, ¥4 = 0. )

Thus for v # —3§, the quantity in the brackets in (5)
must vanish, and then the field equation for ¥, Eq.
(2), can be derived from (4) and (5). For o = —3, the
field equation for ¥, Eq. (2), is identical to the trace
of the gravitational field equations (4). Therefore, in
any case, the field equation for ¥, Eq. (2), can be
derived from the gravitational field equations (3) and
we need consider only the geometric form of Eq. (3).

Assuming that the field equations (3) are satisfied, it
Is possible to solve explicitly for V', in terms of geo-
metrical quantities. To this end we compute C**R, . ,
using R,, from (3), where C,4,; is the Weyl conformal
tensor defined by

Capys = Ragys + 8aryRazp + ZprsRona — $8ars810R,
(6)
where [af] = }(ap — px). Making use of the sym-
metry and trace properties of (6) we then have that
C* R,y = $C*R°,¥ ., + (1 + 0)C*"R, Y.
M
We now express the Riemann tensor in (7) in terms of
the conformal tensor and Ricci tensor using (6). This
allows us to make use of the identity
C”aﬂycvaﬂy = %6‘:Caﬂyécaﬂya

to write Eq. (7) in the form

®)

CluvaRuv;a = %'q}n;lcaﬂyécaﬁv‘; + (C() + %)CX”WIR‘”\F;G.
€)
If o = —3, the last term in (9) vanishes and, dividing
by Cup,sC*#1, we find an explicit expression for V',
in terms of geometrical quantities.
The last term of (9) may be reduced by observing
that, in the coefficient of (v + %), we may assume

that w # —3%. In this case Eq. (5), together with (3)
and (4), gives

Ruv = IF;u;v -+ w)‘P’;u‘F;v, (10)
il =V, ¥4 = —R/o. 1

Computing R,,.,, from (10) yields
ROaY s = 2Ry — 2(1 + 0)R Yy, (12)

where we have used V', = $R°,,¥., and also

have used (10) to eliminate terms involving second



GEOMETRIZATION OF THE BRANS-DICKE SCALAR FIELD

derivatives of V. Multiplying (12) by g** gives, after
rearrangement,

1 At oy | 3
® N

quf;a = — — R;a +
2w

which can also be found by multiplying (10) by ¥**
and using (11) to eliminate ¥, ¥>*. Equations (12)
and (13) allow us to reduce the expression in the last
term of (9) to a form where ¥* only appears with a
free index, which then allows us to explicitly solve for
A,

From (6), we can write

Cl”vaRuvlF;a = RluvaRuvlF;zz + WM[%?RZ - %RaﬂRaﬂ]
+ RIR*™Y, — 2RR™Y,,. (14)
Equation (12) can be used to eliminate the R*#¥,

and Eq. (13) can be used to eliminate all terms in
RV, . The result of this is that

CMWvalF;a — (w + %)\P‘;).
% [wz + 20 + %

2

R — R,,VR“"]
w

: + 2\ 0ro
R¥[R,* — Ri1— (% )R‘R"‘
+ Ry o] ( 2w "

_ (f-+%w'+2)R”R.
20

Substituting (15) into (9), we find that ¥, = «,,
where «, is defined to be the geometrical quantity

(15)

2 a 2
®y = {CA“WRuv;a + (0w + %)’:9_"'2_30(;{+~ R.;R

+ (‘“2: 2) R, R* + 2RMVR,,W]} / {gc;,,w,cwwfs

w4+ 2w+ %
2

w

+ (v + g)[ R* — RMR’”:I}. (16)

We can now state the geometrical equations which
imply that the Brans-Dicke field is present in terms of
the geometrical quantity «,. The geometrical equa-
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tions to be satisfied are, from Eq. (3),

Ruv = %(au;v + av;u) - (1 + w)auav + %guv(a;:l - d’ud'u)s
17)

where «, is defined in (16) and satisfies

(18)

Then V' is obtained in the same manner as the com-

plexion of the electromagnetic field?

O([”;v] = 0.

(19)

Since ¢ = —In"Y', we have that the Brans-Dicke
field ¢ is obtained from the geometrical vector «, as

¥ =foc,, dx*,

T
@(x) = @, exp (—f &, dx"), (20)
0

where ¢, is the value of ¢ at some initial point. It is
clear that one could not hope to obtain the value of
@y, since the field equations (2) and (3) are invariant
under a constant change of scale of ¢. Also one should
note that in the case that the denominator of (16)
vanishes, «, is not defined. Therefore, we restrict
ourselves to regions where the denominator is non-
zero, the analog of excluding null fields by Misner
and Wheeler.®

Although the observations seem to imply a value of
w A 6, the case w = —2 is of some interest in a
different context. If we relax the Brans-Dicke assump-
tion that particles follow geodesics, then in a source-
free region the equations for w = —3% are just the
geometric equations of the conformal scalar field.?
In this case a conformal transformation of the form
gw > &wl®, With @ given by (20), reduces the field
equations in the transformed space to R,, = 0. Thus,
our geometrical equations for w = —32 are the con-
ditions that a geometry be conformally related to
a geometry which is a solution of the source-free
equations of general relativity. From (16) we see that
this information can be extracted if Cop,sC*7° # 0.

® P. C. Peters, Phys. Letters 20, 641 (1966).
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The N-fermion density operator D =|¥)(¥| is decomposed into the densities of clusters of correlating
fermions. The m-body cluster densities $™ are “‘orthogonal” to the one-body “Fock-Dirac”-type densi-
ties py, i.e., Tr; (p1P17%, -« -, m) = 0. The reduced-correlation-density matrices obtained differ from the
conventional reduced-density-matrices and are particularly convenient for the treatment of fermion-

fermion correlations.

INTRODUCTION

In finite many-fermion problems, it is convenient
to treat an independent-particle model, orbital wave-
function (w.f.) part, and the remaining fermion-
fermion correlations part separately. In the particular
case of the finite many-electron problem, electron
correlation in atoms and molecules, most traditional
methods have worked with the total wavefunction
without separating the orbital and correlation parts.
In the customary configuration—interaction (C.I.)
method, if one started with the Hartree-Fock self-
consistent field (SCF) wavefunction, added con-
figurations introduced some of the correlations, but
here too, as in other methods, the N-fermion system
was studied as a whole, with the result that difficulty
of the problem rapidly increased with N. Different
types of correlations involving fewer electrons were
not calculated and studied separately as subsystems
and withrespect to their relative importance in building
up the total correlation.

The density matrix (density operator) in the form
|'¥)(¥| does not exhibit the orbital (model) theory
versus the (orthogonal) correlation subspaces separ-
ated. The reduced density matrices too, which have
been studied by several authors, do not contain the
model versus the correlation effects separately, nor
are the different types of correlation effects separated
from one another.

Over the past few years, an approach developed by
Sinanoglu! and co-workers for correlation in N-
electron systems has been applied in various atomic
and molecular structure problems. Here, after sepa-
rating the orbital theory and the correlation parts of
the total wavefunction (and of the N-electron Hilbert
space) into mutually orthogonal parts, the correlation
part is successively decomposed into subspaces in-

! (a) O. Sinanoghu, Proc. Roy. Soc. (London) A260, 379 (1961);
(b) J. Chem. Phys. 36, 706 (1962); (c) O. Sinanoglu and D. F. Tuan,
ibid. 41, 2677 (1964); (d) O. Sinanoglu and V. McKoy, ibid. 41,
2689 (1964); (e) O. Sinanoglu, Advan. Chem. Phys. 6, 315 (1964).

volving one, two, three, - - - electron-correlations at
a time. Methods for examining or evaluating these
different correlation parts separately are given. It is
shown, for example, that in closed-shell systems, the
N-electron problem reduces to good approximation
into N(N — 1)/2 “heliumlike” two-electron prob-
lems.'>P¢ In excited states, nonclosed shells, addi-
tional correlation effects arise and have recently been
evaluated.? The latter were used to obtain such atomic
properties as electron affinities, negative-ion excitation
energies, and oscillator strengths.

It was noted'™* previously that the closed-form
methods used in the above approach could be useful
also for finite nuclei, but they were not applied in that
context,

For some purposes, it is convenient to have formu-
lations directly in terms of the density (matrix)
operator. For example, in molecular orbital (MO)
theory, one deals with electron populations in different
atomic orbitals which in linear combination yield the
LCAO MO’s. A density (matrix) operator formulation
is compact and general in such cases, making trans-
formations from one basis set to another particularly
easy.

The present paper gives a new type of reduced-
density (matrices) operators suitable for N-fermion
correlation problems. The exact N-body-density
(matrix) operator of an N-fermion system is decom-
posed into successive 1, 2, 3, -+, s, -+ N-fermion-
correlation densities. The forms of the exact density
and energy and their relation to the correlation func-
tions of the previous theory are obtained. The m-
fermion-correlation density operators have simple
properties under the unitary transformations which
transform one type of atomic or molecular orbitals
into another (e.g., MO’s into localized, chemical-
bond-like orbitals in molecules).

2 0. Sinanoglu and I. Oksiiz, Phys. Rev. Letters 21, 507 (1968).
See also H. J. Silverstone and O. Sinanoglu, J. Chem. Phys. 44,
1899, 3608 (1966).
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FORM OF THE EXACT WAVEFUNCTION
For a single determinantal state,

o = AN(123 -7+ N),

where i = i(x,) are the N occupied spin orbitals, x;
space, spin (and isotopic spin) variables, and #&y
the antisymmetrizer, it has been shown previously
that the exact wavefunction ¥'(xq, X,, - -+, xy) of
an N-fermion system can be written in the form'

‘"F=¢0+Xa
@dm=0<WHB>1
V= ¢o+2{f}+ 2{

g>z_

+ Z {Ui’jk}‘i'"'

k> j>i=1

where, ¢.g.,
{ - 1 123+ N A }
ijk 3‘)% N{ l]k ik ("

The U’s are closed-form “cluster’” functions with the
properties

<§b0 | ¢0> =1,

+ {Ulss. .. v}

Ui’i(xia X;) = — Ui,i(xj’ X:),
Uln(Xi X5 %) = — Ui (X5 Xy Xp)s (2
and so on, and
(fi| ky =0,
(O] ky =0, (3)
(Ol | k) =0,

where k= 1,2,3,---, N are the occupied spin-
orbitals in the “model” or “orbital theory” wave-
function (w.f.) ¢,. Note that, e.g.,

(0 11 = 027 (e xe(x) e

In N-electron systems, a very convenient ¢, is the
Hartree-Fock (H.F.) one. In finite nuclei, ¢, may be
based on some “generalized H.F.” method. For the
formal development that will follow, however, ¢,
needs to be only some #4(123 - - - N), with N ortho-
normal spin orbitals based on any orbital theory. If
¢, is some type of a H.F. w.f., the y may then be
defined .as the fermion—fermion correlation wavefunc-
tion. The above form, Eqs. (1-3), has turned out very
convenient in the treatment of electron correlation in
atoms and molecules.? The successive terms in Eq. (1)
correspond to correlation between successively larger
number of electrons in the H.F. (or ¢,) “sea.”

The form of the ¥ above is derived most directly by
successively Schmidt-orthogonalizing the ¥ to the

3 See Refs. 1 and 2. Other references can be found through Refs.
1 and 2.
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products of NN — 1, N — 2, -+, 1 H.F. spin-orbit-
als at a time (the “method of successive partial
orthogonalizations™).* The same derivation that gives
Eq. (1) gives also the important and rigorous “orbital
orthogonality” condition of the cluster functions,
i.e., Egs. (3).

We now derive the form of the exact N-body density
of an N-fermion system in terms of correlation density
clusters by a generalization of the method of “‘suc-
cessive partial orthogonalizations.”* The density
operators obtained differ from the various types of
reduced-density matrices that have been used pre-
viously by other authors.>¢ We shall give the der-
ivation for single determinantal states only.

THE DENSITY OPERATORS

Suppose that f and g are wavefunctions of n fer-
mions, 1, 2,- -+, n Then, for the nth-order density
matrix |f)(g] of those w.f.’s, we define the traces of

fermions, 1,2, -, m, by
Tris,....(1f (8D
= Tramps,mie.---a(lf) {8
Efdxlfdxz . -fdxm
X <X1,X2, e Xy |f><g| X)X, ", Xm>
=(g lf>1,2,--~,m = (g |f>¢m+1,m+2,~--,n 4)

and thus obtain an (n — m)th-order reduced-density
matrix. The symbol “Tr”” without subindices will be
used to stand for the trace over all the fermions in the
density matrix. Thus,

Tr (IfXgh = Ty, (1 XED) = g | )
which is just a number. We also have the relations
(Z9el) = 3T (D0ED. )

Tr O 1f)(gh = &0 1f) = (g| (Of)),
Tr (1f)(gl 0T) = (gl OV | f) = ((98) | /),

where O can be any linear operator and 07 its adjoint.

Trie.m

O

4 0. Sinanoglu, Rev. Mod. Phys. 35, 517 (1963). Discussed also in
Ref. 1(e).

¥ (a) K. Husimi, Proc. Phys.-Math. Soc. Japan 22, 264 (1940);
(b) P.-O. Lowdin, Phys. Rev. 97, 1474 (1955); Advan. Chem. Phys.
2, 207 (1959); (c) R. McWeeny, Rev. Mod. Phys. 32, 335 (1960); (d)
D. ter Haar, Rept. Progr. Phys. 24, 304 (1961); (¢) B. C. Carlson and
J. M. Keller, Phys. Rev. 121, 659 (1961); (f) S. Cho, Science Rept.
Gunma University (Japan) 9, No. 5 (1961); 11, No. 3 (1962); (g)
A. J. Coleman, Can. Math. Bull. 4, 209 (1961); Rev. Mod. Phys.
35, 668 (1963); (h) T. Ando, ibid. 35, 690 (1963); (i) F. Weinhold
and E. B. Wilson, Jr., J. Chem. Phys. 46, 2752; 47, 2298 (1967);
(§j) A. J. Coleman and R. M. Erdahl, Eds., Reduced Density Matrices
with Applications to Physical and Chemical Systems (Queen’s
University, Kingston, Ontario, Canada, 1968).

8 A. Primas, in Modern Quantum Chemistry—Istanbul Lectures
O. Sinanoglu, Ed. (Academic Press Inc., New York, 1965).
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Let us introduce the density matrices D and D,
respectively corresponding to the w.f.’s %" and ¢y, as

follows:
D =|V)¥|, Dy= |do)ol. Q)

By the constraints in Eq. (1),
Tr (Do) = Tr (DgDy) = Tr (DyD) = 1, ®

but Tr (D) # 1 when N > 2. We then define the
mth-order density matrices p'™ by

N
PRecm = () Tross D0 ©)
Substitution of
lpo) = Ay 123+ k- N) (10)
with the orthonormality conditions
k | Iy = §,,, for any k, [ in the set
{1,2,--+-, N}, (11)
into D, of Eq. (9) gives
PR m 4
N ¥
= m! z Hop | kyks s o k) (koky s - kml Ap)

k' * kok1=1

N
= z ‘fem |k1k2 ne

kikg, * skm=1

e ey < ko) AL,

= n(prp2” " * P, (12)
where N
p= =310 (13)
In this derivation, it should be noted that
Ay = D OpP, (14)
PES

where 6p = +1 or —1, respectively, for the even or
odd permutations P. If ¢, is H.F., then p‘™ is the
mth-order Fock-Dirac density matrix, otherwise an
analog of it for other “model” orbitals. The term
“Fock-Dirac density” is used below in this more
general sense. We have

Tr (™) = m!(ﬁ).

It can be easily shown that

(15)

1 1
Dy = P = xlpp )ty (16)

ANALYSIS OF THE DENSITY (MATRIX) OPERA-
TOR BY THE METHOD OF ‘‘SUCCESSIVE
PARTIAL ORTHOGONALIZATIONS”’

Suppose that D, , a portion of D, is “orthogonal”
to Dy in a sense that

Tr (D,D,) = 0. (17)

T. SHIBUYA AND O. SINANOGLU

The way of finding such a portion D, is similar to the
Schmidt prthogonalization method. This orthogonal-
ity condition is satisfied if

D, =D — DyTr (DyD) = D — D,
= o) (x| + 12){ol + l1){x]. (18)

Thus, D, is the whole portion left over in D after D,
is taken out and, therefore, may be called the “total
correlation density (matrix)” of the N-fermion system.

We next find D,, = portion of D,, “orthogonal”
to products of (N — 1) p’s in the sense

Tray(prpa - pn—1Dy) = 0. (19)

Suppose that this condition is satisfied if
D, = D, — D), (20)

where
=[(N I N 4 1
D) = | LENT | An(prpa * - pyaPa(D)dy,

(21)
Pn(D) = C' Tryoy(prp PN-le)‘ (22)

Requiring that $@ has the same permutation sym-
metry as p'V’, we can easily show that

Troy lpspe* py-aDy(D] = [1/1!(’1V )}ﬁx’. (23)

Thus, substituting Eq. (20) into Eq. (19) and com-
bining Eqs. (22) and (23), we see that the condition
(19) is satisfied if

C’=1!(N).
1

Then, Eq. (20) can be written as

o= ()]

X An(prpa Pv-alTrey(prpe ** pya Dx)]ft;“

(25)

We continue with D,,a portion of D,., “orthog-
onal” to products of (N — 2) p’s in the sense

(24)

Tronoan (prp2 - PN—sz") =0 (26)
Suppose that this condition is satisfied if
D, = D, — DJ2), 27

where
D.(2) = N 21 N |y c L R Al
v( ) 2 PN |Ax(prps P2V N1, NN s

(28)
PN =C"Troy n(Pip2 - pPn—2D,). (29)
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Requiring that $® has the same permutation sym-
metry as p'?, we can show that

Tranan (prpy py_aDy2) = [1/2! (12V )}m v-
(30)

Thus, substituting Eq. (27) into Eq. (26) and com-
bining Egs. (29) and (30), we see that the condition
(26) is satisfied if

N
c'=2! . 31
2) o
Then, Eq. (27) can be written as
[V 2
Dy = Dy — [(2) /N!]AN(Plpz' T PN-2
X [Tray oy (prps " py_aDp)Dety. (32)

Note that D,. was already found in Eq. (25).

Similarly, in general, we can show that D'™,
[where (m) as a superscript to this term indicates m
primes] a portion of D{™~Y,

D(m) D(m—l) y(m) (33)

is ‘“‘orthogonal” to products of (N — m) p’s in the
sense

” Tren—mir: N (prp2" " Pv—mD x ) =0, (34
i
pom = [(¥) fm 0]
m

X dx(prpe " Pr—mP i ). (35)

D,(m) is to be compared with
Dy = “— An(p1pe PN—mPJ(\Z'i)mH,---,N)Ava;
m! N!

and

Alm)
YN—m+1,---,N

N _
= m'(m) Trenomer,-- v (Prp2” PN—mD;m 1))

(36)
to be compared with

pﬁ\’—)m-%l,- -+,N
' N
=m Ir#N—m+1,~~ N (P1P2 e PN—mDO)-

We then have

2
D(m) D(m—l) [(Z) /N!j|d€1v(P1P2 U PN-m

X [Trsn_mir, - v (P1P2 " - AumD(m_l))])AN
37

When the above “successive orthogonalizations™ ter-
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minate, we obtain the finite cluster expansion of the
density operators. Thus,

N
D — Dy =D, =3 Dyn), (38)
with D,(n) given by Eq. (35).
Also
D(m) E D(n) 1<m<N-—-1, D;N)___O_
n= m+1
(39

SOME PROPERTIES OF THE CLUSTER
DENSITIES

From Eqs. (35) and (39) we see that D)‘(”” contains
all s of n > m + 1, but does not contain any
7"’ of n < m. Therefore, the “orthogonality” con-
dition (34) form = N — 1, i.e.,

Tr; (PlDiN_D) =0,
implies that Try [p,D,(n)] = 0 or

Try (pif13) ) = 0.
The “orthogonality” condition for m =

Trye (P1P2D;N-2)) =0,

(40)
N —2,1ie.,

implies that
Try 5 [p1pa D, (M)] + Trys [p1p DN — 1)] = 0,
which, by the above result (40), reduces to
Tr1,2 [P1P2Dy(N - D=0,
which further reduces to

Tr, (Pz?’ o N=0

or
Tr, (P171 2,- ,N— ) =0. (41)

By similar procedures, we get, in general,
Tty (pufier - m) = 0. (42)

This “orthogonality” is similar to the orbital orthog-
onality, previously discussed by one of us.!®® It
represents the “exclusion effect,” * and here it is again
designated by the caret (*) on the top of y. It is
natural to call $' the “m-fermion correlation
density” in D.

To find the expressions of $(™’s in terms of the
correlation functions U”’s introduced previously,*
we first review the following relations:

3
O = (N!)/ 12-

(m—l)\ — 7
) S

Nk« + - K,y -

(43)
1 12---N \
v ... = A e s
|{ kikg km}> (m')% N klkg . k,m keikeg km/

(44)
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and
N
(m—1) __

{Otiey -k} (45)

Em>r e >ky>ky=1
where each Uy, ..., has the same permutation sym-
metryas #,,(kky " - - k,).Each U, , ..., replaces only
A (kiks -+ - k,,) in the w.f. £y(12 -+ N), and does
not replace, for instance, #,,(kik, - - k,) if ky = k;.
The #,, is the m-fermion antisymmetrizer.

Noting these relations and Eq. (18), we can easily

derive the following expression for 7 from Eq. (36):

N
o =k§1(|k><fk| + 1Ak + 1 XD (46)

Substitution of this result into Eq. (21) or (35) gives

Dy =§1(|¢0><{ﬂ}| + [{Fhol + HFIXFID.
@7

x(m) =y

and then, by Eq. (20) or (33),
D, = 1¢o)x'| + 12 )bol + 12 X1l

+ éﬂ{fk}xxt + XD
+ 3 ADARN + HEDARID - (48)

Using this result in Eq. (36) for the case m = 2, we
obtain

N
Q)= 2!»%:1[(%2 kIOl + 1Ur)

x (k| 4+ 105004 + (1) Ik

X (Ol + |Gk fl 4, + a1 )

X (Ol + 1Tl 42) + (1) (e 1K)

x (Full 45+ 5 TR 4D (49)
In the same manner, similar expressions for the other
$m>s of higher orders can be found. These expressions
clearly show the structures of $#'™ in terms of the
functions U,;l... e (n < m). The D,(m) represents a
density matrix corresponding to the

N
{0, an}
1

However, it should be noted that D,,,,, in general con-
tains some extra terms whose component wave-
functions do not appear in

N

> {Ui,.. 4.}

Em> - >ky=1

but do appear in
N
z 1{ Ui’lkn} (n < m).

B> >ky=

k> >k=

This can be seen, for example, in Eq. (49) of $® [i.e.,
Ag(kl), Ao(kF), etc.]

T. SHIBUYA AND O. SINANOGLU

THE EXACT ENERGY

Consider an N-fermion Hamiltonian of the form
H = H() + Hl ’ (50)
where

N
H, = Z lgz,'a" (51)

N

Hy=3h},
i=1 i>i=

Suppose that ¢, is the eigenfunction of H,, in other

words the spin-orbitals k are the eigenfunctions of A’.

Then, we have the Schrodinger equations, H |¥) =

E|Y)and H, |¢’o> = E, |¢’o>, or

HD = ED; HoDo = EoDo- (52)
Introducing the energy E, such as
E, =Tr (HDy) = E, + E,, (53)
where
Ey = Tr (HyDy); Ey =Tr (H1Dy), (54)
we can write the exact energy E as
Tr (HD) Tr [(H — E;,) D]
=——=E;, +——————, (55)
Tr (D) Tr (D)
or the exact “correlation” energy E,, as
Ecorr = E - E¢o
Tr[(H — E;)D
_ Trl(H — E,)D] 56
Tr (D)
For any operator G such that
N
G= X gno. (57
fm>e o >ig>dy=1 :
where g™ is an m-particle operator, we have
Tr (GDy) = (1/m!) Tr (g™ p(™). (58)
Hence, E, can be written as
Ey, = (/1) Tr (Wp) + (1/2) Tr (g12p™).  (59)

Now, to find a simpler expression of £, than Eq.
(56), we go back to the Schrédinger equations in Eq.
(52) and derive the following equation:

EonyDo = Do(Hy — [E; + Ecorr])Dz . (60)
Taking the trace of both sides, we obtain
Eppry = Tr (DOHIDZ)- (61)

Substitution of Eq. (38) into the right-hand side of
this equation gives

N
Eoorr = z_lTr [DOHlDy(m)]
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Each term in this expression is reduced to

1 , n
Tr (DoH, DY) = T [p2 ghatto PPN AL,

1
Tr (DoH, D™) = — Tr [p;;'fl .,,,(

< (m)
z g::) 7172" . ~m]

i>i=1

(m>2). (62)

However, because of the “sea’-orthogonality (42),
the terms of m > 3 vanish., Hence,

1 . a1y 7
Eyorr = F Tr [Pg)glz-ﬁz(Pil)?’;l))ﬁz]

1 .
+ T [p1 giePi2]  (63)

If the Schrddinger equation H, |¢y) = E, |¢,) corre-
sponds to the ordinary Hartree-Fock scheme, the
first term of this expression vanishes because of
Brillouin’s theorem, and also, the ‘“‘residual inter-
action” or “fluctuation potential” g, in the second
term can be replaced by the bare interaction g, .

SUMMARY OF THE MAIN EQUATIONS ON
CORRELATION DENSITY CLUSTERS

The main equations which decompose an N-fermion
density D into correlation cluster densities are
summarized below:

D=Dy+ D,, Tr(D,D,)=0,
D,=D 1)+ D2+ -+ D(N),

N
D(m): m j£ ( “ o . Alm) )At
¥ ) N\P1P2 PN—m¥ N—m+1,-- - ,NJIN »
m! N!
where

N
p; = > |k)kl for the ith fermion.
k=1
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There is the “sea’’-orthogonality of m-clusters:

Tty (puFie . m) = 0.

The correlation energy in the H.F. scheme of an N-
electron case is given by:

1 1,
= Tr (P%’ — V%’) ;

ECOI‘I‘ 1
2! Fis

P2 = Ay(ppo)th.

CONCLUSION

We decomposed the total N-fermion density (matrix)
operator D into a “model” (like Hartree-Fock) part
Dyand a correlation part D, . The D, itselfis expressed
in terms of newly defined n-fermion correlation
densities 7™ where n =1,2,3, -+, N. The D, also
contains products of “Fock-Dirac” type densities p.
As it has been shown previously by one of us!™® that
in ground state atoms and molecules correlation is
made up mainly of N(¥ — 1)/2 decoupled pair corre-
lations and their products, the corresponding D, would
contain mainly the two-body correlation density $®
and its products. The 7@ differs from the conventional
second-order reduced density matrix.” The two-body
correlation density ¥ contains only the pair corre-
lation functions Ui,-(xi, X;), whereas the reduced
density matrix has in it all the correlation effects, as
well as the “model”” wavefunction.

The transformation properties of correlation func-
tions under basis set or unitary transformations of the
“model” wavefunction orbitals are particularly trans-
parent in the correlation density operators formula-
tion,
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The construction of the algebraic matrices for the configurations (4 + s)"p in L--S coupling is discussed.
Particular emphasis is given to configurations with a half-filled @ shell. From a total of 42 parameters
specifying the various interactions for the configurations (¢ + s)"p only the matrices of 8 parameters
need to be calculated explicitly for the complementary configurations (d -+ s)*p, n > 6. The matrices of
the other 34 parameters can be obtained from the corresponding algebraic matrices of (d + s)*p, n < 6,

either directly or by simple changes in sign.

1. INTRODUCTION

The algebraic matrices of (d + 5)"p comprise the
electrostatic and spin—orbit interaction matrices of the
configurations d"p, d"sp, and d"2s?p, the matrices
of the correction parameters representing two- and
three-body interactions of the core d electrons, as
well as the matrices of the interactions between
configurations. The energy matrix (for a particular »)
is then a linear combination of these matrices, the
coefficients of which are parameters usually obtained
empirically by fitting the experimental levels to the
eigenvalues of the energy matrix. The following lists
these parameters and gives their significance (un-
primed quantities denote the configuration d"p,
primes denote d"~sp and double primes denote
d"tsp):

A4, A', A”—the heights of the configurations
S'=4 —4, S"=A4"— A.

B, B', B"—linear combinations of the Slater param-
eters F?(dd) and F*(dd):

B = 341 [9F(dd) — 5F%(dd)] = F,(dd) — 5F,(dd).?
C, C', C"—multiples of the Slater parameter F*(dd):
= 5F4(dd) = 35F,(dd).*
G, —the parameter of the d-s interaction in the
configuration d"sp:
G, = $G%(ds).?

F,, F,, F,—parameters of the direct part of the d—p
interaction
Fy, = 5'%5F(dp).!

G,, G;, G;—parameters of the exchange part of the
d-p interaction
G, = $5G*(dp).1

1 G. Racah, Phys. Rev. 62, 438 (1942), referred to as R II.
2 G. Racah, Phys. Rev. 63, 367 (1943), referred to as R III.

G;, Gy, G;—parameters of the exchange part of the
d-p interaction

G3 = 5%3(1'3 (dp)l

G,.—the parameter of the p-s interaction in the
configuration d"Isp:

Gyo = 3GY(ps)."

a, &', a’—correction parameters multiplying L,(L, +
1), where L, is the angular momentum of the
core of (d 4 s)"p, i.e., (d + 5)".4¢

B, B', B’—correction parameters multiplying the
seniority operator of Racah.?’

T, T', T"—parameters of Trees multiplying the
squared matrix of the interaction 3s23d"-
35347180

H—parameter of the d"-d"1s interaction

H = R¥(dd, ds)[35.2

H'—parameter of the d"~'s-d"~2s? interaction, defined
the same as H.
J—parameter of the direct part of the d"p-d"isp
interaction
J = R¥(dp, sp)/5.101

J'—parameter of the direct part of the d"lsp-
d"2s%p interaction, defined the same as J.

K—parameter of the exchange part of the d"p—d"1sp
interaction

K = R'(dp, ps)[3.201*

K'—parameter of the exchange part of the d" lsp-
d"~2s®p interaction, defined the same as K.

3 E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra
(Cambridge University Press, Cambridge, England, 1935), referred
to as TAS.

4 R. E. Trees, Phys. Rev. 83, 756 (1951); 84, 1089 (1951).

5 G. Racah, Phys. Rev. 85, 381 (1952).

8 G. Racah, Lunds Univ. Arsskr. Ard. (2) 50, 31 (1955).

7 G. Racah and Y. Shadmi, Phys. Rev. 119, 156 (1960).

8 R. E. Trees and C. K. Jorgensen, Phys. Rev. 123, 1278 (1961).

% R. E. Trees, Phys. Rev. 129, 1220 (1963).

10 N. Rosenzweig, Phys. Rev. 88, 580 (1952).
11 G. Racah, unpublished material, 1952.
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G—parameter of the d"p—d"~2s®p interaction permissible n are available and can be obtained by
9 9 request.
G = R*(dd, s5)/5 = R*(ds, sd)/5

= G(ds)f5 = G'y,.° 2. THE CONSTRUCTION OF THE ALGEBRAIC

PR . i . MATRICES IN L-S COUPLING
L,, L, {—parameters of the spin-orbit interaction j _ .
of the d electrons.? The matrix elements of the electrostatic and spin-

{,, L, {/—parameters of the spin-orbit interaction orbit. interactions for the conﬁgurations d"p were
of the p electron.? obtained by Racah,® Rohrlich and others.!2~14
General formulas for the matrix elements of the
The algebraic matrices of (d 4 s)"p were con- electrostatic and 3pin—orbit interactions for the
structed and then checked by the author with the configurations d"%sp were obtained by the author 15:18
purpose of using them to explain and predict the Characterizing the states of d"p by d"(v,S,L,)pSLIM,
spectra of the configurations (3d + 4s)"4p in neutral and d™ ! by (v,S,L;), and using the same methods as
and singly-ionized atoms of the iron group. The for d"lsp we obtain the general formula for the d-p
checked algebraic matrices of (d + s)"p for all interaction of the configuration d"p:

nFydp) + n Z |:<dnUIS1L1 {l dn_l(uz 2L2) dSlled”— (02S,L,) dS; L } d"v;S.L1)8(Sy, S1)

veSaLa

X fexp mi(Ly 4 Ly + Ly + L + DI21002L; + DL, 4 DI (’; I; Lz)W‘(L1 Ll i)Fz(dp)}
2

+n 3 1 (d"08,Ly {|d"7(0,5,L5) dS1Li){d" (0,8, Ls) dSiLy |} d"01S1 Ly lexp mi( Sy + SHIS, + D28 + 1)

v2S2Ls
o 1 s 1 L L 1 L L,
><(2L1+1)(2L'1+1)]%W(S2 : Sf) 30X {2 L, L|e@p +105x |2 L Lilcwp)]. @
2 1
1 1 2 31 2

Similarly, the general formula for the spin-orbit in II giving the matrix elements of the spin-orbit
interaction of the electrons d of d"p is given by interaction of the electron p for d"1sp.
The d-d interaction of d"p is the same as that of d”

nls gL {(d"0,8:1Ly {1 d"7X(02S,Ly) dS,Ly) and hence is given by Racah.l
2dn—1(0252L2) dSiL; |} d"iSiLY For the 'conﬁgurations d"%% the electrostatic
, , energy matrix elements are
X [exp wi(2S; + 28"+ Sy + Ly -+ L + L + D]
’ ’ n+l 2
L L J S S % i<i=1 Ty
X W(51 Si I)I/—V(Ll Ly 1 )W(L L 1) = [n(n + D21{d"7s*p| (*[7p,n42) |d"*s°p). (4)
P S, 2 2 L, Ly L, 1

After expanding each side of the matrix element in
X [45Q2L, + DL, + DL + DRL + 1) terms of antisymmetric eigenfunctions, we obtain
X (25, + D2S] + DS + DS’ + 1)]%}‘ (2) contributions which characterize the d-d, d-p, s—p,
and d-s interactions. For the above matrix element,
the d-d and d-p interactions are given by those

30, [exp mi(Sy + S + 8" 4 Ly + J + 3)] contributions for which the sth and (n + I)th
lect ither both d d h .
% [2L + DL + 1S + DS’ + 1)]% electrons are either bo or one d and the other p

' ’ ' 12 F, Rohrlich, Phys. Rev. 74, 1372 (1948).
Y W(S’ S 1) W(S S 1 ) W'(L L 1 ) (3) 13T, Ishidzu and S. Obi, J. Phys. Soc. Japan 5, 124 (1950).
L J\s 1 s) 1oL

14 E. Shimoni, S. Hollander, and B. Z. Abraham, M.Sc. Theses,
The Hebrew University of Jerusalem (1960).

.. . 15 C. Roth, J. Math. Phys. 9, 686 (1968), referred to as I.
As expected, the above result is identical to Eq. (17) 1 C. Roth, J. Math. Phys. 9, 1832 (1968), referred to as II.

The spin—orbit interaction of the electron p of d"p is
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Then using (7.10) and (11.10) ITS,'” we obtain

<dn_2(1’151L1)5 pSL| (62/’,” n+l) |dn_2(v1le1)S pSL)

= [exp mi(L; + 1 4+ L)I[QL, + DL + 1)]

— 0 .
X W(L1 1 Ll) [exp mi(L, + 1 + L)]
, (L1 O L'l)
2L (2L DEW

x [QL + DEL + 1)] (L -

1+ SNES; + DES + DI

)[exp 7S, + S + )]

X [exp mi(S; +
S, 0 S,
s 3
7 % 1 0 Sl)
x [(2S] + @S + VW
(@S] + DES + D) (S L

xW(

3
X (s*'S d"*(v;S,L,)pSL]| (ez/rn,nﬂ)
x |s*1S d"*v;S;Ly)pSL). (5)

Remembering that either the d-d or d—p interactions
are considered and using (11.12) ITS, we obtain
(d"H(0,81Ly)s*pSL (€*/1y n) 14" *(v1S1Ly)s* pSL)

= (d"(0:5:L)PSLI (€*[rp nsx) |[d"*(0;S1L)PSL).
(6)

Thus, the d-d and d-p interactions of d"~%s% are
the same as the corresponding interactions for d"~2p.

The interactions of the p electron and s electrons
with the closed d shell can be obtained from Eqs. (11)
and (9) and Eq. (10).!® The results are 2Fy(ps) — G,
and (n — 2)[2Fy(ds) — G,,], respectively. Both contri-
butions can be incorporated into the height of the
configuration 4”.

The spin—orbit interactions for the configurations
d"2s2p are the same as those for d"—%p.

The matrix elements for the electrostatic inter-
actions between configurations were derived by
Rosenzweig!® and Racah.' As the latter paper was
not published and the parameters J and X first intro-
duced there we quote the results:

ntl 2

(d"(v,S,L,)pSL| <2_1 - ld"_l(szsz)s(S L,)pSL)

iJ
2

= @0,S,Ly| 3 &

i<j=1Ty;
X |d" "} (058,L5)sSLy) 8(S18")8(LyLy)
+ (d"0,S1Ly {| d"7(v,S,L,) dS,Ly)
x [6n(2L; + DI*fexp mi(L, + L)]

x W(II2 i L, )[(J — K)(S,S")

+ [exp mi(S; — SHI2S, + DS’ + DI
X [1/2S + DIKH(S,S)] %)

17 U. Fano and G. Racah, Irreducible Tensorial Sets (Academic
Press Inc., New York, 1959), referred to as ITS.
18 Reference 3, pp. 182 and 176, respectively.
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and
n+1 2
<dn_1(UIS1L1)S(S L,)pSL| Z i Id"_2(02S2L2)52P3L>
i<j=1Ty

&
= (d" 1(Ullel)SSzLﬂ Z -

i<j=1T;;

X |d"*(v,S;L5)s%S, L) (S'S. é)é(Lle)
+ (@0 S,Ly {] 4" (05,Ly) dS,Ly)

x [6(n — DL, + D} (Lz 2 Ll)

1 L 1
X [exp mi(Ly + L + S, — §' — 1]
x {[(2S; + /S’ + DIETK(S'S,)

— [(2S' + /S, + DIFK'6(S,8)}.

The matrix elements of the interactions between
the cores, i.e.,

(d"v,8,L,| E

1< j= 17‘

ld n_l(vzssz)sle1>

and

<dn—1(U181L1)SS L,| Z

i<j=1T;;

|dn 2(”2 2L2)SZS2L2>

have been calculated by Racah.?

The matrix elements for the interaction between
the configurations d"p and d"2s%p are the same as
those for d" and d"~%? The latter have also been
calculated by Racah.? Explicitly,

n+1 2
(d™(v4S1L,)pSLI 2 i Idn_z(vlle, )s? pSL)
i<i=17T;;
= (d"0, S, Ly| Z - |d""2s*viS1Ly) 8(S,S7)0(L,Ly)

= [(n — v)(12 — n — v)/4]ES(00")8(S,S:)H(L,L,)G.

€)

Racah and Trees* % have shown that second-order
effects caused by perturbations on the configuration

I by configurations differing from /* by two electrons
can be described by a model interaction of the form

2 2ol I) + Bay;l.

i<j

where g, is the seniority operator.? For the configura-
tion 4" this becomes

«[L(L + 1) — 6n] + BQ,

where Q is the total seniority operator.2 If the constant
~—6na is incorporated into the height of the configura-
tion, the above correction reduces to

aL(L + 1) + Q.
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Trees and Jorgensen® have shown that the main
perturbing configuration on 35s23p$3d" is the configura-
tion 3s23p*3d™*+2. Trees® also remarked that the
configuration 3s3p®3d"*! should give a perturbation
of the same magnitude as 3s23p*3d™*2, This perturba-
tion is not included in

S 2adl; o I) + Ba.,),

i<j

since now the configurations differ by only one elec-
tron. By second-order perturbation theory, this effect
depends upon the ratio H*/AE, where H is the inter-
action parameter that appears in the nondiagonal
term and AE is the energy difference between the two
configurations. The parameter H2/AE is denoted by
T. When calculating the model interaction, one uses
second-order perturbation theory of degenerate
configurations which permits the introduction of these
interactions before diagonalizing the energy matrices
of the separate configurations. Hence, the matrices
of T are not diagonal.

As a particular example, consider the perturbation
3s3p%3d* on the terms 3s23p®3d%,2D and 3523p®3d%*D.
The terms of d* which have to be considered are } D,
1D, and }D.

From d*,'D we get, using (81) (R III) and Table
XXI (R IID),

2
(d%'Ds*D|S & |d%2Ds? 2D)
i<iry
LR e sano1 3
= —[3F(d*'D|> — |d**Ds'D) = [L93]°H
i<i ¥y
and

2
(@%'Ds*D|> = |d%2Ds* °D) = [%]}H.
i<j VM-

Thus by perturbation theory, the diagonal elements
are [*$2]H?/AE and [4*]H?/AE, whereas the nondiag-
onal element from the contribution of d%,'D equals
[4222 [ H?AE.

Similarly, the terms 44D and d%2D contribute
diagonal elements only for 432D of 180H2/AE and
120H?%/AE, respectively.

Hence, the matrix of T for d2D and d32D can be
written as

2D { 105 (414:2_§)éj|
DLy '

The matrix of 4 is a unit matrix for the three
configurations d"p, d"~1sp, and d"%s%p. The matrices
of §" and S” are unit matrices for the configurations
d"1sp and d"~%sp, respectively.
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3. COMPLEMENTARY CONFIGURATIONS

In TAS,Y it is shown that the electrostatic inter-
action matrices of the configurations d" and d°—"
are the same. From this result and Eq. (6), it is
evident that the matrices of the parameters B and C
for the configurations d"p, d"!sp, and d*2s%p are
equal to the corresponding matrices of d'%"s%p,
d1~"sp, and d'*~"p, respectively. From the above
article it is also evident that the electrostatic energy
matrices of the configurations d"s and d—"s are the
same. Thus, the matrix of G, for the configuration
d"Lsp is the same as that of d''"sp.

From R II,% jt is seen that the matrices of the
parameters Fy(dp) and {, for the configurations
d"p,d"sp, and d"~%s%p are equal in magnitude but of
opposite sign to the corresponding matrices of
dw-"sp, d''="sp, and d'*~"p, respectively.

For the matrices of G,(dp) and Gy(dp), Egs. (1)
and (21) of I are used in a slightly modified form. For
the case of an almost closed shell and an electron
outside the shell, it is customary to subtract from the
energy matrix the interaction of the outer electron
with the closed shell. Then, the resulting matrices of
[4+1" have a particularly simple form. Here we
subtract the exchange interaction contribution of the
electron p with the closed shell of d electrons when
using Eqs. (1) and (21) of I to obtain the matrices of
G1(dp) and G,(dp) for an almost complete shell. From
TAS,? this interaction is given by —10G, — 35G,.
The coefficients of fractional parentage for an almost
complete shell which are required to calculate the
matrices of G,(dp) and G3(dp) can be obtained from
(19) (R III) and Tables II, I1I, and IV of (R III).
Rosenzweig!® calculated the coefficients of fractional
parentage by this method for d”, n > 5. Checking his
results, one mistake was found. From (19) (R I1I),

(d*3D {| d>2S d*D) = —}(d%2S {| d*>D d2S).
By Table 1V (R 111}, the above coefficient equals
— [-115—]%, whereas in Table VI of Rosenzweig’s paper
it is given as [¢s1E.

Since each term of d~"sp has a corresponding term
formed from the same ancestors as d"sp, it is evident
from Eq. (34) of I that the matrix of G, for d"'sp is
the same as the matrix of G, for d="sp.

From (3), giving the spin-orbit interaction for the
electron p of (d + s)"p, it is evident that this formula
is independent of »n. Hence the matrices of {, for
d"p, d"'sp, and d"2s*p are equal to the corre-
sponding matrices of d'*"s*p, d"~"sp, and, d'*"p,
respectively.

19 Reference 3, Chap. X11I, Sec. 1.

20 Reference 1, Sec. 6.
1 Reference 3, Eqgs. (9) and (10), p. 182, and Eq. (10), p- 176.
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Also, from the definitions of the correction param-
eters « and f, it is evident that the matrices of these
parameters for d"p, d"1sp, and d"~%? are equal to
the corresponding matrices of d**~"s%p, d*"sp, and
d'2"p, respectively. On the other hand, the matrices
for the correction parameter 7 must be calculated
separately for each n using the method outlined in the
previous section.

We now derive the transformation relationships
from the original configurations (d + s)"p to the
complementary configurations (d + s)"*~"p for the
d"-d" s and d"~1s—d"~%s? interactions.

Using (74) (R 1I) to transform the reduced matrix
elements of the tensor U'® and (19) (R III) to trans-
form the coefficients of fractional parentage we
obtain from (79) (R I1I):

st S &

i< j= lr

d"_l(v S'L)sSL)

= [n/14]% gu[exp mi(L — L)][exp mi(L — L' + 1)]

x (d"pSL| U® |d™*"y"SL')

x [exp7i(S + 8"+ L + L' — HI(1L — n)
x (28" + DL + 1)/n(2S + DRL + P

x (d"'S'L {| d""(v"SL’) dS'L)

x QL + 1}QL + 1) + 3 lexp milL — L)
x [exp mi(L — L' 4 1)] '

X (dS' L U [ dU'S'L)

X [exp#i(S+ S + L+ L — HIIL — n)
x (28" 4+ DL + 1)/n(2S + DL + D

x (d"""S'L {] d™"(uSL) dS'LY(2L + 1)}

x R¥dd, ds). (10)

The above expression can be written as

fexp 27iS )[exp 7i(S + £ — S')]
x [(25" + /@28 + D11 — my/147

% { S [exp mi(L — L) (d"»SL| U® |d"*""y"SL")
oL

X (d*"'S'L {| d"*"(v"SL") dS'L)

3
} + 3 fexp mi(L — L)]

" L"
4

“|

2L 4+ 1
X <d11—nU//S/E/|I U (2) “dll—nvlS/L>
X (d="'S'L' {| d'*"(vSL) dS'L)

x 2L + DL + 1)}R2(dd, ds).

C. ROTH

By (79) (R 11I), the above equals
[exp 27iS']fexp #i(S + } — SHIIQ2S’ + DJ2S + DI

X <d11 'S L e 2
vS'LI Y —

i<j=17T;;

Then by using (81) (R III) we finally obtain

|d*™"(sSL)sS'L).

@wSL| S ¢ Id"‘l(v S'L)sSL)
i<j=1 r
12—n
= [exp 27iS'} (d"~"(v'S’L)sSL)| z dm_"szvSL>
i<j=171;;
(11)

On replacing n by (12 — n) in (11) we obtain

n 2
@Y v'S'L)sSL| 3 & |d™2%SLy
i1<j=1 r
12—n

= [exp 2miS'] (d"*™SL| 3 — Idu_"(v S'L)sSL).

i< j=1 r
(12)

From (11) [(12)], it is evident that for n > 6 the
matrix of H[H'] for (d + s)"p equals that of H’'[H]
for (d 4 s)'*~"pif nis odd, and equals the negative of
the matrix of H'[H] for (d + 5)**"p if n is even.

We now derive similar relationships as (11) and (12)
for the matrices of J and J'.

From (7) we obtain by using (19) (R 1II) for the
transformation of the fractional parentage coefficients
that the coefficient of J in the matrix element

n+1 2

(d"(v,8L,)pSL| z

i<j=17T;;

{d" " (0,S,L5)s(S’Ly)pSL)
is
[exp mi(Sy + Ly + S; + L, — 3)]

X [(11 = n)(2S; + DL, + 1)/n(2S, + 1)

x 2Ly + DIEnCL, + D

X (dY"0,S,Ly |} d'*"(0;S,L,) dS,Ly)

x [exp (L, + L)]W(Ll2 z L, )6(S s

= (d"""08,Ly |} d** (0,5, L,) dS;Ly)
x [6(11 — n)(2L, + DP[exp 27iS,]
X [expmi(Ly + L + S, — S, — )]
y W(L1 2 L,

t L

= [exp 27iS,] (d*"0,S,L, |} 4"
X (035:L) dS,Ly) [6(11 — m)(2Ly + DI
x [exp mi(Ly + L + Sy — 8" — 3)]

—(L, 2 L, , Yoron
x W(1 ; )[(2s2+1)/(2s + DIFX(S'S,).

)[(25 + 1)/2S, + DS,
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By (8), the above expression is just exp (27iS;)
multiplied by the coefficient of J' in

du_n(”z 2L)s(S'Ly)pSL| 2 dm—"(vlSlLl)s pSL)

i<j=1 r
Thus,
n+1
(d"(0:S:LpSL| Y = py d"'l(szsz)S(S L)pSL) s
i<j=1
= exp (27iS;) <dn_"(ng2L2)s(S’L2)pSLI
13—n
X z dlo—"(vllel)s pSL>J (13)
i<j=1 r

On replacing n by (12 — n) in (13) we get

n+l1
(" H(0,S;Ly)s(S'Ly)pSL| 3 - ld"_z(ﬁSlLOS pSL);
i<j=1F;;
= exp (27iS;) (d"*"(v;S,L,)pSL|
1B-n 2
X > = |d" T (0,S,Ly)s(S'Ly)pSL) ;. (14)

i<j=1V;;

From (13) [(14)], it is evident that for »n > 6,
the matrix of J[J'] for (d + s5)"p equals that of J'[J]
for (d + s)**~"pif nis even, and equals the negative of
the matrix of J'[J] for (d + s)'*~"p if n is odd.

The matrices of K and X’ must be calculated for all
n using (7) and (8). The coefficients of fractional
parentage are transformed using (19) (R 1II).

From (9) directly,

n+1 2
<dnp| z dn— p> le—— PI z d12—
i<j=11r;; i<j=1"F;;

However, as pointed out after (75) (R 1II), a
minus sign must be introduced in the above expression
for n equal to 6 and terms of seniority number 2 as
well as for n equal to 7 and seniority number 3.

Thus, with the exception of G,, G;, G;, G, G;, G
T, T, T, K, and K’, the configuration d"p corre-
sponds to d1%"s%p, d"sp to d*""sp and d"%s?p to
d**"p. However, as the matrices of G}, G; , and T" of
d"-%s%p correspond to the matrices of G, G;, and T
of d"~2p, the matrices of only 8 parameters need to
be calculated anew for complementary configurations.
Of these, the matrices of T and T” are particularly
easy to evaluate.

It should be noted that for n > 6 the height of the
configuration d"p is 4 + S”, the height of d"sp is
A + 8, and the height of d"~2s%p is given by A.

4, THE CONFIGURATIONS d%p, d°p, AND d°?p

The half-filled & shell can be considered as either
the configuration comprising five electrons or as the
configuration with five holes in the d shell. From
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(65) (R HI), it is evident that the only difference in
the energy matrices in these two cases is a change in
sign of all nondiagonal matrix elements connecting
terms of seniority number 1 or 5 with terms of
seniority number 3. Thus, in the configuration d° or,
equivalently ds*p [k = 0, 1, or 2], to transform from
the scheme of d® considered as five electrons to the
scheme of d° as five holes, it is only necessary to
change the sign of those rows and corresponding
columns based on d® with seniority number 3. This
transformation leaves the eigenvalues invariant. Thus,
when considering the configurations ds*p alone, it is
irrelevant whether the core d® is considered as com-
prising five electrons or as five holes in the d shell.
Also in (d + s)°p, (d + s)%p, and (d + s)’p we can
define d° in each case as either consisting of five
electrons or as five holes in the d shell. However,
after choosing the particular scheme for d® in d°*p,
it is necessary to be consistent when calculating the
electrostatic interaction of d°s*p, the spin-orbit
interaction of d°*p and the interactions between
configurations.

For (d + s)°, ie., d% + d*p + d3?®, in the
interaction d°p-disp as given by (7) and in the
interaction d®p-d®s®p as given by (9), the configura-
tion d%p is considered as having five d electrons. Thus,
using (7) and (9)for the interactions between configura-
tions, it is necessary to be consistent and calculate
d3p also in the scheme of five electrons d.

For (d + 5)%p, it is equally convenient to choose d°
of d®sp as comprising five electrons or as five holes
in the d shell. Since for the physical applications of
(d + s)°p the main configurations are d®p and d°sp, it
seems logical to consider d°p analogously to d®p,
i.e., as consisting of five holes in the d shell.

The matrix elements for the interaction between the
configurations d%p and d°p are obtained from (7)
with the simplifications (11) and (13) for the matrices
of H and J, respectively.

In all these relations, (19) (R III) is used to trans-
form the coefficients of fractional parentage (4 {| d° d)
to (d*d |} d%). In the first coefficient d®is defined in the
same manner as 49, i.e., consisting of five holes in the
d shell,

The interaction between the configurations d3sp
and d%?% is given by (8). The fractional parentage
coefficients (d°{| d*d) as tabulated in R III are
calculated with d® being considered as five electrons
in the d shell. Thus in the matrices of H'(d5sp—d’s?p),
J'(d>sp-dis®p), and K'(d’sp—dis®p) as obtained from
(8) and using (81) (R III) and Tables IV and XXII
of R III, it is necessary to change the signs of
all those matrix elements connecting terms of d%?p



1044

with those of d°sp based on d* with seniority number 3.

For the configuration d°p, the only parameters
which have nondiagonal matrix elements connecting
states of seniority number 1 or 5 of 4° with those
based on d° with seniority number 3 are F,, G,, G,,
T’, and {. As the matrices of the parameters F, and
{; for d°p are equal in magnitude and opposite in
sign of the matrices of F, and {; for the complementary
configuration d-5s71p, it is evident that the only
matrix elements of F, and {j are those connecting
states based on d° with seniority numbers 1 or 5 and
states based on d® with seniority number 3. Now, the
fractional parentage coefficients (d°|{ d*d)appearingin
(17) of T and (13) of II are tabulated in R III with 4°
considered as comprising five electrons. Thus, the
matrix elements of F, and {; calculated with the aid of
the fractional parentage coefficients given in Table
1V (R IIT) must have their signs changed in order to
comply with the.choice of d° as consisting of five
holes in the d shell. Similarly if the fractional parent-
age coefficients appearing in (21) of I are taken from
Table IV (R III), the matrices of G; and G, are those
of the configuration d®sp, where the core d° is defined
as consisting of five electrons. Then it is necessary to
change the signs of all the matrix elements of G| and
G, which connect terms based on d° with seniority
numbers either 1 or 5 and terms based on d® with
seniority number 3. In addition the interaction of the
p electron with the closed d shell should be subtracted

C. ROTH

from (21) of I. This expression is given by —10G; —
35G,: Furthermore, also the matrix elements of T
connecting terms of seniority number 1 or 5 with
terms of seniority number 3 must have their signs
changed. Finally, a minus sign must be introduced
in the matrices of G(d®p—d*s?p) for terms of seniority
number 2.

Since, in (d 4 s5)’p, the configurations d’p and désp
are complementary configurations of d3?% and d'sp,
respectively, it is logical to consider the configuration
d®s’p as complementary to d®. Thus the core d° of
d®s®p is defined as comprising five holes. By the same
reasoning as for the interaction dSp—d®sp of (d +
s)%p, the interaction d%sp-d®s*p as obtained from
(8) with the simplifications (12) and (14) for H'(d®-
dss?) and J'(d®sp-d®s’p), respectively, refers to five
holes in the core d° of d°s?p. In the interaction d’p-d®°s*p
as given by (9), a minus sign must be introduced for
terms of seniority number 3. If the matrices of dp are
to be used for the configuration d%?p then it is
necessary to change the signs of the nondiagonal
matrix elements connecting states of d® with seniority
number 1 or 5 and those states with seniority number
3. As for dbsp these matrices are of £, G, G;, T, and
{4. The matrices of F, and {, simply reverse their sign.
For the matrices of G, and G; it is also necessary to
subtract from the height —10G, —35G, which
represents the interaction of the p electron with the
closed d shell.
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In this paper we consider a general action principle for mechanics written by means of the elements
of a Lie algebra. We study the physical reasons why we have to choose precisely a Lie algebra to write
the action principle. By means of such an action principle we work out the equations of motion and a
technique to evaluate perturbations in a general mechanics that is equivalent to a general interaction
picture. Classical or quantum mechanics come out as particular cases when we make realizations of the
Lie algebra by derivations into the algebra of products of functions or operators, respectively. Later on
we develop in particular the applications of the action principle to classical and quantum mechanics,
seeing that in this last case it agrees with Schwinger’s action principle. The main contribution of this
paper is to introduce a perturbation theory and an interaction picture of classical mechanics on the same

footing as in quantum mechanics.

1. INTRODUCTION

We present in this paper a general action principle
for mechanics, valid for classical or quantum problems.
From such a principle the equations of motion may
be derived, but its main application is the possibility
of deducing an interaction picture, valid quite gen-
erally, from which perturbation expansions can be
obtained. In particular, of course, we get a perturba-
tion method for the two kinds of mechanics mentioned
above.

We look for the ‘“‘intersection” of the various
dynamical structures in a common formalism. This
common abstract mathematical structure is that of
the realizations of a Lie algebra £, by derivations in
an associative linear algebra D. All dynamical
theories can be unified in the above-mentioned manner,
since they have enough features in common. We
start from an initially very general presentation of the
dynamical principle to obtain, later on, as realization
of our principle, action principles for each one of the
mentioned mechanics. But the main aim of this paper
is the application of this technique to the evaluation
of perturbations.® The elements of the Lie algebra
are abstract mathematical entities isomorphically
associated with the physical dynamical variables.

Let us examine the case for quantum mechanics.
If we have only one irreducible representation of the
“algebra of observables,” all relevant information of
the theory is contained in the algebraic structure
alone. Hilbert space representations are not needed
since they add nothing to our knowledge of the phys-
ical world: this is certainly the case when the number
of degrees of freedom is finite. We may say, therefore,
that for ordinary quantum mechanics, the purely
algebraic approach should prevail. However, in
quantum field theories we have infinitely many

L E. C. Sudarshan, Lectures in Theoretical Physics, 1961 Brandeis
Summer Institute (W. A. Benjamin, Inc., New York, 1562), p. 144.

degrees of freedom, and it is well known that there
exist, indeed, many inequivalent irreducible repre-
sentations of the same algebra. Nevertheless, the
differences between inequivalent representations of
dynamics in quantum field theory are too fine and
they do not have any physical importance. Any
faithful representation of the algebra of observables
will give the same physical results, and therefore,
none of them is needed. Whether the number of
degrees of freedom of quantum mechanics is finite or
infinite, our discussion shows that the answer that
we find is in favor of the purely algebraic approach.
We conclude that all faithful representations are
“physically” equivalent, even though they may be
mathematically strong inequivalent, and conclude
that none of them is needed.?

The vector space of the Lie algebra of the general
dynamical structure of mechanics has a dual space
whose elements are called states. The states deter-
mine the mapping of the Lie algebra £ onto the field
of real numbers, which are the elements that can be
compared with the physical reality. They correspond
to the expectation values of the observables for a
state—a vector in Hilbert space—that are commonly
used in quantum mechanics. The selection of a partic-
ular (faithful) representation is a matter of conven-
ience without physical implications. It may provide
a more or less handy analytical apparatus.

We can find many mappings of a Lie algebra into
the field of real numbers, It is, therefore, possible to
define states in many different ways, and so we can
have many kinds of mechanics from the same dynam-
ical Lie algebra structure. To obtain classical or
quantum mechanics we have to specify clearly what
kind of mapping has to be used for each case. How-
ever, a Lie algebra may have additional mappings,

? R. Haag and D, Kastler, J. Math. Phys. 5, 848 (1964).
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unexplored by physics as yet, into the field of real
numbers, that eventually may generate another kind
of mechanics. Of course, we can compare, and we
here do so, the action principle presented in this paper
only with action principles and perturbation methods
for the two kinds of mechanics mentioned that are
the ones used in physical problems. But we hope that
the action principle presented is valid more generally,
even though we are not able at the present time to
check these further applications.

We do not study in this paper classical or quantum
statistical mechanics, because we are essentially con-
cerned with dynamics and they offer nothing new to
the action principle that we present. Statistical mechan-
ics differs from other kinds of mechanics not in the
action principle but in the mapping of the elements
of the Lie algebra into the field of real numbers;
that is done by means of density operators or distri-
bution functions, kinematical aspects to which we
do not pay special attention here.

Dynamical variables and states are duals to each
other. In a most general sense, states are the mappings
of the Lie algebra onto the field of real numbers.
Besides the action principle, which is purely dynamical,
there is another aspect in all mechanics—namely, the
choice of admissible states belonging to the dual space
of the dynamical Lie algebra—a kinematical aspect
that limits the mappings onto the field of real numbers
which have physical meanings. Generally, there are
additional requirements, most frequently imposed to
preserve the meaning of probability, so that not every
element of the vector dual space is an admissible
physical state. The admissible states form a manifold
that usually has to be convex, in order not to have
negative probabilities. This manifold of states is in
general not a subspace because the convexity con-
ditions limit the number of admissible linear combina-
tions that one may make. The natural determination
of the admissible manifold of states imposes additional
conditions to the Lie algebra £, or to its realizations
into another linear associative algebra D, by means
of derivations.

To determine the convex manifold of states, which
is physically admissible, further additional informa-
tion not included in the Lie algebra specifications is
needed. The convex manifold of states must be so
chosen that, in a Schrédinger-like picture of dynamics,
the changes compatible with the action principle
will not throw them out of the admissible manifold.

We do not study in this paper a Schrodinger-like
picture of dynamics but rather a Heisenberg-like
picture of dynamics deduced from the action principle
that we here introduce.

L. M. GARRIDO

There are dynamical theories which have to be
Lorentz-covariant. Physically we have to require that
for every element of the Poincaré group an automor-
phism of the algebra has to be introduced. The
requirement that the Lorentz transformations be
represented by unitary operators in Hilbert space for
quantum mechanics is a very powerful restriction
that may not be completely justified on physical
grounds,® and in the same way, intimately connected
with the action principle are questions about sym-
metry properties of the physical system. This means
that a Lie algebra may have additional, unexplored
structural features, the existence of which is inherent
in the special form of its action element.

In Sec. 2 we present as a postulate the general
action principle for a quite general mechanics without
specifying whether it is classical or quantum mechanics.
The action principle is written by means of the ele-
ments of an abstract algebra that is a Lie algebra.
We examine immediately which is the physical mean-
ing of all the properties of the Lie bracket multiplica-
tion. We apply the action principle to obtain the
equations of motion and to arrive at an interaction
picture in a general scheme of mechanics. Later on
we examine the consistency requirements between
both applications—for deduction of the equations of
motion and for the evaluation of perturbations—of
the action principle.

In Sec. 3 we make concrete the realization of the
action principle into the algebra that is proper for
classical mechanics. A perturbation theory valid for
classical mechanics is presented as deduced from our
action principle. In Sec. 4 we do the same for quantum
mechanics; in particular we observe how Schwinger’s
action principle can be deduced from the action
principle postulated here.

We conclude this paper in Sec. 5 with a discussion
of the possibility of extending the application of the
present action principle to other mechanics that may
eventually be derived.

The main contribution of this paper.is to introduce
an interaction picture, and from it a perturbation
theory of classical mechanics on the same footing
as in quantum mechanics.

2. ACTION PRINCIPLE

We plan to introduce the action principle as a
postulate by means of the elements of a Lie algebra,
which we designate by £. For any three elements
A, B, C, such that

A,B,Cet

® R. Haag, Lectures in Theoretical Physics. 1964 (University of
Colorado Press, Boulder, Colorado), p. 107.
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of the Lie algebra, the distributive and nonassociative
product of any two of the elements of £, which we
write down as [4, B], has to satisfy the following
properties to generate a Lie algebra:

(4, Bl = —[B, 4], .1

that is, the antisymmetry condition, and
[i4, B, C] + [[B, C1, 4] + [[C, 4], B] = 0, (22

called the Jacobi identity.

Later on we examine which is the physical meaning
of these two conditions on the elements of the algebra.
Such a study gives us the reasons why we choose
precisely a Lie algebra as the mathematical structure
most fit to postulate the action principle. (The symbol
[,]is called a Lie bracket.)

For any element A of the algebra, the action prin-
ciple that we postulate is written as

04 = dA — 94 = [OW, A, 2.3)

where 04 is the total infinitesimal variation of the
element 4 of the algebra in relation to a certain
parameter 4 of a certain class of parameters that we
study later. We should write more carefully as follows:

84 = 0,4, (2.4)

notation that we use as it is needed. From the total
variation d4, we have to subtract d4, which is the
change in A associated with the explicit appearance
in A4 of the parameter 1, since the latter cannot be
produced by any action principle, but can be deduced
immediately once we are given the explicit dependence
of 4 on the parameter 4: it corresponds to the partial
derivative of A with respect to the parameter A.
Without loss of generality and in order not to com-
plicate the equations, we always suppose that the
elements A of the Lie algebra do not depend explicitly
on the parameters Z, so that

94 = 0. (2.5)

The difference 64 = d4 — 04 is always the dynamical
variation of the element 4 of the algebra, equal to the
total variation less the explicit variation.

W is also an element of the algebra which plays a
very special role and which we call Action. We study
the general properties of W for any mechanics. The
concrete specification of W depends on the kind of
mechanics that we are considering and, more specifi-
cally, on the problem that we study. We call 0W the
variations of W in relation to a parameter A of a class
of parameters, some examples of which are presented
later on. The elements W are such that

SWet. (2.6)
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As we saw, we designate by [, ] the combination or
multiplication law for any ordered pair of elements
of the algebra. The actual nature of the bracket [, ]
has to be specified for each kind of mechanics, as we
see later on.

The requirement that a Lie bracket, the multiplica-
tion of the elements of the Lie algebra, be always
expressible as a linear combination of the elements
of the Lie algebra by means of the structure constants
ensures, according to the action principle presented
above, that the variations of any dynamical symbol
are a linear combination of these same elements.
Therefore, structure constants govern the dynamics.

We should present now the reasons for choosing
Lie algebras to express the general action principle.
This Lie algebra contains two elements W and J¢
(so that W, € ef), called respectively Action and
Hamiltonian of the system. The time variation of the
Action yields the Hamiltonian, whose Lie bracket
with any element of the algebra provides us with the
dynamical time derivative, since the explicit time
derivative of an element of the algebra cannot be
generated by a Lie algebra bracket. Generally any
element of the algebra A generates a certain dynamical
variation of all the other elements of the algebra in
relation to a certain parameter. We impose the physi-
cal condition that no element can produce a dynamical
variation of itself, a condition that implies that the
Lie bracket of an element 4 with itself is always zero:

[4, A] = 0. 2.7)

If 4 and B are elements of £, then since an al-
gebra is a vector space, 4 + B will also be an
element of £. From the above result and the fact that
the combination relation of any algebra is distributive,
we have

0=1[4+ B, 4+ B]
which gives

[4, B] = —[B, A]. (2.8)

Therefore, the antisymmetry requirement of the Lie-
bracket multiplication is equivalent to the physical
condition that no element can produce the dynamical
variations of itself.

Next, let us see where the Jacobi identity comes
from. We should indeed require that the bracket-
composition law be consistent with the dynamical
variations of the elements of our algebra in relation
to any parameter. This requirement is equivalent to
the statement that any functional relationship, such
as C = [4, B], existing between any three elements
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of our algebra 4, B, C for a certain value of the
parameters that determine the dynamical variations,
should be preserved for any other value of these
parameters. For the sake of concreteness, we con-
sider the dynamical time evolution of the system
produced by X, the Hamiltonian of the system,
which is an element of the algebra we are considering.
Then the elements 4, B, C, ¥ are considered at an
instant of time #, and they satisfy

C = [A, B] 29

at time instant . We would like to find out the
requirements which our algebra has to satisfy in
order that this relation be also valid at another time
instant ¢ + d¢, infinitesimally different from . The
element A becomes A + dt[A4, K] as deduced from
an action principle as we see later. We would have
similar expressions for the changes of B and C. In
particular, C becomes C + dt[C, X]. But from the
relationship between C and the bracket [4, B] that
we want to preserve for the time instant ¢ + dr, we
should have

C + dt[C, ] = [4, B] + di[[4, B], %]
= [4 + dt[4, %)), [B + dt[B, %]).
(2.10)

If we keep only terms linear in d¢ and use the anti-
symmetry of the brackets already assumed in our
algebra, then the Jacobi identity between 4, B, and
X immediately follows. If we had considered other
kinds of dynamical variations, we would have
obtained in a similar manner the Jacobi identity
among any three elements of our algebra. This result
is completely general, since the Lie-bracket multipli-
cation is the only combination law to obtain from any
pair of elements 4, B, and a third element C.

We consider, therefore, that the Jacobi identity
expresses the consistency between the algebra whose
elements describe the physical system and the action
principle that we have presented; i.e., the Jacobi
identity guarantees that the variations of the elements
of the algebra compatible with the dynamical action
principle do not throw these elements out of the
algebra.

We have, therefore, to write the action principle
between elements of a Lie algebra in order that the
dynamical evolution of the system produce new
elements within the same algebra. We remember that
we have used a Heisenberg-like picture of the dynamics
of a system to arrive at these conclusions.

Besides the general form of the action principle
as a Lie bracket, the practical basis for the applica-
tions of this dynamical principle is the fact that there
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exists a class of parameters 4 such that the variations
0, W are obtained by appropriate variation of a single
element W of the Lie algebra. The action principle
must be complemented by the explicit specification
of such a class.

Of the whole class of variation parameters that
can be considered, we study here only the instances
when 1 is the time ¢ of the system and, secondly, the
case in which A is the coupling parameter g between
two systems. Variations with respect to the time
yield the equations of motion, while when we change
the coupling parameter infinitesimally we get a per-
turbation expansion that, as we said, is the main aim
of this paper.

Let us consider the temporal evolution of the
system. We designate by A(r) any element of the
algebra at instant £. There is an automorphism between
the set of elements A4(¢) and those of A(¢!) considered
at another instant ¢#* of time. The action principle, in
the form that we have presented it, implies that the
dynamical time evolution of any element of the
algebra is obtained by multiplying such an element
by another 8 W of the same algebra, i.e., by an element
OW evaluated at the same instant of time 7. An ele-
ment 0W evaluated at another instant of time !
cannot generate according to (2.8) the time evolution
at instant t. This deduction from the action principle
(2.3) is equivalent to the principle of stationary
action. It states that W, whose meaningis (W) = éW,
must be stationary with respect to variations at
another time instant ¢!, ¢! 5 ¢, since 6/ can only
contain elements of the algebra associated with
instant ¢. Therefore, we write

8,W = J(t)or, @.11)

where J(¢) is called the Hamiltonian of the system.
The fact that the dynamical temporal variations of
the elements of the algebra at an instant ¢ can only be
generated by an element of the algebra evaluated at
the same time instant z, implies the existence of
equations of the motion. The general equation of
motion is

046t = [A4, X). (2.12)

Since [JC, A] is a linear combination of elements of
the Lie algebra £, determined by the structure con-

stants, the same equation of motion can be applied
to d4/dt. We get

024/0r® = [[4, ¥], X], (2.13)
and, in general,
orAfdtn =+, [4,K], %, K] (2.14)

with # multiplication brackets.
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Applying Taylor’s theorem, we can write

A(D) = {e % 4(0)e™), (2.15)

where the braces indicate that the expression is only
symbolic in the sense that its only meaning is

A() = A(0) + {7 [4(0), 7€) + %[[A(()),Je],ge] .
(2.16)

Indeed, the exponentials of J€ in (2.15) are not defined,
since the only multiplication that we have introduced
in the algebra is the Lie-bracket multiplication ac-
cording to which the powers of any element of the
algebra are identically zero, given the antisymmetry
of the brackets required by physical conditions.
Indeed, for instance, so far

Jez = [4, Je] = 0. (2.17)

The fact that the expression (2.15) is only symbolic
is a serious inconvenience for the practical applica-
tions of the action principle, since we do not have an
analytical apparatus to use in our calculations. This
is the reason why we have to introduce realizations
of the Lie algebra defining a new algebra and a new
product (,) that, since it does not enter into the
action principle, does not have to be antisymmetric
as it is required on physical grounds for the Lie-
bracket product [, ]. Then, powers of an element are
defined by means of this new kind of product. This is
the reason why the dynamical Lie algebras are realized
by means of derivations though, evidently, these
realizations are not required by the physical con-
tent of the theory; they simply are convenient ways
of performing the calculations that appear in the
action principle and of mapping the Lie algebra into
the field of real numbers.

Let us consider the introduction of a general
interaction picture to study perturbations. We con-
sider that the action element W can be divided into
two parts coupled by the parameter g, so that

W= W, + gWi, (2.18)

and we want to obtain the change of any element of
the algebra when the coupling parameter changes
from g to g + dg. Action principle (2.3) yields

0,4 = [0,W, A] = [W:, Aldg, (2.19)

where the Lie bracket [4, W] has to be evaluated for
the value A = g of the coupling parameter. W, is the
unperturbed action; it corresponds to g = 0. The
action corresponding to g =1, W= W, + W, is
the fully perturbed action, since we consider W, to be
the perturbation.
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We need to study the boundary conditions for the
application of the perturbation. Undoubtedly the
action W should contain two labels to indicate when
the interaction begins and when it ends. So

W= W, t,), (2.20)

where f, is the instant when the perturbation starts
and ¢ the final moment of action of the perturbation.
The physical consistency requirement implies that

W(to, to) = 0 (2.21)
and that
Wit, t,) + W(t,, 1) = W(t, 1), (2.22)
from which we deduce
W(t, t,) = —W(t,, t). (2.23)

The action element W(t, #,) evidently possesses the
form

t1
Wt 1) = anLis), (2.29)
1o
where L(t,) is the Lagrangian. As we see later, the
action W(t, t,) has to be varied in relation to the upper
limit ¢ in order to obtain the Hamiltonian at the
instant, i.e.,

8, W1(t, ty) = —XK(t)ot. (2.25)

Taking the action principle (2.3) to evaluate per-
turbations, we deduce that

0"A[og" =0, if t=1t, foranyn, (2.26)

since W(t,,t,) = 0. From here we deduce that, as
assumed before, ¢, is the instant when the perturba-
tion starts to act and that, therefore, the perturbation
acts during the interval ¢ — ¢,.

If we write the time labels explicitly, Eq. (2.19) has
the following form:

Q‘;L‘) = [Wy(1, to), A(1)] =£ dt[L(ty), A(D]. (2.27)

>

From here we also have, as before,
2 t t
OA(1) _ f dtl[—-—éL(t‘) , A(t)i] +f dtl[L(tl), M(')},
to og t d

og* 0 g
(2.28)

which is a procedure that can be continued so as to
evaluate [6™A4(1)]/(dg™) for any value of .

The explicit expression for the element A4 forg = 1,
i.e., fully perturbed, is obtained from the same element
A for g =0, i.e., from the unperturbed element, by
means of a Taylor’s expansion in powers of Ag =1,
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and so
1 6A(r)
A®)y=1 = A oot 1! 8g le=o0
L LEADL L 009
n! og" |s=o0

which is an expansion that can also be written in a
symbolic way by means of exponentials of W;. This
is .the general interaction picture, since here all the
successive Lie brackets have to be evaluated for
g=0,ie, for the elements of the Lie algebra calcu-
lated for the unperturbed motion generated by W,.

To apply the above formula to a perturbation
expansion we have to suppose that the motion of the
system generated by the unperturbed action W, has
been solved exactly. Then we can calculate exactly the
different successive Lie brackets that appear in (2.29).
The term in this formula that contains » times the
perturbing action W, is the nth perturbation. Indeed,
to apply expression (2.29) to a concrete perturbation
problem, we have to define for each kind of mechanics
the Lie bracket. But, undoubtedly, we have written a
general perturbation expansion.

The combination or multiplication law of any two
elements 4 and B of the Lie algebra £, by means of
which the action principle is introduced, is written as
[4, B]. We see in the applications that, as a matter
of fact, such a product becomes the Poisson bracket
or the commutator between any two elements,
respectively, in each one of the mechanics in which
the action principle is applied.

In the vector space of the elements of the abstract
Lie algebra £. we define a second combination law
of the two elements, that we design by (, ), which
maps pairs of elements of the dynamical abstract Lie
algebra, A4 and B, into another such element (4, B),
under which the vector space becomes an associative
algebra D. This implies that the new product (4, B)
is also distributive. We also further require that the
two product operations satisfy

[(4,B),C] = (4, [B,C]) + ([4,C], B) (2.30)

for any three elements of the Lie algebra.* This prop-
erty is referred to by saying that the Lie bracket is a
derivation in a linear associative algebra with the
product (4, B).

In a linear associative algebra, powers of an element
are uniquely defined. The associative and distributive
product ( , ) isoftenreferred to as the ordinary product.
As a matter of fact, the product (,) is either the
ordinary product of analytic functions in classical

4 J. P. Serre, Lie Algebras and Lie Groups (W. A. Benjamin, Inc.,
New York, 1965).
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mechanics or the ordinary product of operators in
quantum mechanics.

By virtue of the derivation property of the Lie
bracket, it follows that algebraic relations among
the elements of the Lie algebra, involving either the
ordinary product (,’) or the Lie bracket [, ], are
preserved by infinitesimal transformations.

A Lie algebra provides only an abstract framework
for the dynamical properties of a physical system,
and, even if this framework is supplemented by the
dual space of physical states, it is not enough for the
complete and practical specification of the physical
situation. We have to introduce also the additional
structure of an associative algebra D, and an explicit
realization of the Lie algebra £, by derivations in this
associative algebra D. And so, as we see, for classical
mechanics we use analytic functions where ( , ) is the
ordinary product of the same and [, ] is the Poisson
bracket; but for quantum mechanics we introduce
operators in Hilbert space where (, ) is now the ordi-
nary product of the same operators, while [,] is
proportional to the commutator. For instance, powers
of the dynamical variables will, in general, have a
meaning in the explicit realization of the algebra not
being defined in the algebra £ itself.

Our dynamical scheme is as follows. We have an
abstract Lie algebra £, whose elements constitute the
dynamical variables, and a concrete linear associative
algebra D, which furnishes a realization of £ by
derivations.

We note in passing that classical and quantum
mechanics, in order to be discussed, fall within this
characterization. As a matter of fact,in Sec. 3 of this
paper we examine the case for classical mechanics
while in Sec. 4 we study, from the viewpoint of this
paper, quantum mechanics.

The most important point that we want to make
clear in this paper is that considering all different
mechanics as different realizations of one and the
same algebra £, we obtain a unified apparatus to
formulate the dynamical properties of ail mechanical
systems, to introduce a general interaction picture for
dynamics, and to deduce a general method for evalu-
ating perturbations in all kinds of mechanical systems.

The entities that form the associative algebra D,
in which we obtain realizations of the Lie algebra £
by derivations, have composition laws of their own,
only part of which will reflect, in a homomorphic
manner, the composition table of £. In general, we
are able to define functions of the representatives of
the elements, additional relations that it may not be
possible to define in the original algebra £, and that
give rise to elements that do not belong to the algebra
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£. This additional content of the realization has always

a definite physical meaning, allowing the introduction
of physical degrees of freedom, and so it is not only a
matter of mathematical freedom.

A canonical transformation is a mapping which
leaves Lie-bracket relations invariant; they are essen-
tially automorphisms of the algebra. The dynamical
evolutions of the elements of the algebra are canonical
transformations. The set of all automorphisms of a
given Lie algebra constitutes the corresponding Lie
group, which,accordingly, consists of sets of canoni-
cal transformations.

All these Lie algebras contain an identity I, which
is an element whose Lie bracket with any other
element of the algebra is zero. Normalization of the
states is achieved, requiring that the identity be
mapped into the real number 1. In this paper we do
not study the mappings of the Lie-algebra elements
into the field of real numbers, since we are mostly
concerned with dynamical questions and not with
the states.

We want to add, however, that the states can be
characterized in classical and quantum mechanics in
a very similar manner. From the physical viewpoint,
the possibility to obtain this lies in the form that
Ehrenfest gave to the principle of correspondence:
the expectation values in quantum mechanics of
dynamical operators obey the same equations of
motion as the corresponding classical dynamical
variables.

3. CLASSICAL MECHANICS

The action principle that we have established as a
postulate is

84 = [6W, 4], (3.1)

where by [, ] weindicate the Lie-bracket multiplication.
In classical mechanics we have to introduce the sets
of canonical conjugate variables ¢, p,, where k =
1, 2,3,--+,n, by means of which we define the
Poisson bracket between two analytical functions U
and V of the sets g, p; that we designate by [U, V],

[, ¥Vl =2

k

U oV oU aV)
————— SEE)
(a‘Ik opy, apk an

where the subscript ¢ comes from classical mechanics.
Our action principle is translated into classical
mechanics when the Lie-bracket multiplication is
the Poisson bracket between analytic functions of
the canonical set of conjugate variables, as follows:

84 = [6W, 4] = [0W, 4], (3.3)
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that, when 4 represents the variables ¢, and p;., yield

—aoW(t, ty) _ 00W(t, t,)
op(t) 0q,(0)

which are equations of motion already obtained
before.®

To simplify notation, when we deal with classical
mechanics, the notation indicating Lie bracket will
denote the Poisson bracket, i.e., we do not write from
now on a special sign to specify that in classical
mechanics the Lie bracket is interpreted always as
the Poisson bracket. We see that the elements of the
Lie algebra for classical mechanics are represented by
analytic functions where the multiplication (,) is
simply ordinary multiplication of functions and the
Lie-bracket multiplication [, ] is the Poisson bracket
between the elements that are multiplied, with the
notation (u, v) = uv. We see quite easily that relation
(2.30) is satisfied between these two kinds of products.

As has been shown,® the temporal evolution of the
physical system is obtained from action principle
(3.1) or its equivalent (3.4). Indeed, to see this fact
we study complete variations of the action integral that
corresponds to an intrinsic variation Ag(f) of the
dynamical variables and to a change of the upper
limit of the action integral

dq (1) = » Op() » (34)

t-+ot

BW(1, 1) = f L), (1) diy

t
- [ e, donan. 33
The intrinsic variation
Aq(t)) = g(ty) — q(t)

is supposed to be zero at ¢, =¢,. To evaluate the
complete variation of the dynamical variable at time ¢,
we have to add to Ag(?) the variation due to the shift
f =t + ot of the upper limit

3.6)

q(f) = q(1) + 0614(1), (3.7
so that its complete variation is
0q(1) = Aq(t) + dt4(r). (3.8)

Now the evaluation of dWA(t, 1,) is straightforward.
We get

OW(t, 1y) = —o1(¥q(1), p(1)) + p(t)3q(r), (3.9)
where the Hamiltonian J¢(q, p) is defined, as is usually
done,by

—X =L — pqg. (3.10)

5 L. M. Garrido, J. Math. Anal. Appl. 3, 295 (1961).
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The time evaluation corresponds to

O, W(t, 1)) = —otX(q(1), p(1)), (.11
the case in which the action principle yields
YCN S U T
which are Hamilton’s equations of motion.
The variation
0 W1, 1) = p(1)dq(?) (3.13)

gives the kinematic independence of ¢(r) and p(¢),
since then

tua() = TELAO) = aq0,
—4,p(1) = % dq(t) = 0. (3.19)

So far we have done nothing new. The preceding
formulas are well known and so the postulated action
principle appears as a different way of writing the
equations of motion. Such a postulate is only meaning-
ful if we can also obtain from it other results beyond
the equations of motion. This is the case, since our
action principle yields also perturbation theory and
provides a means of writing an interaction picture for
classical mechanics. And this is what we do next.

We would like to study the system whose action
suffers the effect of a perturbing Lagrangian so that
the new action becomes

W(t, t)) = W1, tg) = W(t, to) + gW(1, t,)

=ftL‘”)(qg(t’), p,(t)) dt’, (3.15)

where
[ = L, + 2L,. (3.16)

Here f, is the time instant when the perturbation starts
out. For the study of perturbations we fix ¢, and ¢, but
change the coupling parameter g from g to g + dg,
so that

W9t 1) = dgW'(1, 1), (3.17)

where
t
W10 = | Lo, pDdn, 319
0

since in the evaluation of W¥'(s, t,) we have to use the
canonical conjugate variables evaluated at the value g
of the coupling parameter ¢, and p, in order to cal-
culate the Poisson bracket that appears in classical
mechanics. Usually, however, the Lagrangian is not
given as presented above but in terms of a set of
generalized coordinates ¢ and the time derivatives of
the same ¢. Using the definition of generalized
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momenta canonically conjugate to a given generalized
coordinate, we can eliminate the time derivative of
the coordinate § and write the Lagrangian as a
function of sets of canonical conjugate variables ¢
and p. If this variation is applied to the action principle,
we obtain

0,4, = 5g[W;g)(t, to) 4,] (3.19)

where now 4 = A4,, ie., the element of the Lie
algebra depends on the coupling parameter. To have
a clear idea of how to calculate the Poisson bracket
that appears here we work out two examples later on.
Since the perturbation is analytic in the coupling
parameter g, we make use of Taylor’s expansion

16,4 1574
A=Ay = Ao+ - 2 ogt
1 olo=1 ot 1! 8g lo=0 2! 8g® |o=o
b LA L (300
n! 6g" |o=0

where the unperturbed system is obtained for g =0
and the fully perturbed motion corresponds to g = 1.
We have to evaluate (674,)/0g" from our action
principle starting from

o4 _ [Wy, A].
dg

In this way we obtain the general interaction
picture for classical mechanics and a procedure to
evaluate perturbations in classical mechanics to any
order in the perturbing action.

The perturbation method that results from the
action principle (3.3) in classical mechanics does not
follow the same steps as the technique deduced before
for Hamiltonian’s equations of motion.*?

We now clarify most of our ideas, working out
some examples that indicate how the perturbation
techniques deduced from the action principle postu-
lated above can be applied to classical mechanics.
The action integral is defined as follows for the
unperturbed motion:

t
Wi(t, to) =LL0(QO, o, 1) dt;.

(3.21)

(3.22)

The Lagrangian may depend on time explicitly.
For simplicity, we limit ourselves to the case when
the motion of the system is properly described by a
single generalized coordinate and its time derivative,
but the principle is valid for motions with any fixed
number of generalized coordinates.

8 L. M. Garrido, Proc. Phys. Soc. (London) 76, 33 (1960).
? L. M. Garrido and F. Gascon, Proc. Phys. Soc. (London) 81,
1115 (1963).
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If we call p, = 0L(qq, §o)/0§, the canonical con-
jugate momentum, we can eliminate the time deriva-
tive g, of the coordinate and write the Lagrangian as
a function of ¢, and p,. Using the same symbol for
the new function, we get

Lo(go> Po) = Lo(qo> Go)- (3.23)
The action integral becomes
t
Wi 1) = [ Law. port)dtr, G20
to

which cannot be evaluated until the equations of
motion are solved. Let us suppose that we have
solved such equations exactly, equations correspond-
ing to the unperturbed motion, and have written their
solutions in terms of the boundary values at the time
origin

9o = 4o(t) = 96(@o(0), Po(0), 1),

Do = po(t) = po(9o(0), po(0), 1) (3.25)

By means of these expressions we can evaluate g,
and p, at any time ¢ =¢’, and consider ¢,(¢t") and
Po(t’) as boundary values, so that we are able to write
the solutions of the unperturbed equations of motion
as

qo = 4o(H) = qo(qo(t'), Po(t), t — 1),
Po = Po(1) = Po(qo(t'), Po(t)), t — 1)

Now we define derivatives with respect to the
boundary values at any instant, and evaluate expres-
sions like [0py(2)]/[0p,o(2')], which is the derivative of
a function with respect to the same function at any
other time.

(3.26)

Evidently
opy(t) =1 apy(t) =0
op(1) oq)
a%(t) a‘Io(t)
a‘10(’) opo(?) ( )

To be more concrete, we evaluate derivatives with
respect to boundary values when the unperturbed
system is the harmonic oscillator, whose Lagrangian
is

Ly(qo» Po) = $P5 — 0%4q5. (3.28)

The equation of motion yield the following solu-
tions:

o) = qo(0) cos wt + 2 o(0) sin wt,
w

Po(t) = —qp(0)w sin wt + po(0) cos wt, (3.29)
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and therefore
94,(1) ‘ apo(t) : '
— = =coso(t—1t), T—>=—wsino(t—1),
9q4(t) 9q(t) ( :
a%(t) 1 . r apo(t) !
—==—sino(t —1t), ——=cosw( —1t).
apo(t’) w apO(tl)

(3.30)

Making use of the above calculations, let us evalu-
ate the first term of the perturbation series of the
harmonic oscillator perturbed by the Lagrangian

L(q, p) = =114, (3.31)
when 7, = 0.
With the help of expansions obtained before, we
get
[ 995t

q(t) = qo(t) + E tom dty + - -

2 t
=%m+%ﬂmmmwm—0ﬁ+~-

2

2
= qo(t) — £ 1g4(0) sin wt + £ 1py(0) cos wt
w 2w

/uz

— — py(0) sin wt + + - -,

2(03 pO( )
2 pt 2

& [ 9q4(t) p

p() = po(t) ~ 2 Jo 2040

tl_l,_...

¢
= po(t) — ,u2f0 qo(ty) cos w(t, — ) dt; + -+

'’ @
= po(t) — — tg(0) cos wt — —— tpy(0) sin wt
2 2w

2

~ £ gy sin wt 4 -+, (3.32)

20

As a final application, we deduce from our action
principle the definition of the Poisson bracket intro-
duced by Peierls® for the nonrelativistic case. To
define the Poisson bracket between A(q, p) and B(g, p)
at time f=T, Peierls introduces a perturbing
Lagrangian

Ly = A(q(), p(0)o(t — T), (3.33)
where 6(¢t — T) is Dirac’s delta, and considers an
infinitesimal variation of the coupling parameter
around g = 0. He then evaluates variations corre-
sponding to two-boundary conditions, #, = c and
ty = —oo, called advanced and retarded perturba-
tions, respectively. Correspondingly, we have to
calculate the changes induced in B(g, p) that we call
respectively 6-B and 6*B. Peierls’ definition of the

# R. Peierls, Proc. Roy. Soc. (London) A214, 143 (1952).
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Poisson bracket [4, B] is

[, B] = lim 31— (6% — 57)B.
]

g->008

(3.39)

To show the validity of Peierls’ definition is quite
easy if we utilize the action principle that we have
postulated, since then

lim al (8* — 67)g(T)

5,008
= (o] " atat. syt — 7y a1 ][22
_ 2A(T), p(T)
o)
NS SIS _ 0A(g(T), p(T))
élglrg 6g(5 o)p(T) o) (3.35)
and therefore
;igaoig (&% — 5)B(a(T), p(T))
B4 B04| g

That justifies Peierls’ statement.

4. QUANTUM MECHANICS

The equations of motion of quantum mechanics
can be formulated in a form which is isomorphic to
the Poisson-bracket formulation of classical mechan-
ics, with quantities proportional to commutators
taking the place of Poisson brackets. The quantum
scheme introduces the associated algebra by means
of all “analytic functions” of operators in Hilbert
space. The expression “analytic function” is here
understood with the meaning of convergent sym-
metrized power series.

We have stated our action principle as follows:

84 = [OW, A], @.1)

where [ , ]is the Lie-bracket multiplication. In quantum
mechanics the Lie-algebra multiplication is realized
by means of commutation of operators in Hilbert
space as follows:

[0W, Al = [0W, Al, = (1/i))OWA — ASW). (4.2)

Here the associative algebra D has the product
equal to the ordinary product of operators in Hilbert
space. The Poisson-bracket multiplication is equal to
the factor (1/iA) multiplied by the commutator of
operators as specified in (4.2). The ordinary product
(,) is in quantum mechanics

(6W, A) = WA, (4.3)
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where W and A are Hilbert space operators. With
these two definitions of [, ] and of (, ),we can see
quite easily that the relation (2.30) is satisfied.

As a particular case, we can consider the time
evolution by means of the relation 6, = —Jd¢ that
yields

i (;—A = AK — XA,

) 4.4

which is the well-known Heisenberg equation of
motion in Heisenberg picture. Usually we would have
to specify the time limits in the variation of the action
as done in (2.28), the case when the action principle
becomes

0A(t) = [0W(e, ty), A(1)], 4.5)

where f, is the instant when the perturbation starts to
act.

We have stated the action principle by means of
variations of the elements of the Lie algebra, that in
quantum mechanics are operators of Hilbert space.
In this way such a principle is applicable both to
classical and to quantum mechanics. But in quantum
mechanics only, we want to transform this action
principle to another, written by means of the variation
of the transformation function as it was done by
Schwinger.?

The quantities that in quantum mechanics are
related to the physical reality are the matrix elements.
To transfer from a Heisenberg-like picture in which
we stated the action principle, to a Schrédinger-like
picture as Schwinger stated it for quantum mechanics,
we have to remark that the infinitesimal unitary
transformation of the observables given by

SA(t) = A(t) — A(D), (4.6)

At = (1 + il—héW(t, tO))A(t)(l — #6W(t, to))
(4.7)
= A(t) + [OW(t, ty), A(D)] (4.8)

induces in the eigenstates a transformation from
la) to |@) given by

(al 4 1a) = (a| A |a), (4.9
8lay = |@) — |a) = |da), (4.10)
S la) = Mh"’) |a), 4.11)

Il

where 7, is the time instant at which the state vector
|a) is evaluated.

?J. Schwinger, Phys. Rev. 91, 713 (1953).
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The variation of the transformation function is
given by the following expression if the two eigen-
vectors of the transformation function are varied
independently:

&a I b)

(ba | b) + (a | 6b)
";1%‘" SW(t,, 1) — OW(ty, 1) |b)

(4.12)

i%<a| SW(t,, 1,) Ib),

which is the action principle for quantum mechanics
as stated by Schwinger.?

Schwinger considers (4.12) as the definition of the
infinitesimal operator dW(t,,t,), from which he
deduces that the requirement that any infinitesimal
variation maintains the multiplicative composition
law of transformation functions implies the additive
composition law for the infinitesimal operators (2.25).
The fundamental dynamical principle is contained in
the postulate that there exists a class of transforma-
tion-function alterations for which the characterizing
operators 0 are obtained by appropriate variation
of a single operator W given by (2.27).

The fact that the action element has to be the
integral of the Lagrangian can be deduced in quantum
mechanics from the requirement that any infinitesimal
alteration of the transformation function maintains
the multiplicative composition law of the same
transformation functions. This conclusion, however,
is a consequence of the fact that usually, in quantum
mechanics, the dynamical Lie-algebra principle is
realized by means of an algebra of operators in
Hilbert space. We deduce immediately that the
action principle (4.12) is also valid for the calculation
of perturbations in quantum mechanics.

Indeed, if we use action principle (4.12) and apply
Taylor’s theorem

@) by = (a| Bfyoo + aig“‘ | B)yo

62
+ @ @|bomo + -+, (4.13)

where g is the coupling parameter between the two
parts of the Action

ta
Wity ) = | (L) + gL} (@19
Action principle (4.12) yields immediately
0 i ta
—(a ] b) = —(al{ dtLy(1)|b), (4.15)
6g 7 t

which is a relation valid for any value of the coupling
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constant g and, in particular, for g = 0. We have
also

2 i 0 fa
¥ @|by = 530 ft ,, dia | e)e| Ly() [dyd | b)
(4.16)
with the restriction ¢, = t; = ¢, that implies
0
= (el Ly(n) |d) = 0. (4.17)
dg

Therefore, after applying again the result (4.15),
we obtain

5
Egg (a|b)
= (4] (-;;)2 ft :"dt{ ft :adt’Ll(t’)Ll(t)+ ft t dt’Ll(t)Ll(t’)}|b>

N2 tg tq
= al(y) | o[ "armonen. b, @.18)
b b
where we have introduced the time-ordering operation
t 1., which has the property that in operating on a
product of time-labeled operators, it rearranges them
in the same order as the time sequence of their labels,
the latest one in time occurring first in the product.
In general, we have

n A\ ta ta ta
—{(a] b) = {(a|(~ f dt‘“f dt‘z’---f dr™
dg" l )= I(ﬁ) t t i

X [Ly(t")Ly(t®) - - - L™, [b)  (4.19)

that has to be evaluated for g = 0 to obtain the
expression for (a | b) in (4.13). So we have

(a| by = (a| (exp {I—; f, :“Ll(t) dt})+|b>|g=0, (4.20)

which is an expression from which we deduce the
well-known formula for the evolution operator in the
interaction picture with which we can calculate
perturbations in quantum mechanics.

Indeed, if U is the evolution operator in the inter-
action picture we have

(a| by = (al U(t,, ;) |b)ym0

and, therefore,

UG, 1,) = (exp {i f “La dt}) . (4.22)
h tp +

(4.21)

which is a very well-known expression.

5. CONCLUSION

The general structural features of dynamical
theories that we have exhibited have a profound
physical meaning. Classical and quantum dynamics
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require particular realizations (functions or operators)
as the natural realizations of the Lie algebra of dynam-
ics common to both of them. The realization that is
important for kinematics and for the physical inter-
pretation of the theory is not important for the
dynamical structure analysis. That is why we can
obtain, as we have done above, a general interaction
picture valid for any kind of mechanics.

The relative importance of the selected realization
of the kinematic part of any mechanics is illustrated,
considering the possibility of a transcription of
classical and quantum mechanics each into the
natural realization of the other.}® Doing so we see
that many of the features of the formalisms of all
kinds of mechanics become identical. From this point
of view the main difference between the two mechanics
is in the choice of the Lie bracket. The difference
between classical and quantum mechanics resides
mainly in the choice of realization for the dynamical
group. But we see also that each mechanics is very
awkward in the natural representation of the other.

As has been shown before,° there is a general form
of a Lie bracket which includes the brackets of classi-
cal and quantum mechanics as special cases. This fact
suggests the existence of more general mechanical
formalisms.

After we have examined the validity of the action
principle for classical and quantum mechanics, a
question that arises quite naturally is whether there
exists a superscheme beyond, and inclusive of, the

10 T, F. Jordan and E. C. Sudarshan, Rev. Mod. Phys. 33, 515
(1961).
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two kinds of mechanics that we have specifically
studied. The problem of the existence of a universal
superscheme has to be answered affirmatively, so far
as we know now; however, it has to be left open in
this paper.

Such a superscheme will be obtained when the
action principle is extended to yield also the variations
of the Lie-algebra elements induced when we change
the realization by derivations of the algebra. It can
be seen that action principle (2.3) gives also these
variations when éW is interpreted as the change in
the action that is induced by the change of realization.

The different realizations of the algebra will be
mapped isomorphically into a set of parameters that
have continuous or discrete values. We obtain
classical and quantum mechanics when we give to
these sets of parameters a concrete, fixed set of values.
Since the action principle is valid also for the varia-
tions of the elements of the algebra corresponding
to the variations of these sets of parameters which
determine the realization, we can obtain, in a form
compatible with the action principle, continuously or
discretely different kinds of mechanics. This process
allows us to obtain, in a quite natural way, a semi-
classical approximation to quantum mechanics, for
instance.

The principal aim of this paper has been to write
an action principle (2.3) from which an interaction
picture valid for classical and quantum mechanics
could be deduced, and from it to write down a general
procedure to evaluate perturbations in both kinds of
mechanics mentioned.
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By an improved mathematical technique, the field equations derivable from a Lagrangian which is
quadratic in the curvature components can now be studied in greater detail. The intercalation of a high-
frequency metrical plateau between the flat Minkowskian metric and the macroscopic physical world has
the consequence that the resulting perturbation equations are no longer of fourth but only of second order,
thus making a comparison with Einstein’s equations possible. The principal difference is that the free
vector of Einstein’s theory is now restricted by a divergence condition, with the result that the equations
of the electromagnetic field, expressed in terms of the vector potential, become solutions of the macro-
scopic field equations. The cases of fourfold symmetry with imaginary time and 3 + 1 symmetry with real
time are discussed. The gravitational phenomena and the second-order interaction terms, needed for the
construction of material particles, remain outside the limits of the present investigation.

1. INTRODUCTION

The great discoveries of Einstein opened a new
perspective in our speculative outlook on the phe-
nomena of nature. Although it was the phenomenon
of universal gravitation which led Einstein to his
deep-rooted analysis of the problem of geometry and
the discovery of the Riemannian nature of world
geometry, one could hardly stop here and relegate
the realm of geometry to gravitational phenomena
alone. The field equations

Ry =0, (1.1

so fundamental for the description of the gravita-
tional field, can hardly be considered as more than
the first step toward a much more comprehensive
structure. These equations put the matter tensor equal
to zero, whereas we can hardly doubt that metrical
tensor and matter tensor are of equal significance and
that it is their interaction which has to be considered
as the true battleground of physical phenomena.

Einstein arrived at the equations (1.1) with such
convincing necessity that he doubted the possibility
of making Riemannian geometry responsible for
more than purely gravitational events. But if we believe
in the fundamental significance of action principles,
then the field equations (1.1) follow from a special
choice of the basic action integral, namely the scalar
curvature R, multiplied by the volume element, and
integrated over the entire manifold.

It was Weyl! who first called attention to the fact
that a rational action integral should have invariance
not only with respect to arbitrary coordinate trans-
formations, but also with respect to the arbitrary
units in which we measure lengths (gauge invariance).

1 H. Weyl, Math. Z. 2, 384 (1918); Ann. Physik 59, 101 (1919);
Physik. Z. 22, 473 (1921).

Einstein’s action integral is dimensioned (the square
of a length), whereas we should demand that the
basic action integral become a pure number. This
means that the basic Lagrangian must depend
quadratically on the curvature components. The
general possibilities can be reduced to the choice?

L = }(RyR™ — uR¥gk, (1.2)

where p is an a priori undetermined (positive)
constant.

Here we have an action principle which promises
the possibility of erecting world geometry on a basis
of maximum rationality. We would hardly be justified
to abandon the tenets of Riemannian geometry before
we have convinced ourselves that this action principle
cannot lead to sufficiently general results.

From a purely gravitational standpoint, one would
scarcely see the necessity of modifying Einstein’s
linear invariant. Nevertheless, occasionally such
efforts were made. Buchdahl® investigated the gravita-
tional equations, which follow if Einstein’s R is
replaced by R® Gregory,* and later Pechlaner and
Sexl,® employed a linear combination of R and R2
Penney® refers to the quadratic action principle in his
investigation of the classical electron.

The principal aim of Weyl in his discussion of gauge
invariance was to find a natural place for the electro-
magnetic vector potential in the geometry of nature.
He endeavored to generalize the Riemannian basis
of geometry by demanding that the field equations
should determine the ratios of the g;; only, leaving a
free factor at every point. One can show, however,

2 C. Lanczos, Ann. Math. 39, 842 (1938).

3 H. A. Buchdahl, Nuovo Cimento 23, 141 (1962).

¢ R. C. Gregory, Phys. Rev. 72, 72 (1947).

5 E. Pechlaner and R. Sexl, Commun. Math. Phys. 2, 165 (1966).
¢ R. Penney, Phys. Rev. 137, B1385 (1965).
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that the vector potential thus introduced exists
already within a purely Riemannian framework.”
The calculations of Pauli® concerning the theory of
Weyl did not lead to promising results.

The author’s early papers® demonstrated the exist-
ence of a field vector which satisfied the potential
equation, but the identification of this vector with
the vector potential foundered on the difficulty that it
leads to a vanishing of the free electric charge. In the
later phase of his speculations he came to the realiza-
tion that no progress can be made as long as we
adhere to the purely historically motivated idea that
cosmic geometry must be erected on a flat Minkow-
skian background, considering the Riemannian line
element as nearly flat, whenever we are away from
the central core of material particles. By this assump-
tion we throw away the valuable quadratic terms of
the curvature tensor and reduce our problem to an
oversimplified structure. A much richer structure is
obtained if we assume that there exists a highly
agitated metrical plateau of such high frequency that,
for all macroscopic purposes (including even nuclear
events), only the average values of the g, are at our
disposal which thus become constants, although they
hide the existence of very high curvatures.!®

The present paper develops a mathematical treat-
ment of the quadratic action principle, which makes it
possible to draw definite conclusions concerning the
interaction between the basic plateau and the macro-
scopic superposition effects. The detailed structure of
the basic lattice eludes our present mathematical
possibilities. We can argue, however, on the basis of
symmetry considerations. They permit us to exhibit
certain general consequences of the basic hypotheses
which are interesting in themselves, although they have
to be corroborated by future research.

2. THE BASIC LAGRANGIAN

The following viewpoint will guide us in the sub-
sequent discussions of this section. A Lagrangian,
which is not more than quadratic in the action vari-
ables, leads to linear field equations. This excludes
any interaction and is thus unable to cope with the
physical facts. On the other hand, a Lagrangian of
high algebraic order would make the study of inter-
actions exceedingly difficult. Can we perhaps succeed
with a Lagrangian which is not higher than cubic in
the action variables? Such a Lagrangian would
guarantee the existence of weak and also strong

7 C. Lanczos, Rev. Mod. Phys. 29, 337 (1957).

8 W. Pauli, Physik. Z. 20, 457 (1919).

® C. Lanczos, Phys. Rev. 39, 716 (1932); 61, 713 (1942).

10 C, Lanczos, J. Math. Phys. 4, 951 (1963); 7, 316 (1966); 8, 829
(1967).
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interactions and, at the same time, facilitate the
mathematical study of the interaction terms. We will
see that such a program can actually be carried out
up to a last term, which is a determinant, and thus of
fourth rather than of third order.

We define our first action variables A¥ by putting

K = Rtgt, 2.1)
Our quadratic Lagrangian (1.2) now becomes
Ly = §(Hih, — uh®). (2.2)

The metrical tensor g, appears in the form g,g%
consistently throughout this paper. We should choose
a special notation for this quantity, but it will be
more convenient to remember that we denote this
modified tensor by g, while the usual g, becomes
gagt. In fact, we put

gt = (2.3)

and consider as our action variables the new g,
which now satisfy the auxiliary condition

lgall =1, 24

and the scalar ¢. The actual metrical tensor, to be
denoted by g , now becomes

g:;c = ewzgik- (2.5)
Similarly,
h% = Rke®/? (2.6)
and
Ry = he gl = hig,,. 2.7

We see that our new action variables have no tensor
significance, although they are closely related to tensor
quantities.

The Lagrangian (2.2) holds under the auxiliary
condition

Rik - ((p,zk - (p,aF:k - F’?k,a + FfaPZﬂ) = 0. (28)
This gives rise to a Lagrangian factor p* and the
added Lagrangian

Ly = —p"(h"gs — @ + @l + Thow — FﬂzF;:ﬁ .
(2.9)

By joining the I'%* to the previous action variables,
our Lagrangian is still of not higher than third degree.
But the freedom of varying the I'7 entails the auxiliary
condition

Tog., — e_"/2|:lk:| =0, (2.10)

m
where

|:;I1€:| = %[(ew2gim),k + (e¢/2gkm),i - (eq,/zgik),m]'
(2.11)
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Hence we have to add the further Lagrangian

L, = -uikm[rgkgam — 3(8imp + Gimi — Ziteym)
— 3&imPx + Gem®Pi — P, m)]- (2.12)

Here again the added Lagrangian does not surpass
the third degree.

In addition, however, the auxiliary condition (2.4)
gives rise to a last Lagrangian of the form

Ly = C(llgall — 1), (2.13)

which is of the fourth degree, in view of the four-
dimensional character of the space-time world.

3. THE FIELD EQUATIONS

Our final action variables become

(82> ) (i, p™), (U, u™™). 3.0

We can now carry out the variations and obtain the
basic field equations. These equations fall into two
categories. The variation with respect to the variables
in the second and third brackets do not restrict the
type of geometry we are interested in. We may call
these equations the “morphological equations,”
because they establish certain fundamental quantities
which will be helpful in the study of that particular
geometrical structure which is established by the
quadratic action principle without specifying yet that
geometry beyond its Riemannian character. The
decisive statements concerning the specific structure
of world geometry will be obtained by the variations
of ¢ and the g;;.

We tabulate the morphological equations in the
sequence of varying with respect to A%, p**, ™, I'n,
obtaining

P*8s = h§ — uhdf, (3.2

higur = @i — (P,aF?k - F?Ic,a + ngr;c‘ﬂ > (3.3)
V58am = #&imp + Gem,i — iesm)

+ i(&imPr T GemPi — GunPm)s (3.4)
U = Pl = D@ + Do + PTh. (3.5)

In absolute terms these equations have the following
significance, if we use the symbol | for covariant
differentiation:

Pilc —_ (R'ik — /uRg*ilc)e(p, (36)
Fgc' = I + %(6Zn¢,k + &lp, — gx9"), (3.7)
U = Uy = e®(R* — uRg*™®),,,. (3.8)

The notation f‘;’,; is employed for the usual definition
of the I', but now formed with respect to our
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present g, . They satisfy the condition
Iz =0, (39)
and thus
| (3.10)

We now come to the study of the specific field
equations which follow by varying the basic action
variables ¢ and g,. The variation of ¢ yields the
following scalar relation:

Plfk + (Pikrfk o %(“iakgtk),a + i(uikagik),a =0.
(3.11)

The sum of the first two terms has already invariant
significance, if we take into account Eq. (3.6):

szk + (Pikl-‘?k a = e’(R* — ”Rg*ik)]ik' (3.12)

In view of the divergence identity

(R™ — }Rg*™), = 0, (3.13)
the right-hand side becomes
(3 — weAR. (3.14)

The operator A is the usual invariant Laplace operator
(extended to four dimensions):

A= 8% (3.15)
Similarly, by (3.8), we obtain
(™) o = (), = €°(3 — WAR (3.16)
and
(u™*g,) , = (1 — 4u)AR. (3.17)

Hence, the field equation caused by the variation of
@ becomes

@—3u+1—wWAR=1}(1 -3wWAR =0, (3.18)

which yields the result (well known from earlier
treatments) that the scalar curvature R must satisfy
the scalar wave equation

AR = 0. (3.19)

This equation is lost only for the singular value
@ = %, which would lead to an unacceptable under-
determination, although exactly this singular value
plays a characteristic role in Weyl’s theory.!! Hence

(3.20)

is an exact first integral of the field equations. In a
Riemannian geometry of positive-definite signature,
this is the only possible solution of the potential
equation which is free of singularities and behaves

R = const = R,

1t Confer Ref. 7, p. 343.
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properly in infinity. Even in the indefinite Minkow-
skian case, it seems highly improbable that the source-
less eigensolutions of the scalar wave equation can
have physical significance. We thus assume that (3.20)
is not only a possible, but a necessary consequence of
the field equations and a characteristic property of
the quadratic action principle.
This result has immediately profound consequences.
It shows that the scalars ¢ and 4 are coupled by the
relation
e = R,. (3.21)

Furthermore, from (3.8) by contraction we obtain

Hgk = e(p(Rmk — HRg*mk)‘m

= e’(} — R ,g*"* =0 (3.22)
and likewise, multiplying by gk , we get
gitm = °(1 — 4wR,,, = 0. (3.23)

Hence the two vectors, which could be obtained by
contraction from the third-rank tensor y2* (symmetric
in i, k), both vanish.

We also notice from (3.8) that on the right-hand
side the term proportional to u cancels out. Hence we
can replace the definition (3.5) of u* by putting

ulh = b, — W, + KTE, + KT, . (3.24)

Finally, we vary the basic Lagrangian with respect
to g, obtaining the following set of fundamental
field equations:

—3(p"hs + phy) + Cg*
— %(umk + uaki _ u»ikx:z)’ag + %(uuﬁir\:ﬁ + uaﬂkriﬁ)
_ %(um'k + uaki — uikaz)qp’a. (325)

If this equation is multiplied on both sides by g;,, we
find that the right-hand side cancels out identically,
in consequence of the previous relations (3.22) and
(3.23). This determines the Lagrangian factor C in
the sense of
C=4ip; h,
= 1(hBh — uh®). (3.26)

4. THE PERTURBATION EQUATIONS

We cannot hope to obtain the general solution of
a highly nonlinear set of ten partial differential equa-
tions. We can follow, however, Einstein’s procedure
in the investigation of his gravitational equations.
We start with a fundamental field (which satisfies
the field equations) which we take for granted and
investigate a small perturbation of this field. This must
lead to a linear set of equations for the perturbation.

Einstein identified the basic field with the flat
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Minkowskian manifold. This is not our program. If
we assume the existence of a metrical plateau of very
high frequency, then the quadratic terms of the
Riemann tensor can cause by resonance very high
average curvatures, although the amplitudes of these
vibrations remain very small. Our field equations are
such that they allow the so-called “cosmological
equations”

Ry = ogi = e ik

(4.1)

as exact solutions. Ordinarily we would assume that
the constant o must be very small. In our highly
agitated field, however, this constant—whose dimen-
sion is the reciprocal square of a length—might
become excessively large, if measured in ordinary
units, because the order of magnitude of this con-
stant becomes proportional to

o2w?,

4.2)

where o denotes the lattice frequency and « the
amplitude of the vibrations.

In our present variables the relation (4.1) appears
in the form

— P2
hy = 0e®gy,

(4.3)

and we can easily convince ourselves that the field
equations are frivially fulfilled, because the tensor

u¥ vanishes identically. For this purpose we write
(3.24) in the form

uy = bk — 3hp,, + hTE, + W14,
+ Hha(hg? — 050Y) + IHLOh " — Sig)).
(4.4)

The substitution of (4.3) yields the vanishing of u’,
and the field equations (3.25) are satisfied, because
both the left and the right side vanish separately.

We now take the perturbation of the field equation
(3.25), i.e., a small modification of the basic solution
(4.3). We generally denote a small perturbation of a
quantity by an overbar, e.g.,

B = 8u + Zux> (4.5)

and so on, with the understanding that we neglect
quantities which are of second order in g,, . We make,
however, the further assumption that the perturbation
is small not only in amplitude, but also in frequency,
in comparison to the frequency of the original quantity.
This has the consequence that the perturbation equa-
tions need not be taken locally, but can be integrated
over a lattice cell. At this point we abandon the
principle of general covariance, because averaging
over a domain is not a covariant operation.

If we consider Eq. (4.1) in the average sense, then
the g, become consrants. The same can be said of the
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scalar ¢, in view of (3.21). This constant can be
normalized to zero which brings the basic field into
the form

hi = 08y, (4.6)
(We neglect here cosmological effects which would
cause a slow, secular change of the g;;.)

We get three types of terms: those proportional to
02, those proportional to ¢, and absolute terms which
are independent of ¢. Dimensional considerations
show us that terms of the first type are not differenti-
ated, terms of the second type are twice differentiated,
terms of the third type are four times differentiated.
In view of the symmetry of the basic solution with
respect to the four axes, the o2 terms are reduced to a
single term, proportional to g;. This term must
cancel out. If this were not the case, then our lattice
would not be able to transmit signals of low frequency.
We have the numerical constant g at our disposal
and must assume that this constant is adjusted in
such a way that the undifferentiated term propor-
tional to g;, drops out. This leaves us with the twice
differentiated terms proportional to ¢, and the four-
times-differentiated absolute terms. The latter ones
are practically negligible in comparison to the former,
in view of the largeness of o. The resulting field
equations will thus be of second order only. If we
proceed in the customary fashion by erecting the
perturbation equations on a flat space, then ¢ van-
ishes and the only remaining terms are those which
are four times differentiated. The basic reason which
made Einstein lukewarm toward the quadratic action
principle was that the resulting differential equations
became of fourth order, which did not seem to jibe
with our physical experiences. This difficulty is over-
come by the presence of the agitated metrical plateau.

The terms which are decisive for the perturbation
of the field (3.25) become on the left-hand side
(after canceling out the terms with ¢?):

=P + gy + (g™ + hg")p,]

= —ol(l — 4w)g*e"h.y + 88" (hap — 1hy8" 8ep)]

= —ol(2 — 4u)g*eg"h,y — ph,pe™s™), (4.7)
while on the right-hand side we obtain (considering
that the original u?* vanish and also the average
values of I'7; are zero):

%(auik_i_ aaki__ ﬁika),a. (48)

The g*, although locally highly agitated, are for
our purposes constants. If we multiply on both sides
by g, and take into account the fact that the perturba-
tion of Eq. (3.22) and (3.23) gives

% =0 (4.9)
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and
ﬁikagik = 0, (4.10)

we obtain on the right-hand side zero, and this yields
for the left-hand side

(2 — 8u)h,8" = 0. (4.11)

Hence we can omit the second term on the right-hand
side of (4.7) and write down our perturbation equa-
tion as follows:

_0,(2 _ 4M)g“igﬂki1¢p = %(ﬂaik_l_ a* — ﬂika)’a. (412)
The perturbation of (4.4) yields
. - . LA L3
k= B — Hp, + W0, + HeTY,,

= b, — $08"P  + 08up,mg"g".  (4.13)
Under these circumstances, we can put
ik =¥ (4.14)
where
v = B — Jog"p + og,g". (415

The condition (4.10) imposes the condition

vikgik = ﬁikgik + O'gaﬁgaﬂ — 269 =0. (4.16)

This is, in fact, in harmony with the demands of Eq.
(3.21):

h*g,.e*'t = R, 4.17D

whose perturbation gives exactly the condition (4.16).
To this has to be added the condition

g-ikgik =0, (4.18)

which is an immediate consequence of (2.4). Hence
(4.16) is reduced to

206 = hitg,, . (4.19)

We have to add the remark that the k;, appearing
on the left-hand side and the right-hand side of (4.12)
are not the same quantities. On the left 4, is multiplied
by o, but not on the right. On the left the linear
terms of the operator (2.8) are activated, while on
the right the perturbation of the highly agitated
quadratic terms of the curvature tensor become
operative, which are proportional to the large
constant o.

5. THE EINSTEIN OPERATOR

In his investigation of weak gravitational fields,
Einstein employed the field equations (1.1) in the
form of a perturbation of the flat Minkowskian
metric. Let us, for the sake of mathematical
simplicity, introduce the imaginary coordinate

x, = ict,

(5.1)
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thus reducing the basic line element to the Euclidean
normal values

8ix = O - (5.2)

Then we can dispose of the distinction between
covariant and contravariant components and write in
our present notation:

Rik = yik F:k a
=4@u + 4‘Paa e — $(Ziae + &rayi — Gina)a
(5.3)
with the auxiliary condition
82 = 0. (5.4)

The Einstein operator R; has two remarkable
properties. The first is the divergence condition

R 1
Ria.a—f aai'—o

(5.9
The second is that R, is automatically zero, if we put
B = Pix t Pri— (5.6)

P = Paa- )

The fact that the field equations (1.1) leave a free
vector undetermined was originally a great puzzle
to Einstein,!? since it appeared to him as an hmpermis-
sible underdetermination, until he realized that itis a
natural consequence of general covariance, expressing
the freedom of infinitesimal coordinate transforma-
tions. Hence the vector g, is void of physical signifi-
cance. The freedom of choosing ¢; can be utilized for
a natural normalization of our reference system.
After the normalization, the field equations of
Einstein for infinitesimal gravitational fields can be
written as follows:

1
E(pa,aéik ’

Ay = Vitaa = 0 (5.8)
with the coordinate condition
YVieu = 0, (5.9)
where
Ve = &ix — $&xadix (5.10)
or, expressed in our g,
Vie = & — £P0s . (5.11)

Let us investigate what our field equations give under
corresponding circumstances.

Our basic perturbation equation is (4.12) and we
will start with the left-hand side which, in view of
(5.2), becomes proportional to A . In this A, we
have to utilize those terms which are independent of
o. The definition (2.7) of A, shows that these terms

12 A. Einstein and M. Grossmann, Z. Math. Physik 62, 225
(1913).
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are identical with Einstein’s R;;, expressed in the form
(5.3). Had we no right-hand side, our field equations
would coincide with Einstein’s equations for infinitely
weak gravitational fields.

Now we come to the right-hand side of (4.12)
which becomes

$(Vgsp T+ Vatyi — Vitya), a0 (5.12)
with
v = h* — Lo@dy + 08y, (5.13)
where
h* = haﬂgaigﬁk = hy — 208, (5.14)
and thus
Uy = hy — 30@0; — oZy,. (5.15)

The h, which appear here originate from the
perturbation of the high-frequency lattice field. They
are caused by the quadratic terms of the tensor R,
and have the following general structure:

hyg = G(g-aﬂaaﬂik + ¢by), (5.16)

where the coefficients a,,,, and b;; are the components
of two numerical tensors, obtained by averaging
certain quadratic resonance terms over the lattice.
We have no right to dispose freely of these coefficients,
because they are determined by the structure of the
basic lattice. Since, however, that structure is beyond
our present knowledge, we can rely only on symmetry
considerations. If we assume that our lattice is
macroscopically homogeneous in all the four axes,
then we can put

hy, = 01845 + 0250, . (5.17)
Then (4.19) gives
(20 — 409)¢ = 0,89, = 0, (5.18)
and hence by (5.15) we obtain
Vi = (07 — )8y, (5.19)
to which we have to add the condition (4.9):
Vig.a = (01 = 0)ig,e = 0. (5.20)
The resulting field equations now become
¢ =0, (5.21)
Gina =0, (5.22)
Ag,=0 (5.23)

We compare these equations with Einstein’s equa-
tions (5.8) and (5.9) for infinitesimal fields. These
equations remain once more valid if the definition
(5.10) of y,, is modified to

Vik = g-;;c - ig:aazk (5.24)
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The modification of Einstein’s equations is twofold.
First, the } in Einstein’s normalization equation
(5.10) is changed to %. Second, the condition (5.9) is
no longer a matter of normalization but a consequence
of the field equations. For this reason the Einsteinian
equations have now a second solution. Previously,
the solution

& = Pix T Pri (5.25)
had no physical significance, since the free vector g,
was purely caused by coordinate transformations. In
our noncovariant theory (covariant in principle, but
made noncovariant by the existence of a strong
‘basic matter field), the vector g, is no longer free but
subject to the equation

Ag, =0 (5.26)
together with the condition
Pao = 0. (5.27)

In (5.26) we recognize the equation of the electro-
magnetic vector potential, while (5.27) is the Lorentz
condition. This condition is here again demanded by
the field equations and is not a matter of normaliza-
tion.

The change of § to £ in (5.24) has the consequence
that it annihilates the mass in Einstein’s static and
spherically symmetric solution of the gravitational
equations. This is not necessarily an absurd result.
In view of the excessive smallness of the gravitational
effects compared with the electromagnetic effects, it is
entirely plausible that the free mass should be treated
as a second-order phenomenon, which does not come
into evidence in the first approximation, particularly
if this approximation assumes complete symmetry of
the basic field with respect to the four axes.

6. THE CASE OF 3 + 1 SYMMETRY

If we pursue a purely pragmatic philosophy, then
any mathematical structure is acceptable if it fits the
sum total of observed phenomena as they exist at a
certain period of historical evolution, With such a
notion, rationalistic or aesthetic arguments can have
no place in theoretical considerations. If, on the
other hand, in experiencing the ever-widening
unification of the fundamental principles, and
particularly under the influence of Einstein’s great
discoveries, we arrive at the viewpoint that the basic
structure of nature is rationally comprehensible, then
we cannot start out with the hypothesis of an indefinite
metric which from the beginning destroys the basic
tenets of a rational geometry. It is true that the
mathematical artifice of operating with an imaginary
time makes the four coordinates apparently homo-
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geneous. Yet the very fact of the + -+ + — signature
of the Minkowskian metric indicates that the sym-
metry pattern of the physical universe is not of the
4 4 0, but of the 3 + 1 variety.

Let us assume that we do not deviate from the
rationalism of a genuinely Riemannian geometry and
operate with a line element which is positive-definite
in all the four axes. We also assume our high-
frequency metrical plateau which should satisfy the
field equations

(6.1)

at least in the macroscopic sense. This lattice need
not be locally symmetric with respect to the four axes;
and thus it is conceivable that in the macroscopic
superposition effects, the A, of the general form
(5.16) will not necessarily follow a fourfold, but a
3 + | symmetry pattern. In the present section we
want to investigate what consequences could be drawn
from such a hypothesis. Can we come to a model
which could demonstrate that a Minkowskian metric
for the perturbation is nevertheless reconcilable with a
strictly Riemannian structure of the basic plateau?
Once more we want to assume that the macro-
scopically constant g, are normalized in the sense of
(5.2). But now all our four coordinates are real. The
only change, in comparison with our previous treat-
ment, is that we abandon the too-special assumption
(5.17) and leave A4, for the time being unspecified.
However, the condition (4.14) is still valid, and hence
we can once more reduce the tensor u* to the second-
rank tensor v**. But then there exists a remarkable
isomorphism between the Einstein operator on the
left-hand side of (4.12) and the right-hand side of the
same equation. We want to exploit this similarity.
Let us denote

*
Ry = 0gi»

—20(1 — 2u) = p. (6.2)

The entire field equation (4.12) can now be written in
the following form:

_ ik
(46 + 1Pundie) — [’ ] =0, (63

if the Christoffel symbol [ ]is applied to the following
quantity:

8 = P&u + i (6.4)
with the auxiliary condition
g = 0. (6.5)

As we have seen in (5.6) and (5.7), these equations
are identically satisfied by putting

Pl + Vi = P((pi,k + @ — %%,aaik), (6.6)
(]3 = Paas (67)
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to which the condition
= (6.8)

Uiaz,a
has to be added.

The difficulty in making further progress lies in the
fact that the v,;, defined by (5.15), depend on 4,
which again is determined by the structure of the
high-frequency metrical lattice. At present we will
be satisfied with a tentative solution of Eq. (6.6),
which is interesting from the physical viewpoint,
although its real motivation would require a much
deeper investigation.

We agree that in the next set of formulas the
indices i, k, o only assume the values 1, 2, 3, while the
index 4 shall be considered separately. We now put

Vg = Qo+ Pre — 2(%:,« + 77?’4,4)‘Sik,
Uy = 77(%,4 + ‘P4,i), (6.9)
Vas = 20°@34 = 20(Qu0 + NPa0) = —29@,,.

The constant % is a numerical constant—possibly very
large—which we assume to be negative.

Now we have no difficulty in showing that Egs.
(6.8) become identical with the Maxwell vacuum
equations for the electromagnetic field strength

Fao = @i — Pri (6.10)
(the subscripts go once more from 1 to 4), usually
written in the form

F%=0. (6.11)
The constant #, taken with a negative sign, has the
significance of 1/c2,

The metrical dissonance. In the last section we have
exhibited a possible solution of the perturbation
equations which can be identified with Maxwell’s
vacuum equations for the electromagnetic field, in
spite of the fact that our metric is a genuine Rieman-
nian metric (of the signature + 4 +-+). This estab-
lishes a dissonance between the metric of the basic
plateau and the macroscopic superposition. Can we
allow such a dissonance in view of the empirically
established fact that in all differential equations of
mathematical physics the time coordinate has always
a hyperbolic and not an elliptic character? Do we
have any evidence of a four-dimensional Laplace
operator which is elliptic in all the four variables?

In order to answer this question we remark the
following. In our ordinary physical theories, we con-
sider the light velocity ¢ as a dimensioned quantity,
which can be normalized to any value we like by our
choosing the proper unit for the time z. The “second”
is a very large unit; its 1/3 - 10*® part makes the light

C. LANCZOS

velocity equal to 1. In our present considerations 7 is
a pure .number, since the fourth coordinate x, is
already normalized by the macroscopic equation
ga = Oy . Hence 7 is an absolute quantity, determined
by the structure of the metrical lattice. It is possible
that the natural unit of time is still many orders of
magnitude smaller than the usual relativistic normali-
zation. This is the case if # happens to be a very
large constant which makes the light velocity ¢ very
small. If this is the case, then even the fastest and
most rapid physical events are still very slow in
absolute units. This means that in absolute units the
universe is in a quasistationary state. Under such
circumstances the derivative 0/0x, becomes practically
negligible in comparison to the other d/dx,, which
means that the four-dimensional Laplace operator
becomes practically reduced to the usual three-
dimensional potential operator. In macroscopic
relations the operation 02/0x? becomes noticeable
only if magnified by the very large factor # which,
being negative, explains the hyperbolic character of
time in all observed phenomena of physics.

7. CONCLUSIONS

The present investigation was motivated by the
following thought. Can we, encouraged by the great
speculative victories of Einstein, apply mathematical
principles of maximum rationality to the exploration
of the physical world ? In particular, can we establish
a Riemannian geometry of maximum rationality as a
unifying basis of all physical phenomena ? A quadratic
action principle seems to fit the criterion of such
rationality, particularly if we do not abandon the
positive-definiteness of a genuine Riemannian line
element.

In carrying out this program, this paper deviates
from Einstein not only by replacing Einstein’s linear
action integral by a quadratic one—which is a pure
number and thus independent of the units in which
lengths are measured—but also by replacing the flat
field, on which the fields of material particles are
erected, by a highly agitated periodic field, macro-
scopically characterized by the cosmological equations
with a very large cosmological constant. In this case
the resulting perturbation equations are no longer
of fourth but only of second order, making a com-
parison with Einstein’s infinitesimal gravitational
equations possible. The result is that these equations
now possess a second solution, which can be correlated
to the electromagnetic field. This opens new possi-
bilities toward the understanding of the relation
between gravitational and electromagnetic phenomena.
Moreover, replacing the fourfold symmetry of the
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Minkowskian metric by a 3 4 1 symmetry of a real
metric, a model was obtained which simulates the
Minkowskian metric for the superposition field,
although the basic metric is strictly Riemannian, i.e.,
positive-definite.

The present investigation does not go beyond the
linear approximation. The second-order interaction
terms, which must be made responsible for the
construction of material particles as excited eigen-
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states of the field equations, have not been taken into
account in this paper.
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Polynomial bases for the irreducible representations of the orthogonal group, which are characterized
by the Gel'fand pattern, have been obtained. The method used is very similar to Moshinsky’s and is a
generalization from the unitary group to the orthogonal group. The Wigner coefficients of O(3),
commonly called the Clebsch-Gordan coefficients of R(3), are rederived by means of the polynomial

bases obtained in this paper.

I. INTRODUCTION

In a previous paper,! henceforth referred to as I, we
obtained normalized lowering and raising operators of
the orthogonal group in the group chain O(n) =
On—1)>---> 0(2). As a result, the Gel’fand-
Zetlin matrix elements for the generators of the
orthogonal group have been obtained. In this note we
show how to construct polynomial bases for the irre-
ducible representations of the orthogonal group as
represented by the Gel’fand pattern.

Alcaras and Ferreira® have constructed bases for
a restricted class of the irreducible representations of
the orthogonal group. They consider only the case
where the first Casimir invariant I{” is not equal to
zero. The rest are put to zero, and therefore their
representation has only a single row. In this note we
obtain representations for any Gel’fand pattern where
mg; need not be zero.

The procedure is as follows. Since we already possess
from I the normalized lowering operators, it is only
necessary to work out a polynomial for the highest
weight, in order to obtain all the other polynomials

* Present address: Department of Physics, St. Louis University,
St. Louis, Mo.

1 M. K. F. Wong, J. Math. Phys. 8, 1899 (1967); see also, S. C.
Pang and K. T. Hecht, J. Math. Phys. 8, 1233 (1967).
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in the irreducible representations of the group. For
once the highest-weight polynomial is known, the rest
can be simply obtained by applying the normalized
lowering operators successively to the highest-weight
polynomial.

It is found that the highest-weight polynomial can
be obtained by a method very similar to Moshinsky’s®
in the case of the unitary group. This is presented in
Sec. 2. In Sec. 3 we show how to obtain the Wigner
coefficients of O(3), commonly called the Clebsch—
Gordan coefficients of R(3), by means of the poly-
nomials thus obtained. Computation of some Wigner
coefficients of O(5) is now in progress.

II. CONSTRUCTION OF THE HIGHEST-
WEIGHT POLYNOMIAL P

Since the method we use to find the highest-weight
polynomial P is parallel to Moshinsky’s method in
finding the highest-weight polynomial of the unitary
group, we shall first review briefly Moshinsky’s
argument in the case of the unitary group? and then
carry over his arguments step by step into the case of
the orthogonal group.

Moshinsky defined two kinds of operators % and

8 M. Moshinsky, Nucl. Phys. 31, 384 (1962).
4 M. Moshinsky, J. Math. Phys. 4, 1128 (1963).
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He then points out that the highest-weight polynomial
should satisfy Cartan’s theorem, i.e., it should be
unique. This means that the highest-weight poly-
nomial P should satisfy both Egs. (3) and (4):

C,P=hP, C,P=0, s<¢, 3)
CLP =hP, CYP=0, u<u. @)

It is to be noted that Cy; (s < s") and C% (u < p')
are the raising generators of the unitary group corre-
sponding to the positive roots e, — e, or e, — €.
These can all be obtained by combining the » primitive
roots of U,,;, which are Cg,,. Thus, the second
parts of (3) and (4) can be further simplified to read

CuiP=0, s=1,2,+-,n—1, 39
GZ+1P=0’ M: 1,2,...’ (4/)
The equivalence of Eqs. (3) and (4) to the well-
known case of the three-dimensional rotation group
has also been pointed out by Moshinsky. In that case,

the highest-weight polynomial must satisfy Eqs. (5)
and (6), corresponding to Egs. (3) and (4):

LP=—}(j+ 9P, LP=0, )

n—1, forU,.

where
L=@G)r-p+p-=—3a-V+3 I =ip,
L,=jP, L.P=0, (6)
where

=(@xp), p=i*V, L, =L, +IL,.

We now carry over Moshinsky’s method from the
unitary group to the orthogonal group. Using the
notation of I and making use of the concept of
primitive roots, we find that the highest-weight poly-
nomial P is defined by the following equations:

For 02k + 1),

JRTP = my Py a=1,2,--,k, @)
D)., P=0, p=12,-,k—1, (8)
EY P =0. C))

For 0(2k),
J3P = my P, a=1,2,-",k, (10)
D? P =0, p=1,2-,k—1, (11)
AP =0, 12)

WONG

where the generators J? can be expressed in two dif-
ferent ways:

T 0 ]

J(1) = —i 2 _x,-2), @3
(1) lugl (x;w axuq Hua axmz) (13
. 0

Ji2) = —12 ( ou 8 Xou a—xw). (14)

The definitions of 4, D, and E are the same as in I.
Cartan’s theorem requires that P should satisty Eqgs.
(M, (8), (9), or (10), (11), (12), whether J? is expressed
by (13) or by (14). If such a polynomial can be found,
then it is unique and is therefore the correct highest-
weight polynomial.

We now show how P can be obtained. First, in the
case of O(2k), define

(13)
Using J2(1) as expressed by (13) and rewriting Eqs.
(10), (11), and (12) in terms of a, ;, we obtain

Ayt = Xoy_1,20-1 — Xoy_3,2¢ — Xay 261 — Xay,2¢-

I
21—1(1)}) zava i P = m2k,aP,
v=1 3 va
a=12-"",k (10"
11+1(1)P Zavp P = 09
=1 avpﬂ
p=1,2-,k—1, (11)
A DP =0=0=0. (12

Equation (12') means that any function of g, , satisfies
Eq. (12).

Using J2(2) as expressed by (14) and rewriting Eqs.
(10), (11), and (12) in terms of a, , again, we obtain

k

QP =3 ayy 22 P = my P,
v=1 a ay ’
a=1,2,--,k, (10"
k
£+1(2)P =zaz)v P = Oa
v=l Apt1y
p=],2’...’k_1, (11!/)
AP =0=>0 = 0. (12%)

Comparing, now, (10"), (11"), and (10"), (11”) with
the equivalent Egs. (3), (3'), and (4), (4) in the case
of the unitary group, we find that they are exactly the
same. Thatis, our J3271(1) is equivalent to Moshinsky’s
C,, and D%, is equivalent to his C,,,;. J3*1(2) is
equlvalent to his C# and D}, ,(2) is equivalent to his
Curt. Thus the arguments used by Moshinsky?® to
obtain the highest-weight polynomial of the unitary
group can be completely carried over to the case of the
orthogonal group. Moreover, the uniqueness of the
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highest-weight polynomial as characterizing an irre-
ducible representation of the group and expressed by
the determinants Al, A2 etc., is also established
following Moshinsky’s proof.

Thus, the highest-weight polynomial P, for O(2k),
is

P= (A})mzk,1—m2k,2(A}22)m2k,2_m2k,3 Ce (A}%‘.:‘.z)mzk,z’

(16)

where

A e = 2 =D Py Gy ) (A7)
(p here means permutation over 5,5, * * * §,.)

For O(2k + 1), Eqs. (7) and (8) are unchanged, i.e.,
they still go to Egs. (107), (11) and (10”), (11"), with
My, , teplaced by mg,, ,, while Eq. (9) becomes

k+1

0 )
Elzck+1(1)P = - Zavk P =0, 9
v=1 Ay i1
k+1 P
E§k+1(2)P = —Zakv P =0 (9
v=1 aak+1’v

Equations (9') and (9") can be satisfied as long as P
does not contain a, 5y Or @,y ,. In this case, a, ;4 is
defined as follows:

Ay 11 = Xoy—1 2841 — Xy opt1

SINCE Xy, 1 2x42 ANA X, 012 dO NOL exist in Ok + 1).
Similarly,

i1y = Xppi1,0v-1 — [Xopra,2y for OQ2k + 1).

Therefore, in the case of O(2k + 1), P is also ex-
pressed by

P = (Ai)m2k+1 1 Mokr1,2

X (A}g)mku,z—mku,a. . .(A%;:::Z)mwwl,h‘ (18)

It remains only for us to normalize P. This can be
done easily. We expand the function P into a poly-
nomial of x;;, and use the condition that

(X%, Xi'37) = 8,050

When 4 and /' are haif-integers, we write

M=T{1+h

and using the relations I'(1 + z) = z['(z) and I'(}) =
(m)}, we obtain the normalization factors for both
integer and half-integer eigenvalues of m;,. The pro-
cedure of writing A! = I'(1 + k) agrees with the
prescription given by Bargmann® for half-integers 4

5 V. Bargmann, Comm. Pure Appl. Math. 14, 187 (1961); Rev.
Mod. Phys. 34, 829 (1962).
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and /', since, according to Bargmann,
, 1 2r
(") == f exp [i(h' — h)$] dé
v Jo
xf P gp = 8, T(1 + h).
0

In the case of O(3), for example, we obtain for the
normalized highest-weight polynomial ' (m,, = J):

(19)

such that
(20)

1. WIGNER COEFFICIENTS OF O(3)

In this section we calculate the Wigner coefficients
of O(3) by means of the polynomials just obtained.
By applying the normalized lowering operators
obtained in 1, ie., N71L;, (J — m) times to the
normalized highest-weight polynomial ¥ in (19), we
obtain the normalized polynomial for the irreducible
representation §(J, m):

1 J1 — g%
§(J, m) = 2J_,,,J.J. J m).2J.]

1
zJ\/ﬁ[ mim! (J + m)!
x [J2i(J% — iJHI3 a3, . 1)
When two angular momenta J% and J® are

coupled together, we obtain, for the coupled angular
momentum J,

= T3 I p>aq. (22
Note that J¢¥ and J2* are not to be confused with
Ji(1) and J9(2) in Eqgs. (13) and (14). Then the highest
weight P(J,J) of the coupled angular-momentum
system satisfies the following two equations:

p.qg=12,3;

(23)
24

JyP(J, J) = JP(J, J),
ELP(J, ) = 0.
We see that (23) is satisfied if we put
P(J9 J) = 2 Amlg(l)(Jl ’ ml)‘jm)('}z’ J - ml)’ (25)
mi

where 7V and §2’ are restricted to the systems (1) and
(2), respectively. Applying now Eq. (24) to Eq. (25)
and remembering that

E; — E;(l) + E;(Q)
we obtain a recurrence relation for 4, , i.e.,

my b
A _ [

A,

(26)

iy —mp(Jy +my + 1) :|%.
Je=J+m + DU+ J —my)
27
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This equation is the same as Eq. (2.17) of Moshinsky,*
and is the same as Eq. (3.6.1) of Edmonds,® if we
write (27) as
A,
Am1—1

- _ (Ji—m + D, + my) ]E
B [(12—1+m1)<12+1—m1+1) '
Q7))

In fact 4,,, is already the Wigner coefficient

(JiTemyd — my | JT)
form = J.
. If we put my; = J, in (27’) first, and then apply the
recurrence relation (27) (J, — my) times to 4 /A, 4
we obtain

A —my
— = (-
Aml

« (Jz+J—Jl)!<2Jl)!(Jg—J+ml)!(Jl—ml)!T
[(J2+J—ml)!(Jl+m1)!(Jz—J+Jl)! '

(28)
By normalizing P(J,J) in Eq. (24), we obtain

J
S Andl =1 (29)

mi=—J1

Combining (28) and (29), we obtain
2J)0 (27 + 1)! z
an=| @)1 @I + 1) I\ e
o+ T+ J + DUy =y + )

Combining (28) and (30) we obtain 4,, .
To obtain the general Wigner coefficient for any m,
we can apply the lowering operator Fj = F}¥ 4 F1(2)

1

¢ A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, N.J., 1957).

M. K. F. WONG

to Eq. (25) and obtain a difference equation between
the Wigner coefficients, and applying the finite-dif-
ference technique used by Edmonds,® we obtain from
A, the general Wigner coefficients (J,Jym m, | Jm).
The formula so obtained agrees with that first ob-
tained by Racah.”

CONCLUSION

In conclusion, we see that our polynomial basis is a
function of x;; (i,j=1,2,---,n) for O(n), which
has dimension #%, whereas before polynomials for
O(n) have only been constructed in an n-dimensional
space, e.g., the spherical harmonics, from which only
a restricted class of the irreducible representations of
O(n) can be obtained. By enlarging the dimensionality
of the space from n to n?, we are able to obtain all the
irreducible representations of O(n). Our construction
of the highest-weight polynomial P is greatly helped
by the work of Moshinsky on the unitary group. In
this formalism one has only to solve some first-order
partial differential equations. It is remarkable that our
highest-weight polynomial for O(2k) and 02k + 1)
has the same form as the highest-weight polynomial
for the unitary group U(k). In order to gain some
confidence in the polynomial basis we have so
obtained, we have shown how to rederive the Wigner
coefficients of O(3) with the help of these normalized

polynomials,
ACKNOWLEDGMENT

This work was supported by the National Aero-
nautics and Space Administration, under Contract
No. NsG-670.

? G. Racah, Phys. Rev. 62, 438 (1942).




JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 10, NUMBER 6 JUNE 1969

Codiagonal Perturbations

H. S. GREEN
Department of Mathematical Physics, University of Adelaide, Adelaide, South Australia

AND
T. TriFrer*
Michigan State University, East Lansing, Michigan

(Received 14 November 1968)

Matrix methods are developed for calculating the eigenvalues and eigenvectors of a large class of
quantum-mechanical operators which may be regarded as perturbed forms of special-function operators.
Specific representations are obtained for the latter, including all of the importaht cases treated by Infeld
and Hull. To these are added representations for terms sufficient to generate forms corresponding to the
Mathieu equation, the Lamé equation, and others. A rapidly convergent computational scheme applic-
able to asymmetric matrices, which retains its stability even when the perturbing terms become large, is
described; and its use is illustrated by application to the operator p(1 — ¢%)p — a®q?, corresponding to the
Legendre-like form (d/dx)(1 — x*)(d/dx) + o*x®. Though group-theoretic considerations are stressed,
appropriate correlations with differential and integral equations are presented throughout.

1. INTRODUCTION

Because Schrédinger’s formulation of quantum
mechanics leads to irreducible divergent integrals for
the infinite-degree-of-freedom systems of quantum
electrodynamics, Dirac has expressed the view that it
should be regarded as a limiting case of the matrix
mechanics originally proposed by Heisenberg.! We
believe this to be true, and also feel that the algebraic
character of the latter gives it a considerable com-
putational (and philosophical) advantage, in spite of
the fact that the former has been developed much
more extensively. Accordingly, we have undertaken
to extend the matrix methods initiated by Born and
Jordan® and to develop a compatible perturbation
technique. The results are presented here, along
with certain other features which appeared while
pursuing these objectives—most notably, a system-
atic procedure for calculating specialized step
operators and a simple method of handling large
perturbations.

It is a curious historical circumstance that one of the
basic ideas on which our developments depend was
suggested by Schrodinger himself.? This is the factori-
zation concept, exploited from the differential equation
point of view by Infeld and Hull.* In its algebraic
form, it has previously been stated in a preliminary
way and used to solve a number of fundamental

* Robertson Research Fellow in Mathematical Physics at the
University of Adelaide for 196667, during which time most of this
work was completed; currently associated with the Department of
Metallurgy, Mechanics and Materials Science and the Center for
Applied Mathematics at Michigan State University.

1 P. A. M. Dirac, Nature 203, 115 (1964).

2 M. Born and P. Jordan, Elementare Quantenmechanik (Springer-
Verlag, Berlin, 1930).

3 E. Schrddinger, Proc. Roy. Irish Acad. A46, 9 (1940).

4 L. Infeld and T. E. Hull, Rev. Mod. Phys. 23, 21 (1951).

quantum-mechanical problems by Green.® Also, it
seems to have evolved from differential equation
considerations and led a separate existence in the
development of computational theory.® Another
essential concept, that of a codiagonal matrix, rep-
resents an adaptation for our purposes of a general
definition originally framed by Lanczos,” but since
used in a more specialized sense by others.® Both of
these terms will be fully explained as they appear in
subsequent sections.

Since our emphasis will be on an operator algebra
in which differential forms do not explicitly appear, it
may be helpful to display in advance the type of
differential equations which may be solved by the
codiagonal perturbation method. One example is the
Legendre-like eigenequation

bd;a — %) f; +o? 4+ a;]uz(x) —0, (L1)

which in operational form, featuring the quantum-
mechanical conjugate variables ¢ and p satisfying
gp — pq = i (with & = 1), becomes

[A — a(l)]w(l) — [P(l _ qz)p —_— oc2q2 — a(l)]w(l) — 0’
1.2

with « representing a constant of any magnitude. The
solution of this equation is used to illustrate each
part of the present work. A second example, which
should suffice to give some idea of the range of
problems which can be solved, is the special Lamé

5 H. 8. Green, Matrix Mechanics (P. Noordhoff Ltd., Groningen,
The Netherlands, 1965).

¢ J. G. F. Francis, Computer I. 4, 265, 332 (1961).

? C. Lanczos, Applied Analysis (Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1956).

8 C. Strachey and J. G. F. Francis, Computer J. 4, 168 (1961).
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eigenequation
d d
1 —wkx®)—(1 —x)—
[( *x) dx ( x) dx

-3 —k— 2Kx2)xdi — A+ al]ul(x) =0 (1.3)
x

or

[A — aPp® = [(1 — xg®){p(1 — ¢*)p + 3igp}
—ix(1 — g%qp + 24" — a1y =0, (1.4)

where « < 1 and 1 is an unrestricted constant. A

general form of this equation is one of the cases
treated in Sec. 4.

2. THE OPERATOR A =TB + A
A. General Properties

Examination of the operators given in (1.2) and
(1.4) above will establish that both are of the form

A=T(p,9B(p,q) + Alp, q). 2.1
In the first example,
B = p(1 — ¢*p,
I'=1, 2.2)
A= —a2g?,
while in the second
B =p(1 —q*)p + 3igp,
['=(1 - «xg, (2.3)

A= —ix(l —q¥qp + Ag?,

with « < 1. We shall now formulate the general
requirements to be satisfied by the operators B, I',
and A.

We may identify B as an unperturbed linear oper-
ator, and I' and A as perturbations. The operator B
is defined on an associated Hilbert space H. It is not
necessarily Hermitian, but is self-adjoint in the sense
that

B = nB*y =B, 2.4

where B* denotes the Hermitian conjugate, and #
is a positive-definite linear operator (y = 1 in both
examples cited above). The eigenvalues b of B will
then be real, and we shall suppose that they are
distinct and bounded below, but not above, so that,
suitably ordered, they form an indefinitely increasing
sequence starting with a finite value bV’ The operators
I' and A are nonsingular (or satisfy certain weaker
conditions which will be formulated later) on the
Hilbert space H; we shall suppose further that T' is
positive-definite.
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Although I' and A are not required to be self-adjoint,
we suppose that A is self-adjoint in the sense that

A= nA*g1=A, 2.5

where %’ is possibly different from #. Under these
circumstances, the eigenvalues a'¥) of 4, like those of
B, are real and form an indefinitely increasing se-
quence, starting with a finite value V. If 4" is an
operator which does not satisfy these conditions, it
will normally be possible to find a transformation

A = F4), (2.6)

such that the transformed operator A is of the required
type.

It should be pointed out that most of the develop-
ments to follow will apply to any operator 4 of the
general form described. But, because of the wealth of
important applications, we have in mind especially
the possibility that A depends, as in the above ex-
amples, on a coordinate g and the conjugate momen-
tum p or, more generally, on a number of such
coordinates and momenta.

In many of the examples, the operator B will be of
the form

B = fi(9)p* + 2ifo(9)p + f3(9)- 2.7

The “singularities’” of operators of this type are zeros
of fi(g) or poles of f,3(g). If gV and ¢ are such singu-
larities (numbers), and there is no other singularity in
the interval (¢'?, ¢'¥)), the Hilbert space will be defined
in such a way that

gV < ($,9¢) < g (2.8)
for an arbitrary normalized vector ¢, where ( , )
represents the scalar product. Because of the restric-
tions placed on I' and A, the singularities of 4 will be
identical with those of B.

B. Eigenvalues and Eigenvectors
The equation to be solved is
(TB + At = gy, 2.9

wherein it is assumed that the eigenvalues 5" and the
corresponding eigenvectors ¢ of B can be found
without approximation. Let us expand the perturbed
eigenvectors in terms of ¢ and a set of undetermined
numerical coefficients y{¥:

W = E PP,
7

Now, if we premultiply the eigenequation of B by T',

T'Bp) = T, (2.11)

and make the appropriate substitutions in (2.9), the

(2:10)
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result is
z 1/)(jl)A¢;(:i) — 2 1p(jl)(a(l) _ b(j)F)qS(j). (2_12)
i j

Applying the adjoint ¢ = ¢*9~1, and supposing
that ¢ is normalized in the usual way ($?¢ = 4,),
this becomes

S = a9 = SHT Q1)
j J
where
Ay = ¢WASD, (2.14)
Ly = ¢OT¢u, (2.15)
It remains to solve the system of equations
(A + BTy = aPy?; (216)
j

but now it is apparent that we may proceed by sepa-
rately diagonalizing the matrix B, then determining
the elements of I' and A in terms of the resulting
matrix to facilitate diagonalization of the total ex-
pression bracketed above. The perturbed eigenvalues
a'” will be obtained as a direct result, while the per-
turbed eigenvectors are determined by the p{¥.

In what follows, we develop methods of identifying
these three matrices, of calculating their elements, and
of diagonalizing them in such a way that rapid con-
vergence will occur in most cases irrespective of the
magnitude of the elements. Matrix representations of
the coordinate and momentum variables ¢ and p in
terms of the diagonal form of B are also presented, so
that the elements of I'(g,p) and A(g,p) can be
obtained without recourse to the relations (2.14) and
(2.15).

3. THE OPERATOR B
A. Eigenvalues and Eigenvectors

We consider first the problem of finding the eigen-
values and eigenvectors of the unperturbed operator
B. Here, our object will be to obtain and tabulate a
large number of exact results, using only matrix
techniques, to simplify the identification of this
operator.

The eigenvalues of any matrix which, like those of
B, are bounded below, can be found by constructing
a sequence of operators, 6, 0, - - - and corresponding
numerical multiples of the unit operator, 5%,

b® ... such that
B =B, = 0,0, + bV,
B, = 0,6, + bV,
B; = 6,0, + b9, 3.1
B = 0,0, + b9, (3.2)
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where 0; = 50} is the adjoint of §, (defined so that
B is self-adjoint), and b has its maximum value at
each step. When this is done, the jth eigenvalue of B,
in numerically ascending order, is 5. The proof is as
follows.

By using the relations (3.1) and (3.2) we may easily
establish that

0-16—2 et 6m0m cet 0201 == H(B —_ b(])). (3.3)
j=1

The left side of (3.3) can be written as n6* %716, where
6 =0, - 0,0, or, since 7 is positive-definite, as

() * (20t
its eigenvalues must therefore be nonnegative. Thus,
if b is any eigenvalue of B,

(3.4)

m

TIb—b>0

j=1

(3.5)

for all m. It follows from this set of inequalities that
the only eigenvalues less than the upper bound of the
increasing sequence bW, b2 .- are the b them-
selves. To determine the eigenvector corresponding to
b, we note that if ¢, is the vector satisfying

0,4, =0, (3.6)
and . _
¢ = 0,0, 0,_1;, 3.7)
then it follows from (3.1) and (3.2) that
qu(i) = 5162. .. 0_,-_1(9_,-9,~ + b‘“)qS,-
= b, (3.8)

This argument is a simple generalization of one
given for Hermitian operators by one of the authors
elsewhere.® It is the algebraic formulation of the
factorization concept referred to earlier. Here we wish
to draw attention to the fact that the 6,, and the B,
determined by this method are not unique. If U; is
unitary adjoint (U,U; = U,;U; = 1), we can replace
; by U;0; at any stage of the factorization, so that
B,,, is replaced by U;B;,,U;. This, of course, does not
affect the eigenvalues obtained. One particular choice
of the 6, is especially useful for setting up matrix
representations of the various operators, however:
that which makes the B; all commute with one another.

To illustrate this matter, let us return to the oper-

ator listed under (2.2),
B =p(l —¢*p, (3.9)

whose eigenvectors in the coordinate (Schrodinger’s)
representation are the Legendre polynomials. The
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singularities of this operator are ¢V = —1 and ¢'® =
1. The 6, obtained most naturally are
0, = (1 — ¢»ip, (3.10)
0, = (1 —gtp — i(j — Dg(1 —g»7%, (.11
and these are sufficient to obtain the eigenvalues
b9 = j(j — 1) (3.12)
of B. However, the
By=p(l—gp+ (G — DY —g) (.13

obtained with this choice of the #;, do not commute
with one another. On the other hand, as will be
demonstrated below, if we write

B=MM+1), (3.14)
we can use alternatively
6, = (@M + D)(M + D(M + 2)/2M + )}
X [qg + i(1 — ¢¥)p/M] (3.15)
and this will yield
Bj=(M+j— DM +)), (3.16)

which commutes with B.

In the present section, we shall generally restrict
ourselves to use of the particular 6; associated with B;
which do commute with one another. Then we shall
be able to express §; in the form

0, = (B, — b)t, (3.17)
where
=1, ée=1— p; "(3.18)
(B; — b)p = 0; (3.19)
eB; = B, e. (3.20)

The isolation of the “step’ operator ¢ allows us to
establish a representation in which the elements of
B, and 6, are

(B = DU, (3.21)
(oj)kz = (b(Hk) - b(j))%ék—(»ll’ (3.22)
(O_j)kl = (b(H” - b(j))‘}ék 141+ (3.23)

B. Matrix Representations

Let us now consider the problem of finding a matrix
representation for a linear operator B, self-adjoint in
the sense already described, and a self-adjoint operator
o which does not commute with it. In the applications,
B will be a function of one or more coordinates and
their conjugate momenta, and then ¢ may be identified
with some elementary function of the coordinates.
From B and o, we construct a sequence of linearly
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independent operators ¢, = 0, 0y, 03, * * +, by form-
ing successive commutations with B:

Bo, — 0,B = 0y¢;1 + 03C5,

Bo, — 03B = 0,013 + 05C52 + 03¢5, (3.24)

....................

Bo, — o, B = > g,¢;,
7

where the c;; are either numerical constants or
operators which commute with B; they will, for
instance, often depend on B itself. The choice of
0y, O3, * - is not unique; therefore, neither are the
coefficients ¢;. But the c; always form an almost
triangular matrix in which ¢ vanishes if j > k + 1.
They are analogous to the structure constants of a
Lie algebra; however, the ¢; and B may not always
constitute elements of such an algebra. The com-
mutators of the o; among themselves need not be
expressible in terms of the o, and need not form a
finite sequence, even when the above sequence of
equations terminates. In the applications which we
shall consider in this section, the latter sequence will,
in fact, always terminate; and since most of the above
considerations apply equally well to the general
operator A, it is this termination which in practice
distinguishes B from A.
For the Legendre operator (3.9),

B =p( —¢p,
taking o, = ¢, we find
[B, O-1] = Bq - qB
= -2l —¢*)p + 24

= 2(0; + 03), (3.25)
where 0, = —i(l — ¢%)p, and
[B, 02] = [p, —i(1 = ¢*)pl(1 — ¢)p
= 20,B. (3.26)

Suppose, in general, that the eigenvalues of the
matrix c¢;;, are AY, and that the corresponding right-
and left-eigenvectors are ¥ and §'V:

2 ey = AVED, (3.27)
3
> ej = A0 (3.28)
where we may normalize the §® so that
2 LREP =0y (3.29)
Furthermore, let ]
o =7 &0, (3.30)
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so that
o= o, (3.31)

!
Then
[B, 0,(L)] — 0.(H}‘(l)’ (3‘32)

where in general A = A (B). It follows that if () is
an eigenvector of B, corresponding to the eigenvalue
b,
B(cWyp) = ¢M(B + AD)pt)
= [BYD + AD(BO)]gWypth,

Thus, if 'Yy does not vanish, it is also an eigenvec-
tor of B, and b 4+ AV(BY) is the corresponding
eigenvalue.

There are several possibilities to be considered,
depending on the number of A) and the relations
between them. In most of the applications to be
considered, there will be only two nonvanishing A9,
Then we choose the one which is positive in the range
of eigenvalues of interest; calling this A", the relation

BUHD = pti) 4 AD(pii) (3.34)

(3.33)

is a difference equation connecting the eigenvalues in
that range. It follows from the fact that o, = 3, o' {{
is self-adjoint, that the other nonvanishing A”, which
we call 2®, is negative and has the property

B = pUi+1) 4 J@)(pU+D),

There may be a third A, A®, which vanishes.
Successive normalized eigenvectors are related by

(3.36)
(3.37)

(3.35)

0'(1)1/)”) = OCJ-T/)(J+1),
2 j+1) — j
ot )w(1+ ) —= ﬂiw(”’

where «; and f; are constants which determine the
matrix elements of ¢'* and of® in a representation in
which B is diagonal. The first eigenvector ' satisfies
0@y = 0,

This possibility is illustrated by the example B =
p(1 — g®)p. There we obtain A = 1 + (I + 4B)} and
A® =1 — (1 + 4B)}; but, as mentioned in connec-
tion with (3.14), to remove the square root we set
B = M(M + 1), so that AV =2(M + 1) and A» =
—2M. Then, since V' = (M + 1, 1) and §® =
(M, '—1)9

oW =gM+ 1) —i(1 —¢>p,
o'? =gM + i(1 — ¢*)p.

These are the recurrence relations of the Legendre
polynomials in operational form. Also,

Mo-(l) — a(l)(M + 1),
Ma(z) — G(2)(M — 1)'

(3.38)
(3.39)

(3.40)
(3.41)
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The introduction of an operator like M, whose
eigenvalues differ by unity, is a device which in many
instances simplifies the algebra.

If there are more than two nonvanishing A,
including two which are positive, suppose these to be
A and A9, It may happen that the corresponding
oV and ¢'® are connected by a relation of the type

o" = g®mg(B). (3.42)

In this case, it is convenient to introduce an operator
o such that

oD = gnsV(B), (3.43)
o = gns9(B), (3.44)
Bo = o[B + A(B)]. (3.45)

The operator ¢ then plays the part of ¢!V in the pre-
vious discussion, and 4 plays the part of AV, However,
it may happen that there is no relation of the type
mentioned between ¢'¥) and ¢/¥; a simple example
arises if

B = p; + p} + aq} + 279,19, + Bq3, (3.46)

where {q,, p1] = [4., p.] = i and other commutators
of the ¢’s and p’s vanish. The most direct way of
dealing with this possibility is to introduce a product
representation, in which the eigenvectors of B are
denoted by %", with

O'(l)’l/)(j’k) — a(jl),‘p(j+1,k)’ (347)

} gDtk = D) (D), (3.48)
ince

oWyt = o B (+D), (3.49)

W@y = 0, (3.50)

oWg® is an operator which both commutes with B

and can be expressed as a function of B,
o Vg2 =f(B). (3'51)

The first eigenvalue of B is determined from the con-
dition ¢Wg@yl) = 0, which yields

16w = 0;

subsequent eigenvalues can then be obtained by using
the relation (3.34),

BUHD = pUi) 4 (D),

(3.52)

To illustrate the method of determining the function
f(B), we consider again the example

B=p(l—¢p=MHM+1),
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noting that
o'Wo'? = g(M + 1)o® — i(1 — g*)pa'?
= qo®M — i(1 — g¥)pa®
=M — (1 — MM + 1)
+ (= gp(1 — gp

= M2 (3.53)

According to the prescription f(b) = 0, the least
eigenvalue of M must be zero, which means that the
least eigenvalue of B must be zero also.

To determine the matrix elements of ¢ and 6%,
we also need a relation between ¢'® and the adjoint
v of ¢V, It is clear that such a relation must exist,
for it is easy to show that B commutes with ¢'VV),
which must therefore be a function of B, in view of
our hypothesis that B is nondegenerate. Thus, we

write
D = og(B),

where g(B) is a function which, like f(B), is easily
calculated. Now,

WGV = f(B)g(B)

(3.54)

= [AV(M — D], (3.55)
say, and
3o = f(B)/g(B)
= [A®(M — D] (3.56)

Clearly, if € is the step operator introduced in Eqgs.
(3.17)—(3.20),

oV = fO(M — 1)é = hV(M),
o® = hD(M — 1) = h(M)e.

(3.57)
(3.58)

The matrix elements of ¢'¥ and ¢!, in the representa-
tion in which B is diagonal, are given by

(0 = 8,k (M),

(62),, = 6,1, 4P (M),

(3.59)
(3.60)

where m¥) = mV 4 j — 1 is the jth eigenvalue of M.
Matrix elements of the other ¢, if any, can be
inferred in a similar way. Since the o, = Y, ¢! are
expressed in terms of the ¢?, their matrix elements are
also readily available.

We again illustrate the procedure with the help of
the example B = p(l — ¢*)p. In this particular in-
stance the adjoint is simply the Hermitian conjugate
and we have

W = (M + g +ip(1 — g%
=M — Dg +i(1 —g*p.
To shift the multiplier (M — 1) to a position on the

(3.61)
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right of the term in which it occurs, we use

g =0, = (cV + o¥)/2M + 1),
(M — g = [6WM + o2(M — 2)]/2M + 1),
—i(l —¢®)p =0,

= [6WM — e®(M + DM + 1), (3.62)
whence
U = g@Q2M — 1)]2M + 1). (3.63)
Thus, if B = M(M +.1),
KY(M) = M[M + D]CM + ), (3.64)
RO(M) = M[2M + 3)/2M + DI (3.65)

C. Exactly Soluble Problems

Most operators of the type B(g, p), characterized
by the fact that they can be diagonalized exactly, are
connected with the hypergeometric differential equa-
tion or one of its limiting forms. Listed below are
results obtained by the preceding method for a variety
of operators of this type, which are bounded below
but unbounded above. Many additional results can be
obtained from them by one or the other of two
transformations, which we shall first describe.

The first type includes canonical transformations of
the coordinate and momentum. If

0 = 0(9),
P =3[0 @I + 3Q' (@I,

where Q is any function with a derivative Q’, then
[Q, P] = i follows from [g, p] = i. Some of the more
frequently used transformations are:

(3.66)
(3.67)

Q=pq+y, (3.68)
0=, (3.69)
Q=@ —»lq—17». (3.70)

If the operator B whose eigenvalues are required
involves a transcendental function Q(g), such as

Q = cos (Bq + ), (3.71)
Q = exp (—f9), (3.72)

then an obvious first step will be to eliminate this
function by the appropriate canonical transformation.
One or two examples are given below, but the list is
not intended to be exhaustive.

The second type of transformation which can be
usefully employed includes unitary and similarity
transformations on B itself:

BB = SBS-L. (3.73)
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There is a corresponding transformation,

PP > ) = Syt (3.74)
of the eigenvectors of B. An arbitrary nonsingular §
can be resolved into two factors, one of which is
unitary-adjoint and the other self-adjoint. If § is
unitary-adjoint (SS = 1), the form of # is not
affected by the transformation, i.e., B = nB*y71;
but if S is self-adjoint,

n=n =S (3.75)

In the following list of exactly soluble examples, we
tabulate (a) the operator B, its singularities ¢V and
g'?, and 7; (b) the relation between B and M, whose
eigenvalues differ by an integer; (c) appropriate forms
of ¢, and o, (63 = 1, wherever it is needed), and their
relation to the step operators ¢’ and o®; (d) the
functions f(B) and g(B), which determine the matrix
elements of ¢V and ¢¥; and (e) the jth eigenvalue
b9 of B.

1. The Harmonic Oscillator

B=p+¢, n=1,
g = —o, ¢¥ = oo, (3.76a)
B =2M, (3.76b)
0, =q = o'V + o),
0y = ~ip = }(oV — o®),  (3.76¢)
fB)=2M—1, gB)=1,  (376d)
b =25 — 1. (3.76¢)

2. The Three- Dimensional Oscillator
B=p"+4q+pq7% n=1,

¢ =0, ¢% =, (3.77a)
B =2M, (3.77b)

0, = qz — %(O‘(l) + 0.(2)) + M,
o, = =2igp — 1 =0V —g®  (3.77¢)
fB)=4f+1—4M—172% gB) =1, (3.77d)
b = 2j + (48 + 1), (3.77¢)

The different range (¢'V, ¢'®) explains why the eigen-
values differ from those obtained for the simple os-
cillator, even when g = 0.

3. Generalized Associated Legendre Harmonics

B=(1—-¢p+ (B + 2y9)/(1 — g7,

77 = (1 - qz)’
gv = —1, g =1, (3.78a)
B=MM+1), (3.78b)
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oy =g = (6" + o®)2M + 1)
— y[M(M + DI,
gy = —i(l —¢)p = [6P(M + 1) — e M]

x M + 1)1, (3.78)
JB) =M+ /M — (B + 1),
2(B) = M — DJQM + 1), (3.784)
b9 = (mD + j — 1)(m® + j), (3.78¢)
where mM2 4+ 92 mV2 = g 4 |,

4. Hypergeometric Harmonics

B = p(1 — ¢*)p + 2i(u + »q)p,

n={1=q) "1 + g)"*,
gV = —1, ¢® =1, (3.79)
B=(M—n(M+v+1), (3.79b)

g, =q = (0" + "M + 1) — w[MM + 1)]7,
oy = —i(l — ¢*)p
= [6™(M — ») — a®(M + v + D]CM + 1)?
+ (M = 9)(M + v + DIMM + DI,
(3.79¢)
f(B) = M + w7 M* — it — 5",
g(B) = (2M — /2M + 1), (3.79d)
b =(m® +j 4+ v)(m™ +j—v—1), (3.7%)
where mi1)2 + /1,272/”1(1)2 = /"2 + 22,
This operator is related to that listed under Ex-
ample 3 above by a similarity transformation, but is
listed independently because of its wide applications.

The relations between the constants f, ¥, u, and » are
obviously

B=u*+v, y=p

5. Coulomb Harmonics

B=gp*+Bq+ret n=gy,
g =0, ¢® = oo, (3.80a)
B =28M, (3.80b)
0 =¢q = 3(a" + o®)/f + M|B,
0y = —igp = }(o!V — o), (3.80c)
SB)= MM ~1) -y, gB) =1, (3.80d)
b = B12j — 1 + (4y + D}, (3.80¢)
If we set y = I(I + 1), then
B9 =26 + .
6. The Hydrogen Atom
B =p*— 20t + yq2, =1,
gV =0, ¢® = . (3.81a)
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This example will serve to illustrate the type of
procedure required when the discrete eigenvalues are
bounded above. Then the discrete eigenvectors of B’
do not form a complete set and are unsuitable as a
basis for a matrix representation. We first notice that
there is no difficulty in finding the eigenvalues and
eigenvectors of B’ by the factorization method. If we
set y = I(I 4+ 1), so that / is the angular momentum,
we see the equations

B' = B, = 0}6, + b,
B, = 0,07 + b = 0?+195+1 + pltY
to be satisfied by taking
b, =p+ il +j)g* —ix/(+)),
B =B + (2 +))(j = g™,
b)) = _az/([ +j)2,
But, as the B; do not commute with one another, this
decomposition is not readily adapted to calculating
matrix elements. We therefore consider the trans-
formation
Q=uq, P=ypp,
which transforms the eigenvalue equation
By = —u*yp
to
(QP* + y0 + Q)y = Qu/p)y.

The operator B = QP+ yQ~* 4+ Q, whose eigen-
values are related to those of B’ and whose eigen-
vectors (with the coordinate Q) are the same as those
of B', is of the form considered in Example 5 above,
with § = 1. We infer that

B = —(«/M),

since the operators on the two sides of this equation,
applied to the typical eigenvector y, yield the same
eigenvalue —u? Because of the coordinate trans-
formation involved, the operator M is here different
from that used in Example 5. We can use the same
matrix representation, however, on the understanc_ling
that B’ is not diagonal, except for a single element
corresponding to the eigenvalue — (a/u)?. Finally,

fBY=MM -1 —IKI+1), gB)=1, (3.81d)
b = —o*[(I + j) (3.81e)

(3.81b)

7. Confluent Hypergeometric Harmonics

B = qp® + 2i(fq + v)p, 1 = q"*Pe*,
(3.82a)
(3.82b)

gV =0, ¢? = oo,
B = 28M,
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o1 =q =3(0" + o®)[f + (M —»)[B,

0, = —igp = —c'® — M, (3.82¢)
fBy=MM —-2v—1), gB)=1, (3.82d)
b = 2B(j + 2). (3.82¢)
8. Associated Legendre Harmonics
B=(1+¢yp+4ull +¢%, n=(~1+¢
gV = —o0, ¢ = oo, (3.83a)
B=4M(M + 1), (3.83b)
o= (1 +4¢)7
— %(0-(1) + 0'(2))(2M + 1)—1 + %
+ dulM(M + D], (3.83¢)
Oy =1iqp + %

= [6WM + o®(M + D]CM + D1 + |
— uMM + DI,
SB) = (M + 1)* + p2/(M + 1)* = 2u — £,
g(B) = 2M + 3)/2M + 1),
b — 4(] + m — 1)(1 + m(l))’
where (m™Y + 1)2 + @2/(mD + 12 = 2u + L.

(3.83d)
(3.83e)

9. Particle in a Box

B = p* + 4utan’q, n =1,
gV = —n[2, ¢ = =2, (3.84a)
The transformation

Q =tang, P = §(cos’qp + pcos’q)
yields
B=(1+Q9)P¥1 + 0% + 1 + 4uQ?,

and, with a similarity transformation, reduces this

problem to that considered in Example 8 above. Thus,

B=(2M + 1), (3.84b)
o, = cos?yq,
0y = isingcosq p — sin*q + 1, (3.84¢)

SB) = (M + 1 + p*[(M + 1) — 2u — §,

g(B) = QM + 3)/2M + 1), (3.84d)
b = 4(j + mV — 1)(j + mW), (3.84e)
Where (m(l) + 1)2 + M2/(m(1) + 1)2 - ZM + i_.
10. Kummer Harmonics
B =g¢p* + f*q" — 229, 7 =g,
gV =0, ¢® = co. (3.85a)

This case resembles Example 6 in that it is not suited as
it stands for defining a complete matrix representation,
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B being a decreasing function of M:
B = M(1 — M),
o, =qt= (o-(!) + 0—(2))/(1 —2M)
— afM(1 — M),
0y = ip = [oW(1 — M) — c®M]/(1 — 2M)
— «[M(1 — M),
J(B) = o®(1 — M)* — f2,
g(B) = 3 — 2M)[(1 — 2M),
B = (m® + 1 — j)(j — mW),

where (1 — mV)? = %/,

(3.85b)

(3.850)

(3.85d)
(3.85¢)

11. Coupled Harmonic Oscillators

B =p} + pi + (1 + o)q} + 2Bq:9, + (1 — &)g3,

(1) (2) (2)

= 1; qil)=Q2 =—®, g =(gy = X.

(3.86a)
This example, involving two degrees of freedom, is
easily generalized to any number of degrees of free-
dom; thus it is especially useful in dealing with quantal
systems containing several particles.®
B =2(1 + M, +2(1 — p)iM,,
where y = (a2 + %)%,

0, = gy = oW — @) + (o — o),
03 = —ipy = B(L + Yo + o®)
+ Bl — P)E(0® 4 o),
03 = gs = (& = Y)(o® ~ o)
+ (@ + P ~ o),
oy = —ipy = (& = Y)(1 + PR(e® + o)
+ (@ + 9 = PHe® + oW), (3.86c)
J(B) = (M, — D44 (L + )], g(B) =1,
(3.86d)
S(B) = (M; — D[4 — )], g(B) =1,
b9 = (2j — DA + pt + 2k — DA ~ Pk
(3.86¢)

(3.86b)

12, Cylindrical Harmonics

B= —qpgp +¢*, 7 =g,
q(l) =0, q(z) = 00, (3.873)
B = M, (3.87b)

oy = g7 = $oW/IL(L + D] + 3oL — DL,
0y = —ip = JaW/(L + 1) = $o/(L — 1),

(3.87¢)
(3.87d)
(3.87¢)

fBy=LL-1), gB)=1,
b = j2,

% H. S. Green, Nucl. Phys. 54, 505; 57, 483 (1964).
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This example is unusual because both

oW = (gL — ip)(L + 1)
and
a® = (¢ L+ ip)(L — )

contain a factor, depending on B only, without which
the equation f(b'V) = 0 would have no solution. The
possibility of introducing such a factor exists only
because 1! = o'¥), and there is a vector ¢V for
which o®@y1) = 0, while aWp@ 2 0,

4. THE OPERATORS T' AND A
A. Matrix Representation

Our discussion of the operator B has yielded a
number of independent operators, the ¢, and B
itself, for which matrix elements can be written down
at once. In most of the examples, there were just two
o'V, or three—including a ¢'® which was simply a
constant multiple of the unit operator. Usually we were
able to express B in terms of a “diagonal” operator
M, and ¢ and o® in terms of M and the step
operators € and é:

B = B(M), @.1)
oV = (M), 4.2)
oD = KO (M)e. 4.3)

The operator € is represented by the matrix €, =
Bk, € DY €5 = 8;,0, and M by My, = m\6,,
where mt) = m® +j — 1.

We wish to consider next the determination of the
matrix elements of I' and A as a preliminary step
towards the diagonalization of 4 = I'B 4 A. Since
the same considerations will apply to both perturba-
tion matrices (as well as to many other matrices of
similar type), let us agree to feature A in thediscussion.

We denote by Al® the diagonal matrix whose di-
agonal elements are identical with those of A. Similarly
we denote by AMe!, where / is any positive integer,
the matrix with elements identical with those of A in
the /th diagonal above the center, and zero elsewhere.
Finally, €A denotes the matrix with elements iden-
tical with those of A in the /th diagonal below the
center, and zero elsewhere. Then A is expressed in the
form

A= A(O) + Z(élA(-l) + Amel). (4.4)

=1

Now we shall assume that
A® = AGY(M), (4.5)

There is a sense in which every matrix A can be repre-
sented in this way; all that is required is to define the
function A so that AWM + j— 1) is the jth
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element in the /th diagonal from the center. However,
as our notation suggests, we shall require that A (m)
be an analytic function of its argument, with a well-
defined asymptotic behavior as m — co. When this
requirement is met, we will say that A has codiagonal
form. A codiagonal perturbation can also be repre-
sented entirely in terms of M, ¢, and ¢/®):

A= E(O) + %(U(I)IE(—I) + E(l)o,(2)l)’ (4.6)
=1
with
A(—l) — E(-—l)(M)h(l)(M)
X KOG + 1)+ - KO + 1= 1), (47)

A = E”)(M)hm(M)
X KM + 1)« - MM + 1 = 1).
A® = EO(M),

4.8)
4.9
For convenience we note here that
hO(M — 1) = [f(B)g(B)]:, (4.10)
"M — 1) = [f(B)/g(B)E, (4.11)

where the functions f(B) and g(B) are those listed in
the previous section.

We may therefore define our first task as that of
finding the explicit form of the right side of (4.6).
When this has been done, the A" are given by (4.7)-
(4.9) and we can write down the matrix elements of
A in the form

Ay =APo, + gl(AL‘”é,-kH + AP8,,00), (4.12)

A‘,-” = APm™ 4+ j — 1). (4.13)

In the examples we shall consider, only a small
number of the AY(M) will be different from zero.
Usually the nonvanishing diagonals are AV, A©®,
and AW or A2, A and A®); the matrix Ay will
then have tridiagonal form. But the methods we will
develop are by no means limited to such simple
instances.

We illustrate the procedure with the initial example
given in Eqgs. (1.2) and (2.2):

A =p(l —g¥)p — 2*¢>
To obtain the matrix elements of this operator, which
commonly arises through the use of spheroidal co-
ordinates in quantum mechanics, we begin by noting
that B = p(1 — g%p contains the singularities of the
operator in the range g = —1 to ¢'¥ = 1, which is
usually of physical interest, and that this is one of the

exactly diagonalizable operators considered in the
preceding section. From the discussion of this operator
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in the text, or by specialization from Example 3 listed
there, we find

g = (60 + a®)/2M + 1),
q* = o M2[2M + D(2M + 3)]7 + [2M + 3)
X 2M + 50?4 cWe@[2M + 1)
x 2M — D! + c®6V[2M + 1)

(4.14)

x (2M + 3)]7, (4.15)
and
EO(M) = (M + D[2M + D/2M + 3B, (4.16)
HA(M) = (M + DIQ2M + 3/2M + DI, (4.17)
so that
o) = (M + 1)2, (4.18)
oW = eeM? = M2, (4.19)
since the jth eigenvalue of M is
m? =j—1 (4.20)

Thus we have
A® = —2M2[2M + DM — D]
+ (M + 1M + DM + 3)]7?
= —a2(2M? + 2M — D[2M — DM + 3)],

4.21)
ECD = —2[QM + )M + )] (4.22)
E® = —2[2M + )M + 5],  (4.23)

while all other E*? vanish. Also,
AR = — (M 4+ 1) (M + 2)
x [(2M + DM + 32Q2M + 5], (4.24)
A® = —o2(M + 1)(M +2)
X [2M + DM + 322M + 5)73.  (4.25)

It will be seen that A is represented by a symmetric
matrix, a consequence of the fact that it is self-
adjoint (Hermitian, with n = 1):
A= AP0 + ATV0, 5 + AP 8510, (4.26)
AP = —a®(2)* — 2j = DI2j — (2 + DI,
4.27)
Ag——z) — A(].Z)
= —o%(j + D2 — DQ2j + D*
x (2j + M. (4.28)
B. Further Examples

In listing a few additional examples we will include
those which are particularly simple, yet have a wide
range of applications in quantum mechanics and other



CODIAGONAL PERTURBATIONS

branches of mathematical physics. We shall not
display detailed calculations, which are similar to
those of the example just considered.

() 4=(»1—rg)p(l =g

+ 2i(x + fgHgp + Ag*. (4.29)

Let us define » and p by
Wl —)y=a+ 4, (4.30)
p(l — k) = ax + B, (4.31)

so that the operator can be written in the form

= (1 — xg)B — 2ip(1 — @)qp + Ig?, (4.32)
B = p(1 — ¢%p + 2ivgp. (4.33)
Thus
I'=1— kg, (4.34)
A = =2ip(1 — g*)gp + A¢% (4.35)

In order that I" should be nonsingular and positive-
definite on the Hilbert space of B, we must have « < 1.
Given an operator of similar form but with « > 1, we
should apply the transformation Q = xiq, P = «ip.
Here, the operator A is not bounded; but as the
asymptotic increase with M is of lower order than that
of I'B, this is not objectionable.

The operator B is of the type listed under Example
4 in the previous section (with u = 0). We find

q2 — (qZ)(O) + €2(q2)(—2) + (qZ)(2)€2, (436)

—i(1 — g¥gp = [—i(1 — g¥)gp]®

+ &[—i(1 — ghgpl®
+ [—i(l — ¢Pgp]®e?, (4.37)
where
(P)© =1 — (2 + PHl@M — H2M + )],

(4.38)
() = (¢®)? = R(M + 1), (4.39)

[—i(1 — g)gp)® = =40 + 1) — @ + 3)0* — D

x [@QM — D2M + 3], (4.40)
[—i(l - g)gp)~® = (M = MR(M + 1), (44])
[—i(1 — @9gpl® = (M + » + YRM + 1), (4.42)

and

R(M) — { (M2 - 1’2)[(M + 1)2 - ,VZ]
M — DM + 1M + 3)

The jth eigenvalue of M is m') = v + j — 1, and
the matrix elements of I" and A are therefore

D =T00, + 520,00+ T8, (4.44)
Ap=AP6, + A28, 00 + AP, 0, (4.45)

}% . (4.43)
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where
PP =1 =4 + 30" = DI+ = HO +) + DI
(4.46)
02 =T = R(» + J), (4.47)

AP =14 —30* =D — p(» + })
— P+ DO = DA +j =D+ + DI
(4.48)

AS® = [2p(j = 1) + 2IR(» + j), (4.49)

For k = 0 and p = 0, the operator A4 is connected
with the associated spheroidal and Mathieu harmonics.
The applications of these harmonics are described in
the tables of spheroidal and associated spheroidal
(including Mathieu) wavefunctions published by
Flammer!® and by Stratton, Morse, Chu, Little, and
Corbato.’* The method of computation used for these
tables is equivalent to the diagonalization of the
symmetric matrix to which 4;, reduces when « = p =
0, and the calculations could have been much simplified
by the use of standard techniques available for this
process.

When « 5% 0 and p = 4«, v = §, the operator re-
duces to the one used as an example in Eqgs. (1.4) and
(2.3); it is connected with ellipsoidal or Lamé har-
monics, which also have many physical applications.
Particular forms of the eigenvalue problem arise in
connection with Wick’s equation and the Bethe-
Salpeter equation in relativistic quantum mechanics.

@ A=Q0—xqpp(l —¢*p
+ 2i(ox + Bg + y¢?) + Aq- (4.51)
If we define u, v, and p by

wl — )y =o+ «f+ 7, (4.52)
(1 — %) = ko + B + «y, (4.53)
p=p~—a, (4.54)
this operator assumes the form
A= (1—xq)B—2ip(l —q*p + Aq, (4.55)
where
B=p(l —¢%p + 2i(u +rqp.  (4.56)
Here
I'=1— «gq, 4.57)
A= —2ip(1 —g¥p + Aq, (4.58)

10 C. Flammer, Spheroidal Wave Functions (Stanford University
Press, Palo Alto, Calif., 1957).

i1 J. A. Stratton, P. M. Morse, L. J. Chu, J. D. C. Little, and F.
J. Corbato, Spheroidal Wave Functions (John Wiley & Sons, Inc.,
New York, 1956).
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and we must have —1 < « < 1if I is to be nonsingu-
lar on the Hilbert space defined by B.

The operator B is now precisely that discussed
under Example 4 in the previous section, and we have
immediately

q= q(o) + gq(—l) + q(l)e, (4_59)
—i(l — g)p = [—i(l — g)p]® + &l—i(l — g

+ [—il — g)p]l™ (4.60)
where
g = w[MM + DI, (4.61)
g =gV = S(M + 1), (4.62)
[—i(1 — ¢*)p]”
= pu(M — (M + » + DIMM + D], (4.63)
[—i(1 — g)p]™ = (M — »)S(M + 1), (4.64)
[—i(1 — ¢»pl'V = —(M + v + 2)S(M + 1), (4.65)
and .
M2 LIV e R R
S(M) = [ (;-A: — DM -l: 1) ] - (469

The jth eigenvalue of Mis m®? = » + j — 1 (if v > p;
otherwise u + j 4+ 1), and so we obtain the matrix
elements

[ =T8, + T8V, + TP8,,1., (4.67)
A=A, + A6, 0 + AMS,5,, (4.68)
where
PP =1— k[l +j—DE+HI, (469
MY =TW = —kS( + j), (4.70)
AP = ul2p(j — D2y + j) + W]
X [(»+j—DE+HI 471)
AV = [2p(j — D+ S +j), (472)
AP =202y + j) + AS(r + ). (4.73)
(3) A=(q+ gp*+2i(Bg* + vg + )p + Aq.
(4.74)
Let us set
p=y—(B+ (4.75)
so that
= (g + 1)B + iq + 2iugp, (4.76)
B = qp* + 2i(Bq + v)p; 4.77)
and
'=q+1, (4.78)
A = Ag + 2iugp. 4.79

Again, though A is unbounded, its increase with M
is of lower order than that of I'B and gives rise to no
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difficulty. The operator B is listed under Example 7
in the previous section, which shows that

g =g + &b 4 qWe, (4.80)
igp = (igp)'” + (iqp)Ve, (4.81)

where
g = (M — »)/B, (4.82)
gV =gV = (M + )M — 2)1}/B, (4.83)
(igp)® = M (4.84)
(igp)® = [(M + 1)(M — )} (4.85)

The jth eigenvalue of M is 2v 4 j (assuming » > —$%)
and the matrix elements of I' and A are, therefore,

F:"k = Fgmdilc + Fl(c-l)aa'k+l + F§1)6i+lk’ (486)

Ay = A((z)')aik + A;c_l)‘sjkﬂ + AP, (4.87)
where

T =1+ (v +j)/8, (4.88)

DY = TP = 3j2v + j + DIYB,  (4.89)

AP =2 + IB + 2u(2v +j),  (4.90)

AW =AY = (348 + 202+ + DI (4.91)

C. Matrix Reduction

The calculation of the matrix elements of I' and A
allows us to write down the eigenvalue equation

zAakw;c” Z(b(k)r"k + A]k)w(l) — a(l)w(l),
k

with explicitly numerical coefficients, and we wish
next to discuss the solution of this equation. All
numerical methods depend on the reduction of this
infinite set to a finite set of equations, and our first
concern will be to examine the effect of truncation on
the eigenvalue a'¥ and its associated eigenvector {".

As I is a nonsingular operator, the above equation
can be written as

b(a) (l) E(a(l)P:—kl

Ej =3T3,

If b is a number less than the lower bound bV of B,
we can also write
JW‘,” _j(b(:i) _ b(o))—l

X Z(a(”I‘,_,c1 ~ E; — b“’)é,k)w(”. (4.94)

Expvd, (492

(4.93)

The general requirements on B, I', and A which were
stated in Sec. 2 can now be formulated more explicitly
by demanding that the operators M(B — b')-1["1
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and M(B — b'®)1I'1A should be bounded. When
these conditions are met, we can show that
jvi <1a%16 + e, (4.95)

where d and e are positive numbers. Then, if we define
the vector dyp‘¥ by

P =9, n<j<n+m, (496
P =0, j<n or j>n+m, (497)

it follows that
I8y = Sy, p)t < O(mn7}),  (4.98)

independently of the value of m. Thus, truncation of
Aj; at the nth row and column will result in errors in
a® and ' less than O(n~?). It should be stressed
that this theoretical estimate of the error can be
reduced in order of magnitude and made precise in
magnitude in most practical applications. Another
point worth noticing is that the value of » required
to ensure satisfactory accuracy will normally depend
onl.

Our problem is now reduced to the diagonalization
of the n-dimensional matrix A, . If 4,, is symmetric,
we might well regard this as a trivial matter, since
there is a variety of fast and accurate computer pro-
grams in common use which is well suited to this
purpose. It is true that, since I'24T? is self-adjoint,
our matrix can always be reduced to symmetric form;
however, this is not always the most convenient form
of the matrix, even when I' = l-—as we have already
seen, for instance, when the discrete eigenvectors do
not form a complete set. The problem of diagonalizing
an asymmetric matrix, even when the eigenvalues are
real, is regarded as one of the most difficult in
numerical analysis. We therefore pursue the matter in
this section, showing that an extension of the factori-
zation method is well adapted to the problem. The
speed and accuracy of the method is so good that it is
even competitive with existing methods of diagonal-
izing symmetric matrices.

The principles of the method have been described
by Francis, and employ what he calls the “QR trans-
formation,” a generalization of Rutishauser’s -“LR
transformation.”® Both of these are manifestly
applications of the factorization procedure, and
depend on the following algebraic lemma. If

A=4,=X0 +a (4.99)

and
Aj1 = 0,X; + a; = X340, + a4,
then

X, Xy X8 000, = T[ (A — a,). (4.101)
i=1

(4.100)
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If X; is the adjoint of 6;, this operator is positive-
definite, and it follows that the only eigenvalues of
A, between the lower and upper bounds of the a; are
the a, themselves. If the X; are not adjoints of the
6,, the a; are not in general eigenvalues. However, it
can be shown that, if X, is unitary and 0, is upper-
triangular at each stage of the factorization, and the
a; are suitably chosen, X,0; will approach upper-
triangular form.
For suppose

A= UTU*, (4.102)
where T is triangular, and
U,=X X, X,, (4.103)

then m
O, 0,0, =U}U H(T —a)U* (4.104)
j=1

is upper-triangular; and if any one of the a,’s is near
an eigenvalue, the last diagonal element will be zero.
A series of values of a; is chosen with the object of
reducing the last diagonal element to zero. When this
has been done, the last row and column of the
matrix is left alone and the next to last diagonal
element is reduced to zero, and so on. Ultimately
X,0;, which is a unitary transform of 4, is triangular
and the eigenvalues can be read off from the diagonal.
An easily determined additional transformation re-
duces the triangular matrix to diagonal form. The
final diagonal matrix has been obtained from 4 by a
similarity transformation, whose elements determine
the eigenvectors of 4. This procedure is effective even
when A has complex eigenvalues; but, unless complex
arithmetic is used, the complex eigenvalues appear as
irreducible two-dimensional matrices along the diag-
onal of the matrix in its final form.

D. Computations

Our first numerical example is derived from the
PO gmp(l — gp — i, (4.105)

which has been analyzed in Eqs. (4.4)-(4.28). It follows
from the results listed that 4 can be represented by the
matrix

A; =B, + Ai:i’
B;; = j(j — Doy,
Bj; = =3(F—j — DI + DG — D], (4.106)
Asire = =1 + D/ + HU — DG + DA
=Aji255
where the elements of A; not otherwise specified

vanish. As this matrix is symmetric, it can be diag-
onalized by Jacobi’s method; but the eigenvalues
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obtained in this way should agree with those of the
operator
A = QL+ DYMQL + 1%, (4.107)

where B = L(L + 1). This operator is represented by
the matrix
Aj; = Bi; + A;a',

Aj e = =40 + DG + DU+ D) (4.108)

Ajpay = =4 + DIG = DG + DI
A FORTRAN program based on the factorization method
and described in the appendix was used to find the
eigenvalues and eigenvectors of this matrix, truncated
to 50 rows and columns. The eigenvalues obtained
are listed in Table I corresponding to a? = 25.

The determination of these eigenvalues, together
with eigenvectors, took eight seconds on a CDC 6400
computer, about one half the time required by a
similar program applying Jacobi’s method to the cor-
responding symmetric matrix. Comparison of the
results of the two programs and the evaluation of the
asymptotic formula for the eigenvalues showed that
all except the last two eigenvalues are quite accurate
and that, up to the 44th eigenvalue, accuracy extends
to the last significant figure. Somewhat less than two
factorizations were required, on the average, to obtain
each eigenvalue. Similar results have been obtained
with other asymmetric matrices, including some with
complex eigenvalues.

TasLE 1. Eigenvalues for matrix given in Eq. (4.108), corre-
sponding to o* = 25.

k a® k a
1 —16.0790427 26 637.525339
2 —16.0504127 27 689.523455
3 —2.44859890 28 743.521774
4 0.0609298922 29 799.520268
5 8.63039594 30 857.518913
6 18.0845680 31 917.517689
7 29.9168823 32 979.516581
8 43.8068811 33 1043.51557
9 59.7361805 34 1109.51466

10 77.6875676 35 1177.51382

11 97.6526589 36 1247.51305

12 119.626718 37 1319.51234

13 143.606902 33 1393.51169

14 169.591415 39 1469.51109

15 197.579078 40 1547.51053

16 227.569088 41 1627.51002

17 259.560884 42 1709.50954

18 293.554062 43 1793.50910

19 329.548329 44 1879.50868

20 367.543464 45 1967.50830

21 407.539299 46 2057.50794

22 449.535707 47 2149.50771

23 493.532587 48 2243.50738

24 539.529858 49 2339.70420

25 587.527460 50 2437.70002
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Our second example is used to illustrate a technique
useful, and often essential, in handling slowly con-
vergent matrices. It arises in the determination of the
energies of bound states and the Regge trajectories
associated with Wick’s equation. The relevant operator
is

A=[ = (1 + ¢
x [1p(1 4+ ¢»p(1 + ¢%) — 2. (4.109)

For bound states, » is an integer and « determines the
binding energy; the eigenvalues of 4 represent possible
values of the coupling constant. In the corresponding
scattering problem, « is imaginary and may be assumed
to be known; » is also imaginary and determines the
Regge poles. The operator

B =1p(1 4+ ¢)p(1 +¢*) =4L* (4.110)
readily yields to the technique of Sec. 3, with
oo=0+¢)" -4 (4.111)

the eigenvalues of L are /Y7 =j — 1 and the matrix
elements of g, are

(o) = 1(8s 542 + 6,1905), (4.112)

except that (o,)s; = 4. Because of the poor conver-
gence of the solutions of

Aw(a) = a(a)w(n,

it is necessary to modify the last diagonal element of
the truncated matrix 4,;; this is done in such a way as
to ensure that

a(?')[K2 _ (1 + q2)—1]—ly)(ﬂ') — (B — 4v2)w(f)

is a finite vector.
In examples of this kind, the components y of
¥ satisfy a recurrence relation of the type

apy + 26yl + ep? =0 (4.113)

for large values of i. This difference equation has two
independent solutions, and the one normally required
is

P, = ad®, 4.114)
where 4 is the smaller root of
al! +2b2 + ¢ =0. (4.115)

Consequently, the last diagonal element of the
truncated matrix should be modified by a factor
1 + %aA/b. Such a procedure does not apply, however,
when A is given by (4.109), since equation (4.115)
proves to have two complex roots of equal modulus.
In this case the alternative procedure already men-
tioned is used.
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5. DIFFERENTIAL AND INTEGRAL EQUATIONS

It will be evident from the results obtained in the
preceding sections that it is in no sense essential, and
perhaps even detrimental, to express quantum-
mechanical eigenproblems in the form of differential
or integral equations. On the other hand, because of
the widespread use of wave-mechanical methods,
problems may often appear in this form; the present
section is included both to clarify the relationship
between the two formalisms and to aid with the identi-
fication of corresponding differential and operational
‘equations,

A. Differential Equations

The functions u,(x) of the differential equations
(1.1) and (1.3) are related to the vectors ¥ of the
algebraic equations (1.2) and (1.4) in the following
way:

u,(x) = POeirey®, (5.1)
From this and the fact that
xe'P = ¢'Pq — ge'r®, (5.2)

where ¢ and p have their usual quantum-mechanical
meanings in distinction to the unrestricted coordinate
variable x, and assuming g»® = 0 to hold, it follows
that

(0) ipe

xuy(x) = §Ve gyt (5.3)

and

(0) jipx

. d
—i—uy(x) = §e**py (5.4)
dx

Hence, we are justified in rewriting equations of the

form
[A(—i ;id; , x) — al}ul(x) =0

in the form

(5.5)

[A(p, @) — a“ Iy = 0. (5.6)

Conversely, the operators B(p,q), I'(p,q), and
A(p,q) may be expressed as differential operators
wherever they appear by means of these same sub-
stitutions: For convenience, the differential equations
corresponding to the examples solved in Sec. 3 are
listed below:

(1) [dd—zz — x4 b ]u,(x) —0,
@ [d—d;—x—ﬁ+b:l,.(x)=0,
@ [a-»L- G2 4 b, Jus) =0,
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(4)
d nd _ 4 -
[;; 1-x )dx 2(u + vx) ™ + by]uj(x) =0,

(5) ,:x;d; ﬂx—’_’ b,]u,-(x):O,
©) [£+ﬁ——+b}j<x>=o,

) [x d—dx—é — 2Bx + ) ;,d; + b,:|uj(x) =0,

®) [(1+x)ddx 4u<1+x2>+b] () =0,

2
9) [;2 4p tan® x + b:| u(x) =0,
2
(10) |:x2 d—d—é — Bx* 4 2ax + b,]u,.(x) =0,
X
2
(11) [d - +%—-(1+a)x§ — (1 —a)x3

— 2Bx1x, + bi,k]“j,k(xl, xy) = 0,

= bj]uj(x) —o.
As indicated by the names assigned earlier, these are
all forms of well-known equations.

Similarly, in addition to (1.1)

2
(12) [x2%+xi+x2—
X

d d
[5(1 - x% N + a3 + al:lu,(x) =0,

the examples discussed in Sec. 4 may be considered to
solve:

2 i ) i__ — K 2
(1) [(1 — o) £ (1= ) = 201 — )
el —xz)}xi—lxz-’ra:lu(x)::O
dx T ’
d . d
) [(1 - Kx)a(l —x )E - 2{(1 — kx)( + vx)
— B~ )4 = x4 @ ]u9 =0

3) [x(x + 1)% —2{(x + D(Bx + ») + px} dii);
— Ax + a,Ju,(x) = 0.

These are equations which appear in many perturba-
tion problems of current concern.
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It is also interesting to note that each of the above
linear second-order differential equations, the charac-
teristic form for the Schrodinger representation, has
a first-order nonlinear counterpart, a Riccati form.
Defining the functions w; = w;(g) such that

. d
W;p— pw; =1 W,; (5.7)
dq
(since gp — pq = i), and taking the 6, of equations
(3.1) and (3.2) to be

8, =p + iw;, (5.8)

8;." =p — iw;, (5.9
then if

B, = H; = p* + v(g), (5.10)
where H; represents the Hamiltonian (with m = })
incorporating the potential function »(g), it follows
that

B; — b = 0%6,
will become

PP+ o(g) — b = (p — iw)(p + iwy) (5.11)
or
Ly, wt = v(g) + b =0,
dq

This Riccati equation may be converted to the
Schrédinger form featured above by applying the
standard transformation?®

(5.12)

w; = u;liuj, (5.13)
dx
relating w;(g) and u;(x); the result is
d2
[—; — o(x) + bj}ui =o0. (5.14)
dx

Of course the w;, u;, and b") may be regarded as
matrix elements and these equations as matrix differ-
ential equations. Clearly, either may be solved to
obtain the eigenfunctions and eigenvalues relating to
a particular potential v(g) or v(x). In the past, the
latter has most often been used, and many specialized
solution techniques have been developed®; but per-
haps the most comprehensive one is the factorization
method of Infeld and Hull, referred to earlier.® This
depends on the fact that many single equations of the
type (5.14) can be “factorized” into two first-order

12 E. L. Ince, Ordinary Differential Equations (Longmans, Green,
and Company, London, 1926; reprinted Dover Publications, New
York, 1944), pp. 23-25.

1% P, M. Morse and H. Feshbach, Methods of Theoretical Physics
{(McGraw-Hill Book Co., New York, 1953), Vol. I, pp. 1639-1758.
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linear differential equations:

[k(x, m+ 1) — i]u;" = [b, — L(m + Dl
dx
(5.15)

[ ke m) + = Jup = 15, = Lomiag™, - (516)
where m represents some nonnegative integer. Cross-
applying the initial operators and comparing each
resulting equation with (5.14) then leads to the Riccati
equations

f—k(x,m-i— D+EBx,m+1D+Lm+1
x

= v(x, m) (5.17)
and

— dix k(x, m) + K¥x, m) + L{(m) = v(x, m). (5.18)

Subtracting these yields the necessary and sufficient
condition which k and L must satisfy:

d% [k(x, m + 1) + k(x, m)] + K(x, m + 1)

— K¥x, m) + L(m + 1) — L(m) = 0. (5.19)

Any k — L pair which satisfies this equation implies
a particular v(x, m) through the above relations and,
thus, one factorization type whose eigenfunctions and
eigenvalues follow from (5.15) and (5.16). Basically,
there are only two such types, but they give rise to six
others which, though nonindependent, are all of
practical importance. Most common potentials, in-
cluding those leading to Legendrian and hypergeo-
metric forms, prove to be special cases associated with
one or another of these six types; they have been
tabulated, along with the related & — L pairs, eigen-
functions, and eigenvalues, by the same authors.

The step operators bracketed in (5.15) and (5.16)
correspond to the 0; of Egs. (3.1) and (3.2) or, more
generally, to the o® of Egs. (3.36) and (3.37); hence,
it is to be expected that the same kind of differential
equation would have to be solved to obtain specific
forms of either. Actually, the general solution of the
Riccati equation

ar

ar 4+ TNyT 4+ TNy + N;T — Ny =0, (5.20)
where T is an n, X n, matrix and Ny, N,, Ny, N, are
respectively n, X ny, ny X ny, ny X ny, ny X n, mat-
rices, can be formulated in terms of a characteristic
matrix of an associated set of linear equations and a
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matrix of initial values.!*15 In a sense, both of the
methods discussed here amount to specialized schemes
for obtaining the solutions of this set of associated
linear equations. However, the factorization method
does not yield the step operators in a convenient form
for field theory computations, where they enter as
creation and destruction operators in the algebraic
interpretation of the required functional differential
calculus,®17 and does not lend itself to the calculation
of matrix elements for dynamical variables.

The latter limitation means that the method cannot
very easily be extended from the simpler equations,
such as Examples 1-12 above, to perturbed forms of
these equations; and it is just this difficulty which the
codiagonal approach remedies. It is possible, of
course, to obtain such matrix elements from recurrence
relations whenever these are available. As mentioned
in connection with Eqgs. (3.38) and (3.39), the oper-
ators o'V necessarily define relations of this kind ; with

oWP, = (n + Py, (521)
¢®¥pP, =nP,_,, (5.22)
the operational form implied by Example 3 of Sec. 3,
o 4 g™
T 2M 41
immediately yields the well-known formula connecting
Legendre polynomials P,(x) of serial order:
- (n+ VP, + 0P,y
2n +1 ’

Hence, matrix elements for the perturbation terms of
Legendre-like equations can be determined from the
latter. Using Eq. (1.1) as an example,

2.2p __ .2 (n+1)(n+2)
a'xP, = “:(2’1 + 1)@2n + 3):|Pn+2
(n+ 1) n’
[(2;1 + 1)(2n + 3) + (2n + 1)(2n — 1)}1)"

, (5.23)

xP,

(5.24)

n(n — 1)
[(2;; + D(2n — 1)]P"‘2}’ (5.25)
which represents an alternate, if somewhat incon-
venient, form of the relation defined by (4.26)-(4.28).
It is useful to observe that Inui has devised a
technique of writing recurrence relations for the
solutions of any equation of the form (5.14) which

14 7. J. Levin, Proc. Am. Math. Soc. 10, 519 (1959).

15 W. T. Reid, J. Math. Mech. 2, 221 (1959).

18 F. Rohrlich and M. Wilner, J. Math. Phys. 37, 482 (1966).

17 A. 1. Akheizer and V. B. Berestetskii, Quantum Electrodynamics
(Interscience Publishers, Inc., New York, 1965), pp. 198-205.
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can be factorized.’® This is the class of Fuchsian
equations whose solutions are certain “special func-
tions.”” It is also the class of equations for which the
operator B, as defined herein, may be diagonalized
exactly; and since the perturbation operators I' and
A need not remain small, the present results may also
be interpreted as a method of solving an extended
class of special function Fuchsian equations. These
are equations of the form
d? d
[t PO+ 00+ aful) =0, (526
dx dx

where P(x) and Q(x) lead to no more than three
regular singularities, or one regular and one irregular
singularity, and are otherwise analytic everywhere in
the domain of interest. Our restrictions on I' and A
are such as to leave the essential character of these
functions unchanged, while yet permitting solutions
for a much broader range of types than has previously
been considered.

B. Integral Equations

The solution of (5.6) by matrix techniques also
provides the solution of a variety of equations of the
type

KAy = ki, (5.27)
where K(A) is some function of 4, and the eigenvalue
k™ of K, corresponding to the eigenvector y¥, is

clearly
k® = K(a). (5.28)

When, as in (5.5), A is represented as a differential
operator and the eigenvector y‘¥ as a differentiable
function u'”, K ordinarily must be represented as an
integral operator—the only exceptions arising when
K(4) is a polynomial. Thus, in the representation
adopted in this section, (5.27) assumes the form

f ﬂK(x, NuP(y)dy = KPu(x),  (5.29)

where a = ¢'¥ and § = ¢'» are the endpoints of the
range of eigenvalues of g. This is a homogeneous
integral equation of a type which frequently arises in
mathematical physics.

If the kernel K(x, y) is nonsingular, the Hilbert—
Schmidt method provides a well-known matrix tech-
nique for the solution of (5.29). Here we are more
interested in the possibility of identifying the operator
A corresponding to a given kernel K and, hence,
effectively reducing the integral equation to a differ-
ential equation or an operational equation of a known

8 T. Inui, Progr. Theoret. Phys. (Kyoto) 3(2), 168 (1948) and 3(3),
244 (1948).
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type. The inverse problem is dlso of considerable
interest, since the integral equation already incor-
porates boundary conditions which may be difficult
to apply to the corresponding differential equation.
It is reasonable to require that K(x, y) should be an
analytic function of both variables, since otherwise
the solution of the latter problem will not be unique.

The requirement that the integral operator in (5.29)
should commute with the differential operator 4 can
be met only if K(x, y) satisfies the partial differential
equation

A(-i%,x)l{(x, y) = A*(—ia—ay-,y)K(x, )
(5.30)

where 4*(p, g), as previously, represents the Hermitian
conjugate of A(p, ¢). Since 4 has to be self-conjugate
in the sense of (2.5),

A*(p,q) = H(p, )A(p, 9H(p, 9),

where H(p,q) is Hermitian. If 4 is a second-order
differential operator of the form

(5.31)

Alp.q) = pf(9p + iggp + h(g),  (5:32)
then H is a function H(q) of g only, given by
J@H'(9) = g(@H(9). (5.33)

If we make use of (5.31) and define L(x, y) by
KG) = (=i y) L), 639
y
we find that (5.30) is satisfied, provided
. 0 ., 0
A(—l -, x)L(x, y) = A(-—l -, y)L(x, y). (5.35)
0x dy

We may therefore assume that L(x, y) is a symmetric
function of x and y.

It is not possible, of course, to give a general
solution of (5.35) and we shall therefore proceed to
discuss some examples arising from operators A(p, q)
of the general type considered elsewhere in this paper.
First let us suppose that A4 is given by (5.32) with

f@=1-4¢,

g(q) = 2(ag® + bq + ¢), (5.36)
g = A¢* + ugq,
so that
H(g) = e**(1 — @)*™**°(1 + g)~*~*. (5.37)

The limits of integration « and £ in (5.29) will take
values —co, —1, 1, or o, chosen with regard to the
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values a, b, ¢, and the validity of (5.30). In this ex-
ample, L(x, y) can be assumed to be a function of the
form

L(x,y) = L(x + »), (5.38)

and (5.35) is satisfied provided

zL"(2) + Aaz + b + DL'(2) + (Az + w)L(z) = 0.
(5.39)
The solution of this equation which is finite for z = 0,

even when b > —1, is readily obtained in terms of the
confluent hypergeometric function M, ,:

L(z) = ez O IM, (v2),

vt = 4(a® — 1), 5.40
vk = u — 2a(b + 1), (-40)
m=>b+ 1.

The kernel of the integral equation is thus a more
elementary function than its solutions, which can be
expressed in terms of ellipsoidal wavefunctions.

For our second example we suppose that

f@ =490 — )4 —9),
g(@) =f'(q) + ag® + bg + Ac,
h(q) = g,
wherein it can be assumed that 4 > 1. The form of
H(g) is readily obtained from (5.33) and the limits of

integration o and f in (5.29) now take values of — o,
0,1, A, or oo. Here we can assume

L(x,y) = L(xp)

[alternatively, L(xy — x — ») or L(xy — Ax — Ay)]
and then L must satisfy the equation

z(1 — 2)L"(2) + (¢ — az)L'(2) — uL(z) =0, (5.43)

whose solutions are hypergeometric functions. The
solutions of the integral equation are generalized
Lamé functions. Another type of differential operator
which has a kernel containing a factor of the type
L(xy) is obtained by replacing x and y with x2 and y?,
respectively.

As a final example, suppose that 4 is of the type

A(p, 9) = 9f (p®) + ipg(p?. (5:44)

Then clearly (5.35) will be satisfied provided L(x, y) is
a suitable function of the form

L(x, y) = L(x* — 2xy + »?).

It is easy to construct more complicated examples and
thus build a collection of corresponding differential
and integral operators.

(5.41)

(5.42)

(5.45)
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6. DISCUSSION
A. Scattering Problems

First we shall discuss one application of the methods
described to operators which do not have a complete
set of discrete eigenvectors. Examples 6 and 10 of
Sec. 3 are of this kind, a type which occurs quite
commonly in quantum mechanics. The energy spec-
trum of a system of particles is continuous when two
or more components of the system can separate after
interaction, It may even happen that the spectrum is
entirely continuous, as when the potential energy has
either no negative minima, or only shallow negative
minima.

One way of producing a discrete spectrum for the
energy in such situations is to introduce an additional
potential, equivalent to an impenetrable wall con-
taining the system. This device is not convenient for
practical purposes, however, as it substitutes a very
large number of closely-spaced energy levels for even
a finite part of the continuous spectrum. Besides, the
object of the calculation is usually to determine the
scattering matrix rather than the energy eigenvalues,
which are to be regarded as given in scattering prob-
lems. A more pertinent problem is, therefore, to
determine the eigenvalues of (2.1),

A=TB + A,
where B represents the energy and I' and A are chosen
so that the eigenvalues of A4 are discrete.

For two particles in an eigenstate of the angular
momentum, the energy is

B = [p* + Il + D]g)[@m) + V(g).  (6.1)
Supposing that, for large numerical values of ¢,
V(q) ~ —a[T'(g), we take

where b is the known eigenvalue of B. The eigenvalue
of A4 is then a. What is really required from this calcu-
lation is the relation

I = 149)a, b), 6.3)

obtained by assigning the value a to the jth eigenvalue
of A. The bound states, which always exist for suitable
values of a, correspond to negative values of b. When
b is given the positive values appropriate to scattering,
Y becomes complex, and / = /) is a Regge trajectory,
which must appear as a pole of the § matrix. Since the
S matrix is unitary, the element corresponding to the
Ith partial wave is

Sy =TI (1 = 1)1 — 1)
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where L, is the analytic continuation of the angular-
momentum operator whose eigenvalues are /. The
phase shifts are given by

2in, = log S,
= trace log [(I — LH/(I — Ly)].  (6.5)

As a simple example of the application of this
technique, consider the scattering of two charged
particles due to their Coulomb interaction. Then
V(q) = —alg, and the operator 2mA coincides with
that of Example 5 listed under the exactly soluble
cases of Sec. 3. From the analysis given there,

19 = —j + ia|(2mb)t, (6.6)

if we interpret (—2mb)* as —i(2mb)?}, i.e., make an
analytic continuation consistent with giving the mass
a negative imaginary part in the transition from nega-
tive to positive values of b. With a numerical factor
of unit modulus inserted to assure convergence, the
corresponding S-matrix element is

S =TI =1y +j + i)[(I + j — ix)
J=1
=D+ 1 —i[T(1 + 1 + iw), (6.7)
in agreement with the known result.

B. General Remarks

Because the Infeld-Hull factorization method
depends on one particular coordinate representation,
various studies of its algebraic substructures have been
made; and because the method utilizes differential
equations, these have featured Lie algebras, which
inherently involve groups associated with differential
equations. Kaufman has exploited this last fact in a
very direct way, by using the differential operators
from recurrence relations for several special functions
to form the corresponding finite operator in a Lie
algebra.!® She shows that none of the examples actually
treated by Infeld and Hull imply a Lie group with
more than three parameters.

The six factorization types are, of course, more
general; but Miller has established that these may be
derived from the representations of four Lie algebras,
whose groups are all special cases of a four-parameter
Lie group: O, for the three-dimensional rotation
group, T for the two-dimensional Euclidean group,
T, for the three-dimensional Euclidean group, and
H, representing a special four-dimensional Lie al-
gebra.?® Making the proper identifications, the recur-
rence relations of the form (5.15), (5.16) for each

19 B, Kaufman, J. Math. Phys. 7, 447 (1966).
%0 W. Miller, Jr., Mem. Am. Math. Soc. 50 (1964).



1088

factorization type follow immediately from the
commutation relations of its algebra. As might be
expected, irreducible representations of the required
algebras are obtained by solving Riccati equations in
the unknown functions.

Inui, in the work referred to earlier,!® has proved
that any Fuchsian equation of the hypergeometric or
confluent hypergeometric type can be factorized.
Accordingly, the algebra underlying any such equa-
tion must be one of the four Lie algebras given above.
All examples of the operator B treated in the present
paper are of this kind. However, the method we have
developed is more general, allowing equations to be
solved whose algebras may be of a different type.
For instance, Example 11 of Sec. 3 readily generalized
to n coupled oscillators, so that the group O,,., is
involved.

The system of Eqs. (3.24) will terminate whenever
the operator B is exactly diagonalizable and o is
properly chosen, regardless of whether or not it
corresponds to a factorizable differential equation with
its associated Lie algebra. Actually, the method
adopted here appears to be more general than the
factorization method, where the commutators of the
¢; must in addition be expressible in terms of the o,
and must form a finite sequence, Our method implies
either a covering algebra of a Lie algebra, or even an
algebra of a more general kind, when the sequence of
equations does not terminate at all. Indeed, it seems
reasonable to believe that a Lie-algebra structure is no
more essential than a differential-equation formulation
for quantum-mechanical problems.

On the other hand, a Hilbert space appears to be
desirable, and generalizing from the Hermitian
operator case mentioned in connection with equations
(3.1)-(3.8), we have taken the operators B, g, and,
ultimately, 4 to be self-adjoint. Our results depend
strongly on this fact. Also, independently pursuing a
suggestion contained in work by Coish,? Joseph and
Coulson have recently developed a method featuring
self-adjoint step operators by means of which many
results similar to ours for the unperturbed operator B
may be obtained.?>%3

Perhaps in conclusion it is worth remarking that,
while the new solutions which the present method
makes possible are not exact in the traditional sense
associated with differential equations, they may
nevertheless provide a superior description of the
material world. The methods of conventional analysis
do not necessarily correspond to the processes of

21 H. R. Coish, Can. J. Phys. 34, 343 (1956).
22 A. Joseph, Rev. Mod. Phys. 39, 829 (1967).
23 C. A. Coulson and A. Joseph, Rev. Mod. Phys. 39, 838 (1967).
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nature,* and there is some reason to think that they

are not entirely compatible with the physical require-
ments of quantum mechanics.

APPENDIX

We shall summarize here a computational proce-
dure for the determination of eigenvalues and eigen-
vectors, based on the factorization method described
in the text. It is easily translated into a computer
program, consisting of three parts.

(1) The first part of the program reduces the matrix
A to almost triangular form by Householder’s
method,? which uses only orthogonal transformations.
This has to be done only once, and improves the
speed and accuracy of the whole program. If the
matrix A is n-dimensional, a succession of n — 2
orthogonal transformations is applied, reducing the
elements 4,; withi > j 4+ 1tozeroforj=1,2,---,
n—2.

Define
A(l) — A,
A®N = pOABIP® - (k=1,2 -- ., n—2) (Al)
A = A",

with P® defined by

) __ (1), (k)
P’ =0, — w"wi",

w® =0, i<k,
X __ () gk) N}
Wi = (1 + 274,70 ,)%,
(k) __ 2(k) (k) (k)
wi = AP Ay Wi

A= [ (4 Zr,

i>k

(A2)

where the sign of 1™ is the same as that of A, . If
eigenvectors are required,

P = pn-2 ... p@pa) (A3)

should be computed as well as 4’.

(2) The second and most essential part of the
program uses a factorization procedure, closely related
to Francis’s “QR transformation,” to reduce the
almost triangular A’ to triangular form, again by
orthogonal transformations only. If some of the
eigenvalues of A4 are complex, the resulting matrix
A” will not be strictly triangular, but will contain two-
dimensional submatrices on the diagonal whose eigen-
values are complex eigenvalues of 4.

Define
A®

U®, T®, and

24 P, A. M. Dirac, Phys. Rev. 139, 684 (1965).
25 A. S. Householder and F. L. Bauer, Numerische Math. 1, 29
(1959).
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for

k=nn+1,n+4+2,--
by

A% = gOTE 4 0,

AW = TOY® 4 ylo, (Ad)

where U™ is unitary, T is upper-triangular, and
u*) is a suitably chosen multiple of the unit matrix.
The unitary matrix U™ is a product of n — 1 orthog-
onal matrices:

UW = PPPP P (k2 ), (AS)

where P{® is determined from the elements B;;,
B;it15 Byrrjs and Byiq g of

B=PPF - PPA™Y (j>1),

or B = A% for j = 1. In fact, P{¥ is obtained by
replacing the elements d;;, 8;;11, 8,415, and 8,4, of
the unit matrix with

(By; — /‘(k))/Na —B,.14IN, By ,/N
and
(Bjp1 41 — ,“'(k))/N,
where
N = (Bn' - }*(k))z + B:2i+1:'-
The only part of this procedure which is unspecified
now is the determination of w'®, and this has an
important bearing on the convergence of the sequence
A, AHD | 442 .« to triangular form. The nearer
u® is to an eigenvalue of 4 (or the real part of a
complex eigenvalue), the more quickly this eigenvalue
will be isolated. Usually it is sufficient to estimate the
eigenvalue (or its real part) from the lowest unresolved
two-dimensional matrix on the diagonal. However,
it is important to isolate the eigenvalues in descending
numerical order, and therefore better to start with
an overestimate of u'*), approaching the estimated
value from above after several transformations.
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When the elements below the diagonal are suffi-
ciently small, the iterations (A4) are terminated and
the results

A" = AW,

P =0®...[Jmp’ (A6)

are kept for the last part of the program.

(3) The third part of the program reduces the tri-
angular matrix to diagonal form by means of similar-
ity transformations; this is necessary, of course, only
if eigenvectors are required. A sequence of trans-
formations of the type

(r+1) (r) g4lr)(r)—1

Ar+ = T'Wpg"T!r :
(r) _

T = 8;; — cubudns

(r)—1 _
T;77 = 6 + cubudiy,

(A7)

with i <j may be used, starting with /=n»n and
k =n —1, and progressively reducing the value of
I + k. The only complication arises when, because of
the existence of complex eigenvalues, there are some
nonvanishing elements just below the diagonal. We
shall consider the possibility 4%, # 0 and A{7,, # 0.
If 4;, 4;, Q, and C are two-dimensional matrices
obtained from, first, the ( — 1)th and ith rows and
columns of 4, second, the jth and (j + 1)th rows
and columns of A", third, the (i — 1)th and ith rows
and the jth and (j + 1)th columns of 4" and, fourth,
the (i — I)th and ith rows and jth and (j 4+ 1)th
columns of 77—, we have to determine C so that

Q = C4; — AC.

This matrix equation is a set of four simultaneous
equations from which ¢;; and ¢;,,, can be determined;
the solution simplifies when, as a result of the second
part of the program,

i _ 4
Ai‘i = fli=1i-1

(r) . 4 (r)
and  A;i = Ay
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An analytic study is made of the dispersion relations and frequency spectra df simple cubic lattices in
which there exist long-range potentials of the form 1/r?. The rigid-ion approximation is used. An ex-
pansion of the dispersion relations about the maximum propagation vector in the first Brillouin zone
is obtained for 1 < p < 3 and the contribution of the region about this point to the vibrational frequency

spectrum of the lattice is studied.

1. INTRODUCTION

When long-range interactions are present in a
crystal lattice, one or more branches of the dispersion
relations for its normal-mode vibrations may be
nonanalytic at certain critical points in the reciprocal
cell. This nonanalytic behavior is caused by nonana-
lytic terms in the elements of the secular determinant
giving the normal-mode frequencies and is not neces-
sarily a result of a degeneracy between branches of
the dispersion relations at the critical point. At the
frequency corresponding to the critical point, the
behavior of the frequency spectrum is determined by
the expansion properties of the dispersion relations
about the critical point.1”® We have thus begun a
study of the dispersion relations and frequency
spectra of lattices in which long-range potentials of
the form 1/r? are present between particles.

The treatment in this paper is concerned mainly
with three-dimensional simple cubic lattices when the
rigid-ion approximation is used. In Sec. II, we discuss
the general properties of the elements of the secular
determinant for an N-dimensional simple cubic lattice
when a 1/r” long-range interaction is present. The
elements are found to be analytic except at the maxi-
mum propagation vector in the first Brillouin zone.
In Sec. TII, we study the dispersion relations near this
nonanalytic point for a three-dimensional simple
cubic lattice when p is restricted by 1 < p < 3. In
Secs. IV and V, the frequency spectrum and vibra-
tional modes of this lattice are studied. We also
consider the limiting behavior of our results as p ap-
proaches one. A specific model for which p =1 is
introduced in Sec. VI. Finally, in Sec. VII, we briefly
note that many of our results depend strongly on the
cubic symmetry.

* Based on a thesis submitted by P. D. Y. in partial fulfillment
of the requirements for the degree of Doctor of Philosophy in the
Physics Department of Clark University.

T P.D. Y. was supported by a NASA Graduate Student Fellow-
Shl:l:Pi’resent address: Western Maryland College, Westminster,
Maryland.

1 L. Van Hove, Phys. Rev. 89, 1189 (1953).

2 ). C. Phillips, Phys. Rev. 104, 1263 (1956).

3 A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of

Lattice Dynamics in the Harmonic Approximation (Academic Press
Inc., New York, 1963).

II. THE SECULAR DETERMINANT

We consider an infinite, N-dimensional, simple
cubic lattice in which a Cartesian coordinate system
is imbedded in such a way that the ith component of
the position of any lattice point is given by a/, where
l; is an integer. The displacement of the particle at
equilibrium position al in the i direction is denoted
by u,(/). We assume that the particles interact through
a long-range and a short-range pair potential in such
a way that the potential energy of the particle at the
origin is given by

V=V, + Vg, ¢))
where
, (1)
V, =G 2
g gtan+m0—m@ﬂ“ @
and

Ve=H ; (Zdal; + u(D) — wOPF . 3)

The primes on the summation signs indicate that
1 = 0 is not included in the sums. The sum in Eq. (3)
is assumed to be finite. G and H are constants and
we do not assume that p in Eq. (2) is necessarily an
integer.

In the harmonic approximation, the equation of
motion of the particle at the origin is

mi®) = -3 —2L—lum. @
1.3 0u0)0u (1) |,
After substituting solutions of the form
ul) = U;exp [iZ(lyd — wi)] %)
into Eq. (4), we obtain the eigenvector equation
AU; = EfAia'Uf, (6)
where
A= a®Pmw’/G. @)

The A;; are defined in the following way. First
we write A4;; in terms of its long- and short-range
contributions,

A= A5+ A5, ®)
AL and A%, can be expressed in the following form:

Afi() = THO) — Ti(d) ®)

A(P) = [T5O) — TH(D)a"H/G,  (10)

and
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where TZ and T% are defined in Egs. (A1) and (A2) of
Appendix A. The secular equation, giving the dis-
persion relations A(¢) for the lattice, is

|4:() — 6;;4(P)| = 0. 11
The first Brillouin zone is defined by the condition
—-r < ¢ <
We now wish to determine the conditions under
which the expansion of A4,; about a critical point will
be dominated by a nonanalytic term as we approach
the critical point. (Here we will ignore the unlikely
possibility that 4,; contains no second-order terms.)
Referring to Egs. (2) and (10), one sees that A% is
analytic everywhere since it is a finite sum of analytic
functions. Thus, we need study only the behavior of
AL or equivalently T%.
Define
Si) = X' 1, cos (¢; — mL/(E,)".  (12)
1

As long as p > N — 2, the series in Eqgs. (Al) and
(A2) are uniformly convergent and we may write

9°S,,
Tz'If = —p(p + 2) ﬁ — 0;3PS 041
We use the Ewald transformation®® to convert S,(¢)
into the following form:

(13)

77,’”

S, = o {El@—n—H%N[ﬂzj(lj + 25—7]7)}

+ 3 (D, (72, )1, cos £1,] — i} (14)
{

Here, &, = ¢; — 7 and @, (x) is the incomplete
gamma function defined by

D, (x) =fwt”‘e‘””dt. (15)

It is well known that ®,,(x) is analytic for any real
x > 0. However, its expansion from x =0 into
regions of positive x is not a simple power series.
The form of this expansion depends upon whether or
not m is a negative integer. It is given in Eqs. (B1)-
(B3) of Appendix B.

Using Egs. (13) and (14) and the fact that @], (x) =
—®,,.:(x), the TI(¢) are easily expressed as summa-
tions over incomplete gamma functions. It is well
known that these summations are rapidly and ab-
solutely convergent. A glance at Eq. (13) will show
one that an incomplete gamma function of zero
argument cannot appear in such a sum unless § = 0
or, equivalently, ¢ = (7, o, - - -, 7). It follows that
TE(d) is analytic everywhere in the first Brillouin
zone except at § = 0.

¢ P. P. Ewald, Ann. Physik (Leipzig) 64, 253 (1921).
® M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, London, 1954).
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Expansions of the T% about & =0 are easily
obtained. These are listed in Appendix A, Egs.
(A3)-(A10). From these expansions and Egs. (9)
and (10) the general form for the expansion of A;
about § = 0 can be found. It is given by the following
set of relations:

(a) If —}p + {N — 1is not a negative integer, then

2pn* TGN ~ bp) ( & ) ( & )
D(1 + 4p)[E(&/2m P4 \2m) \ 2
<+ power series. (16)
(b) If —}p + IN — 1 is a negative integer, then
A;; = 8;; X const
2P("‘ 1)%1;—%N+17T1J—%N+2 g, Ei
T+ 3pTGp — N + 1)(577) (5;)

1r-dn
<[m] e
27 2

<+ power serics.

(17

In the above equations, the power series begins
with second-order terms and contains terms of even
order only. Clearly, the 4,; are nonanalytic at § = 0
[that is, at ¢ = (7,7, -+, #)]. From the cubic
symmetry, we see that this point is a critical point.

From Egs. (15) and (16) we see that the following
rules govern the behavior of the 4,; near the critical
point § = 0:

(a) If p > N, the second-order terms in the power
series dominate the nonanalytic term.

(b) If N—2<p< N, the nonanalytic term
dominates the second-order terms in the power series.

(¢) In the limit as p approaches N — 2, the non-
analytic terms approach terms which are not well
defined at & = 0. That is, the values approached by
these terms as § approaches zero depend upon the
direction of approach.

In what follows we shall be primarily interested in
cases (b) and (c). In case (a), the behavior of the
frequency spectrum at the frequency of the critical
point will be qualitatively the same as when no long-
range interaction is present.

111. DISPERSION RELATIONS FOR A
THREE-DIMENSIONAL MODEL
In the remainder of this paper we shall be primarily
interested in three-dimensional simple cubic lattices
since much previous work has been done concerning
one- and two-dimensional lattices.®®” From the
discussion in Sec. I, it is clear that, if N = 3 and
p >3, the qualitative behavior of the frequency

¢ H. B. Rosenstock, Phys. Rev. 111, 755 (1958).
? M. Smollett, Proc. Phys. Soc. (London) A65, 109 (1952).



1092

spectra will be the same as when only short-range
interactions are present. Thus, our discussion will
be limited to the case of 1 < p < 3. 1t is also clear
that in the limit of p = 1, the 4;; are not well defined
at § = 0. As a result, we will initially assume that
1 < p £ 3, and then study the limiting behavior of
our results as p approaches unity.

From Eqs. (16) and (17) and Appendix A, we see
that the general forms of the A4,; near § = 0 are
given by

Ay = o + BE + y(& + &) — 27Eh(E) + O(&)

J. A. DAVIES AND P. D. YEDINAK

symmetry. Here «, 8, y, and ¢ are constants. The
function A(&?) is given by the following set of equa-
tions:
(a)If 1 < p < 3, then
1——1) % F(
I‘(l +

2P) 1 )
1p) (&)i-4»

h(&%) =
(b)If p =3,

(20)

h(€%) = In 2. @1)

We next determine the dispersion relations for the
lattice in the region near § = 0. These are most
easily obtained by applying perturbation theory to

(18) the solution of Eq. (6). Let A be the matrix whose
q
and elements are the 4,;. We write A as the sum of two
Ay = 08,E, — 21 5:h(E%) + O(&Y, (19) matrices Y
with the remaining A,; following from the cubic A=A AP, (22)
where OL —_ 2‘n'§ h(fz) —2776152}1(52) —2775153}1(52)
A’ = | =278 ER(ED) o — 2mESh(ED)  —2mEEh(ED) (23)
L —2m6,E5h(8%)  —2mEnbsh(€)) o — 2mE5h(EY)
and
BEL + (& + &) 08,£, 06,6,
A? = 3 BE + y(E1 + &) 08263 + O(&Y. (24)
. 0614, 8.5, BE + (&1 + &)
We consider A® to be the unperturbed matrix and follows:
A” to be the perturbation. Perturbation theory to (@ If1 < p <3, then
first order is easily carried out because the secular - % TG —3p) .o
equation giving the eigenvalues of A® can be factored. h=at+2 F(l T 1) €74+ 0(). (27)

Our results for each of the three branches of the
dispersion relations near § = 0 are as follows:

A = o — 2mEh(ER)
+ E2[B(4) + 2(y + 0)(2,2)] + O(&/h(&?)) (25)

and

2y
=+ E2yd+ B -0+7n22)

’ +1(8— 8 — P (4, 4) —
+ O(EY/h(E).

The bracketed terms are certain polynomials in the
&, which are defined in Appendix C. The remainder
in the above expressions appears because of the fourth-
order remainder in the expression for A” and because
we neglected contributions given by second- and
higher-order perturbation theory.

The term (&%) does not appear explicitly in the
expressions for 2, and 4;. On the other hand A(&?)
contributes to the leading behavior of 1, as § ap-
proaches zero. From Egs. (20), (21), and (25), we see
that the leading terms for the first branch are as

4,2,2)4
(26)

(b) If p = 3, then
Ay =o—2m781n & + 0(&Y). (28)

Clearly, if p obeys 1 < p <3, the point E=01is a
minimum in A;.

From Eqgs. (26), (27), and (28), it is clear that 1
approaches o as & approaches zero in all three
branches provided p > 1. However, if we take the
limit of Eq. (27) as p approaches one, we see that the
value of A; at § = 0 is ambiguous. For example, if
we first let § go to zero and then let p go to one, 4, goes
to «. However, if we first let p go to one and then let
§ go to zero, A, goes to « + 4. But one thing is clear.
Consider a neighborhood of & = 0 sufficiently small
that second-order terms in Eq. (27) can be neglected.
As p approaches one, A, approaches « + 47 unam-
biguously at every point in this neighborhood except
E = 0 itself.

No ambiguities occur in the second and third
branches as p approaches one. Thus, we assume that
Eq. (26) holds true for p = 1. The ambiguity in the
first branch occurs only at a single point § = 0. Thus,
we assume that, if we exclude this single point, the
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Fig. 1. The behavior of the
leading term in A, near § =0
for several values of p.

behavior of 4; when p = 1 is obtained by taking the
limit of Eq. (25) as p approaches one. We obtain
the following expansion for A, when p = 1:

(a) In Cartesian coordinates

Iy = o+ 47 + E2[BA) + 2(y + 8)(2, 2)] + O(&Y.

(29)
(b) In spherical coordinates
Ay = o + 4w 4 &2
—2( — y — OEH(, $) + 0(&), (30)

where
H(6, ¢) = —%[7 + cos (4¢)] sin* 6 + sin? 0. (31)

In Fig. 1 we show the behavior of the leading terms
in A; as p approaches unity.

IV. THE FREQUENCY SPECTRUM FOR THE
THREE-DIMENSIONAL MODEL

The contributions of the region about § = 0 to the
frequency spectra of the second and third branches
will depend strongly upon the values of the constants
in Eq. (26). However, one can see that V1, =
Vs =0 at § =0, so that these are ordinary non-
analytic critical points. Their contribution to the fre-
quency spectrum should produce the usual inverse
square-root infinite slopes associated with such points.?

Our detailed discussion will be confined to the
contribution of the first branch to the frequency
spectrum. The contribution of the region about § = 0
is easily calculated provided 1 < p < 3, for then the
surfaces of constant frequency near the critical point
are spheres. The volume enclosed by such a sphere is
V = 47§ and the (unnormalized) contribution to
the frequency spectrum AG(4,) is given by

AG(A) = dV/[dA,. (32)

Using Eqs. (27), (28), and (32) we obtain the following
contributions for 4; > a:
(@) If 1 < p < 3, then

AG(}.I) = 47 |:22_pp1rg- I‘(_%:%_p)jr/(l_p)
Pt T + 4p)

X (Al . oL)(i—z»)/(z»—l), (33)
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n

Fic. 2. The contribution
AG(A;) of the region about
€ = 0to the frequency spectrum
of the first branch for several
values of p. The contribution
when p = 1.5 is too small to
rise perceptively above the
horizontal axis. 29

AG(Ax10%
I N
[6,]

and its derivative is

dAG(4,)  4n(4 — p)[Zz_”-n% rE — %p):ls/(l—p)
dhy  (p— 1 (1 + $p)

X ()‘1 — oc)(5-2p)/(p—l)‘ (34)

(b) If p = 3, then
AG = [(4 — 0)2al{~In [(4, — w)/2n]}7}, (35)
and the leading term in its derivative is
dAG(4) 1

dh 4m{(y — fdnP~In (h — W)2m]
(36)
Equation (35) was obtained with the help of the
method of Gillis and Weiss.?

If only short-range interactions were present, we
would usually expect an inverse square-root infinity
in dAG(4,)/dA, at A, = «. From Egs. (34) and (36),
we see that the following is true for our model:

(@ If 1 <p <25, then dAG(4)/dA, approaches
zero as 4, approaches « from above.

(b) If p = 2.5, then dAG(A,)/dA, approaches a finite
value as 4, approaches « from above.

(© If 25 <p <3, then dAG(A)/dA, goes to
infinity like (4; — «) ™, where 0 < n < }, as 4; ap-
proaches « from above.

(d) If p = 3, then dAG(4,)/dA, goes to infinity like
(A4, — o) #[—In (4 — ®)I-% as 1, approaches « from
above.

In Fig. 2, the leading behavior of AG(4)) near 4, = «
is shown for several values of p.

In the limit of p =1, the region about § =0
makes no contribution to the frequency spectrum at
A = a, for at all points in a small neighborhood of
E=0, except §=0 itself, 4, is approximately
o + 4m. Thus, this region will contribute to AG(4,)
near the latter value of 4, . In fact, one can easily show
that the right-hand side of Eq. (33) approaches zero
as p approaches one. In a later more specific example,
the behavior of AG(4,) will be determined for the case
ofp=1.

Y. VIBRATIONAL MODES
It is well known that if g lies in the [100], [110], or
[111] directions, our vibrational modes will be

8 J. Gillis and G. H. Weiss, Phys. Rev. 115, 1520 (1959).
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pure transverse or pure longitudinal. We wish to deter-
mine which of our branches is the longitudinal branch
and which are the transverse branches.

First consider the case where E lies in the [110]
direction. The eigenvector equation (6) is easily solved
for this case since now A;; = Ay, and A3 = Ay3 = 0.
We find that for the longitudinal mode A = 4,; + 4,5,
and, referring to Eq. (25), we easily identify this fre-
quency with the first branch. The first transverse
mode is characterized by A = 4,3, U; + U, = 0, and
U, = 0. Using Eq. (26), we identify this mode with
the second branch. Finally, the second transverse
mode is characterized by 2 = 4,; — 4, and U, =
U, = 0. 1t is identified with the third branch.

Similar analyses with & pointing in the [100] and
[111] directions show that the first branch is to be
identified with the longitudinal mode and the second
and third branches with the transverse modes. In
these cases, the transverse modes are degenerate.

So far, we have made no careful analysis of the
vibrational modes for & pointing in an arbitrary
direction.

V1. A MODEL FOR THE COULOMB
INTERACTION

In Sec. IV we discussed the contribution which the
region about § = 0 makes to the frequency spectrum
for the first branch if p obeys the condition 1 < p < 3.
It was pointed out that the discussion does not apply
to the case of p = 1. To study this case, we choose a
particular model in which the long-range interaction
is the Coulomb interaction. For the short-range
interaction we choose ¢ = 9 in Eq. (3) and assume
that the sum extends over nearest neighbors only.
The crystal is assumed to be under no outside
pressure, so that the energy per cell is a minimum.
From the latter condition we find that in Eq. (10) the
factor a®?H|G is equal to u/54 where u is the Made-
lung constant. We then obtain the following values
for the constants appearing in Eqgs. (26) and (29):
=511, =—-254,y =0.109, and 6 = —1.18.

An analysis of Eq. (29) now shows that 1, ap-
proaches a maximum of « + 47 as § approaches
zero. The surfaces of constant frequency are fluted
spheres as shown by the contours in Fig. 3. This
behavior of the dispersion relations is qualitatively
different from that near § = O when 1 < p < 3.

The form of the contribution AG(4,) of the region
about § =0 to the frequency spectrum is easily
determined using Eqgs. (30) and (32). We find that, if
A <o+ 4m,

AG(A) = 3L(B, B — 7 — Oz + 4w — ADh,
where L(8, # — y — 0) is a constant given by

37
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L(ﬂ’ ﬁ -y 6)
fz”J”’ sin 0 df d¢
= i, (38)
o Jo [2(8 — y — OH(0, $) — f]

and H(0, ¢) is defined in Eq. (31). Thus, dAG(4)/d4,
approaches infinity like (ax + 4m — A,)% as 1,
approaches « + 4w from above. This is qualitatively
similar to the contribution of a critical point when
no long-range interactions are present. It is quite
different from the behavior of dAG(A,)/dA, when
I<p<L3.

In Figs. 3-5 we show contours of constant frequency
in planes of constant ¢, for all three branches obtained
from Eqs. (26) and (29). We also give contours in the
¢, = ¢, plane for the second and third branches. The
fluted maximum occurring at § = 0 in the first branch
has been discussed above. From Figs. 4 and 5 we see
that fluted saddle points occur at § = 0 in the second
and third branches. The sector numbers? (P, N) of
the fluted saddle point in the second branch are (1, 8).
Those of the fluted saddle point in the third branch
are (6, 1). We have compared these contours with
contours obtained from a direct numerical calcula-
tion of the dispersion relations® and find good agree-
ment near § = 0.

VII. DEPENDENCE OF RESULTS ON
CUBIC SYMMETRY

Mention must be made that the above results
depend strongly upon the cubic symmetry. Our dis-
cussion will be brief because our study of more
general lattices is incomplete. As a simple example of
a lattice in which cubic symmetry is broken, consider
the above simple cubic lattice but with its particles
constrained to vibrate in the x, direction only. Equa-
tions (6) and (18) then show that the dispersion
relation is of the form

L= o — 2mEh(E) + O(&). (39)
We see from Eq. (20) that if we first take the limit of
p = 1, the value approached by 4 as § approaches one
depends upon the direction of approach. Consider
any neighborhood of § = 0, no matter how small.
Values of A ranging at least from o to « + 47 will be
found in this neighborhood.

We have also studied an orthorhombic Bravais
lattice using the rigid-ion approximation. The deriva-
tion in Sec. II can easily be carried out for such a
lattice and the conclusions reached at the end of the
section remain valid. If 1 < p < 3, the dispersion
relations are easily calculated using nondegenerate
perturbation theory and the leading nonanalytic term
due to the long-range interactions is found to occur in
every branch, not just the first. We have not made any

? C. Mainville, M.A. thesis, Clark University, 1968.
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FiG. 3. Contours of constant frequency for the first branch near § = 0 when p = 1. In each plane of constant b3,
only one-eighth of the region about § = 0 is shown,

careful analysis of the case of p = 1 for such lattices.
We conclude with the remark that one can easily
extend the treatment in this paper to more complex
lattices.
APPENDIX A
The T%(¢) and T7j(¢)appearing in Eqgs. (9) and (10)
are defined as follows:

TH) = —p(p + 2) .
—1)*H s AR i
X zl {( ) ] sin (d)z 1) sin (d’ﬂ /)

1 (Ekli)%wrz
x [T cos (¢klk)}, i#j, (A1)
k#1i,9
and
P+ 2)i2
T{; _ N _1 Iklk[ )4 _ P(P + 1:|
(4)) ; ( ) (Ekl’%)%wkl (Zkl;zr)‘}gﬂ_z

x [T cos (¢1p). (A2)

The expressions for 7%5(¢) are obtained from Eqgs.
(A1) and (A2) by replacing p with ¢, omitting the
factor of minus one to the power Z,/;, and regarding
the sums to be finite.

The expansions of the TZ2(¢) aboutp = (m, 7, -,
7) or § = 0 are given by

tpt1
TH¢) = — 27

LT [g(® + hy &),
R T 1) (8O + hof®) + 0

(A3)

where g,;(§) and 4,;(§) are defined below. First we
write

8 = CY + 3 cé?:s(i) (2"1) (Ad)

2 T
C{¥ and C2) are constants defined as follows:
Cif = 8u{=20(p + 2) + X 2r_g pa( D)}
+ @y,(L) — 27Dy, (L)IF]}, (A5)
where L = 7}, /2, and
Cz(zzri* = (27,.)2(51‘8 z’ [_%(D%p(L)lf
l
+ 77(D%r+1(L)lilE + W(I)—ép+%N+l(L)l§lf
- %(D—%M%N(L)l? - 26ir®—%p+%A‘(L)lf

+ 27 _lairq)—%w%Nq(L)]- (A6)
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FIG. 4. Contours of constant frequency for the second branch near § = 0 when p = 1. Both planes of constant ¢,
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Finally, if i # j, then

C2, = (27)%8,,0, % Ra®y,, (LR
+ 270Dy, v (DB — O_g (LY + 1)
+ (2”)-1q)—ém+%N—1(L)]- (AT

The second term in Eq. (A3) is defined as follows:
(a) If —3p — 1 4+ §Nis not a negative integer, then

) = [ - 2 +2”*”‘*N“F(%N—%p>}

N-—p Eiv-ts
AvYET
=){=Z]. (A8
() (o) 49
(b) If p = N, then

hes(§) = Rn(y — Inm) — 271 (5)1(2’5—;'7) (f:) (A9)

where y = 0.5772 - - - and E = X, &3/(2m)2

(© If —3p—1+4 4N is a negative integer less
than —1, then

hey(8) = [—

4 2(___ W)%m—%N—i»l = boobv In (E)]
N—p T@p—iN+1)

()2 oo

APPENDIX B

The expansion of ®,,(x) from zero into regions of
positive x is given by the following set of formulas:
(a) If m is not a negative integer, then

'm+1) 3 (=x)"
O ()=t T J_y_ TX
) x™+! amo(m 4+ n + D(nY) (B1)
(b) If m = —1, then
P (x)=y—Inx + E(—ﬁqx—n . (B2)

21 (n)(n)
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(c) If m is a negative integer less than —1, then

1 X
B o T
X e
20 (—m — 3) (—m —2)!
o x—m-l ( _ x)—m—l
LA Aty S—T
1

x [V +1+3+ + (—-m———l)]

yemil x ™ _ x—m+1
=D [(—m)! Nem+ D)

x_m+2 P

tiemyor } B

APPENDIX C

The bracketed terms appearing in Egs. (25) and
(26) are defined as follows. (m, n, r) is the sum of all
distinct terms of the form £7*£7&7 where i, j, and k
are distinct. For example,

(4,2,2) = E18365 + 526165 + G818,

Finally we define (m,n)= (m,n,0) and (m) =
(m, 0, 0). For example (2) = &2
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Functional analysis techniques are used to obtain stability theorems for the Faddeev equations in the
quantum-mechanical three-particle nonrelativistic scattering theory. Sufficient conditions are obtained in
order that the solutions of these equations not be sensitive to small variations of the off-shell two-particle
amplitudes. These conditions provide criteria for the validity of some of the previous formal investiga-

tions of the Faddeev equations.

I. INTRODUCTION

In recent years there have been numerous applica-
tions of Faddeev’s formulation of the quantum-
mechanical three-particle scattering problem with
pairwise interactions! to various aspects of nuclear
and particle physics,? liquid helium,® and quantum
statistical mechanics.* One of the advantages of this
formulation is that the three-particle scattering prob-
lem is expressed in terms of the exact solutions of the
scattering problems for the two-particle subsystems.

One part of the theory which is still lacking, how-
ever, is a “stability theorem”” stating that the solutions
of the Faddeev equations are not sensitive to small
variations of the two-particle off-shell amplitudes.
The need for such a result was first noted by Lovelace®
and more recently by others.® As Lovelace emphasized,
the stability question is particularly important in
practice because the off-shell two-particle amplitudes
are, in general, not exactly known. Some results
pertaining to the problem of stability have been
obtained by varying input parameters of computer
solutions of approximate versions of the Faddeev

1 L. D. Faddeev, Mathematical Aspects of the Three-Body Problem
in the Quantum Scattering Theory (Israel Program for Scientific
Translations, Jerusalem, 1965). References to earlier papers by this
author can be found here.

2 We refer to two reviews of these developments: K. M. Watson,
J. Nuttall, and J. S. R. Chisholm, Topics in Several Particle Dynamics
(Holden-Day, Inc., San Francisco, Calif., 1967); I. Duck, in Ad-
vances in Nuclear Physics, M. Baranger and E. Vogt, Eds. (Plenum
Press, New York, 1968), Vol. 1.

3 T. W. Burkhardt, Ann. Phys. (N.Y.) 47, 516 (1968); E. @stgaard,
Phys. Rev. 171, 248 (1968).

4 W. G. Gibson, Phys. Letters 21, 619 (1966); A. S. Reiner, Phys.
Rev. 151, 170 (1966); B. J. Baumgarth, Z. Physik 198, 148 (1967).

5 C. Lovelace, in Strong Interactions and High Energy Physics,
edited by R. G. Moorhouse (Plenum Press, Inc., New York, 1964);
Phys. Rev. 135, B1225 (1964).

6 M. Fontannaz, Nuovo Cimento 53B, 53 (1968); International
Nuclear Physics Conference, C. D. Goodman, P. H. Stelson, and
A. Zucker, Eds. (Academic Press Inc., New York, 1967), see the
discussion following the talk by R. D. Amado; R. Blankenbecler,
in Theory of Three-Particle Scattering in Quantum Mechanics, J.
Gillespie and J. Nuttall, Eds. (W. A. Benjamin, Inc., New York,
1968).

equations.” The trouble with this approach is that it is
a difficult matter to disentangle the properties of the
calculational schemes employed to solve the Faddeev
equations from the properties of the equations them-
selves. From a different point of view, several authors
have considered modifications of the Faddeev equa-
tions resulting from the expression of the two-particle
amplitudes as the sum of two parts.?

The purpose of the present paper is to investigate
the stability of the Faddeev equations by using the
rigorous formulation of perturbation theory for
linear operators in Banach spaces.® This work may be
considered the analog for the three-particle scattering
problem of that of Grossmann*® on the two-particle
problem in which the stability of the Lippmann-
Schwinger equation was investigated in a rigorous
manner.

In Sec. II we pose the stability problem for the
Faddeev equations and discuss the relationship of our
approach to previous work. Then in Sec. I11 we lay
the foundation for our work, including a short review
of some known results in a form suitable for our
purposes. In Sec. IV, sufficient conditions are obtained
for stability of the inhomogeneous Faddeev equations.

7 R. Aaron, R. D. Amado, and Y. Y. Yam, Phys. Rev. 136, B650
(1964); A. G. Sitenko, V. F. Kharchenko, and N. M. Petrov, Phys.
Letters 21, 54 (1966); H. Hebach, P. Henneberg, and H. Kiimmel,
ibid. 24B, 134 (1967); G. L. Shrenk and A. N. Mitra, Phys.
Rev. Letters 19, 530 (1967); W. Bierter and K. Dietrich, Nuovo
Cimento 52A, 1209 (1967); M. Fontannaz, Ref. 6; N. M. Petrov,
S. A. Storozhenko, and V. F. Kharchenko, Yad. Fiz. 6, 466
(1967) [Sov. J. Nucl. Phys. 6, 340 (1968)}.

8 E. O. Alt, P. Grassberger, and W. Sandhas, Nucl. Phys. B2,
167 (1967), and references contained therein; I. H. Sloan, Phys. Rev.
165, 1587 (1968); M. G. Fuda, ibid. 166, 1064 (1968); R. J. Yaes,
ibid. 170, 1236 (1968). We thank Dr. Yaes for preprints of his work
prior to publication.

9 See, for example, T. Kato, Perturbation Theory for Linear
Operators (Springer-Verlag, Inc., New York, 1966). We shall quote
some standard results from this reference, referred to as K.

10 A. Grossmann, J. Math. Phys. 2, 714 (1961). Note added in
proof: Similar work was also done by A. Ya. Povzner and T.
Ikebe. See T. Ikebe, Arch. Ratl. Mech. Anal. 5, 1 (1960), where
reference to Povzner’s work is given.
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Section V is then devoted to the discussion of the
corresponding sufficient conditions for stability of the
homogeneous equations. Finally, Sec. VI consists of
the concluding remarks.

I1. POSING THE STABILITY PROBLEM

The Faddeev equations are a set of three coupled
linear integral equations which can be written in the
inhomogeneous and homogeneous forms, respectively,
as

f(2) = g(2) + A(Z)f(2), M
[(2) = A(2)f(2). @

Here, z is an energy parameter which may assume
complex values and the integral operator A depends
upon the two-particle amplitudes in a linear manner.

These equations are defined in a scale of Banach
spaces B(f, u) consisting of bounded, Holder-con-
tinuous, complex-valued functions on R® which are
characterized by their Holder-exponent x and their
behavior at infinity (). The definition of B(f, u) is
somewhat involved and we refer to Ref. 1 for these
details. We consider instead, solely for the sake of
simplicity, the scale of Banach spaces B(f, u) con-
sisting of all bounded, continuous, complex-value
functions on R! satisfying

[f(x 4 ) = FOII < const x [y,
<1, 0<u<t,
1fG)l < comst X (1+|xD~°, 6>0, (3)
normed by

1S o = sup (1 + jx|)’
z,|v] <1

x |10 + LEEDZIEN,

Anything that we prove for B(0, u) can also be proved
for B(6, u). The procedure of using B instead of B is
not necessary and does not alter the results in any way.
The sole reason for introducing B is to simplify the
proof of Theorem 4.

Consider an operator of the form

H(x,2) = A(2) + xC(2), 0< k<1, )
and write the inhomogeneous and homogeneous
forms, respectively, of the corresponding equation

F(x,2) = G(x, z) + H(x, 2)F(x, 2), (6)
F(k, 2) = H(x, 2)F(«, 2). O
The stability problem can now be stated in the follow-
ing form. If G(k, z) and H(, z) are continuous in «

as « — 0 (in a sense to be specified),then under what
conditions are the solutions F(k, z) of (6) and the
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solutions F(x, z) and eigenvalues z = z(x) of (7)
continuous in « as « —0?

These questions are mathematically nontrivial be-
cause the operator 4 is unbounded and, moreover, is
not densely defined.!* If the function space involved
here were finite-dimensional, the stability problem
could readily be solved.!? It will be shown in Sec. V
that the question of the stability of the eigenvalues
z(x) and the solutions F(k, z) obtained from (7) can be
reduced to considerations in such a space. Unfor-
tunately, no such reduction is possible for the solutions
F(x, z) of (6).

The physical situation that we have in mind in
formulating the stability problem in the above manner
is as follows. We first consider a three-particle scatter-
ing problem described by (1) and (2). We then modify
the two-particle amplitudes resulting in the corre-
sponding Eqgs. (6) and (7). The objective is then to
discuss the relationship between the solutions of (6)
and (7) and of (1) and (2) resulting from the modi-
fication of the operator 4, as given by (5). This formu-
lation of the problem allows us to investigate the
effect of adding more terms in the separable
approximation’ and to give sufficient conditions for
the validity of the previous perturbation approaches to
the Faddeev equations.® With regard to the former
application it is essential that we do not restrict C to
be a single operator, but allow it to consist of a sum
of operators. Our conditions will always involve the
“total” operator C.

III. REVIEW OF PREVIOUS RESULTS

We first discuss some known results concerning (1)
and (2).

Theorem 1 (Fredholm alternative'™): Suppose that
the two-particle potentials V,; € B(0y, o), 05> }
(6o > % in the case of B(fy, uo)l, ue > 3, 1<i<
J <3, are real-valued. Then for 6 < 8y, u < pe,
there exists a positive integer n such that A™ has
a compact extension K from its domain D(4™)
to the entire space X, = B(0, x) which maps X,
into D(A™) for all positive integers m > n. More-
over, for a given value of z, either (2) has a non-
trivial solution, 0 3 fe D(4A™), or there exists a
unique solution f € D(4) of (1).

Definition 1°: A linear operator T is closed if
x, € D(T), x, — x, and Tx, — y imply that x € D(T)
and Tx = y.

11'S. Albeverio, W. Hunziker, W. Schneider, and R. Schrader,
Helv. Phys. Acta 40, 745 (1967).
'% The relevant theorems are contained in Ref. 9, Chap. L.
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Lemma 1: Given the conditions on the two-particle
potentials of Theorem 1, then 4 is a closed linear
operator.

This result is contained in Faddeev’s work,! al-
though it is not expressed in this terminology.

Lemma 2: 1f A is as in Lemma 1 and P is a poly-
nomial, then P(A) is a closed linear operator.

Proof: By virtue of Theorem 1, Lemma 1, and a
well-known result,'® we have only to show that a value
of z exists such that (2) has only the trivial solution.
However, Faddeev showed that this is true for any
z with Im z # 0.

Following Albeverio et al.,}' we define a norm on
D(4") by
k
1l = Zo (WA (®)
in terms of the norm on X,. It now follows from
Lemma 2 that these domains are Banach spaces
(K.IV.1.4), which will be denoted by X;.

Following the notation of Kato,® we denote by
B(X, Y) the set of all bounded linear operators on X
to Y, where X and Y are Banach spaces. If X = Y we
write B(X, X) = B(X). B(X, Y) is a Banach space
with the norm of T € B(X, Y) defined in the uniform
operator topology by
I Txlly

®)

[Tlxy = su .
o+zeX x| x

Also, we denote by C(X, Y) the set of all closed linear
operators in X to Y. If TeC(X,, Y), then, for
simplicity, we will not use a special notation for the
restriction of T to X;. Now, we have

Theorem 2t: 1f Theorem 1 holds and if (1) has a
unique solution fe X;, then (I — 4)™' e B(X,,, X,);
i.e., there exists a positive constant @ such that (/ is the
identity operator):

I — A gl < algln forall geX,. (10)

Indeed, by making use of the identity
m—1
I—-A7"=—4m" 3 4,
=0

it is easily seen that a permissible choice for 4 is

a=2[I—K)-

12 See, for example, N. Dunford and J. T. Schwartz, Linear
Operators (Interscience Publishers, Inc., New York, 1958), Vol. I,
p- 602.
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IV. STABILITY OF THE INHOMOGENEOUS
FADDEEV EQUATIONS

Our first result concerning the stability of the
Faddeev equation is

Theorem 3: If z is such that [I — A(z)]! exists in the
sense of Theorem 2, D(C) > D(4), and

IC@ul, < dluly forall ueX;, (1)

d < 1/a, (12)

ie., C(z)e B(X,, X,,), then [I — H(k, )] exists as
an element of B(X,,, X;) and is continuous in the uni-
form operator topology for sufficiently small « > 0.

with

Proof: Consider the formal identity
[l — Hx, 7 = I — A@)]'I — xS
=[I - A@)]™ gO[KS(Z)]’ (13)

in which S(z) = C@)[I — A()].
Combining (10) and (11) we see that S(z) € B(X,,).
Using (10) again it follows from (13) that

[l — H(x, 2)]* e B(X,,, X;)

if it exists. Since « € [0, 1], a sufficient condition for
the absolute and uniform (in «) convergence of the
series (13) is

1S < 1. (14)

Combining this condition with (10) and (11) gives the
bound (12) on d. With this condition [ — H(xk, z)]*
exists.

Using (10) and (13) we obtain

[l — H(x, 27 — [I — A(2)]""}gll,
L alel |S@lw [T — <] 1S ] gl

for all ge X,,. Hence, [I — H(k, z)[! is continuous
in « for sufficiently small « > 0 in the uniform topol-
ogy, and the theorem is proved.

The bound on d obtained above is not very illumi-
nating. Using an elementary identity we find

d < 3= K@llo < 41 + 1K@l (15)

A sufficient condition for the existence of [/ — K(z)]
is |K(2)llp < 1, which is satisfied for sufficiently large
values of |z|*. In this case we have d < 1. In general
however, it is only necessary that |K?(z)|, < 1 for
some positive integer p. In this case it is possible that
d> 1.

The results of Theorem 3 derive from the sufficient
condition (14). It is, of course, only necessary that
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I 8?(2)}|,, < 1 for some positive integer p. We shall
limit consideration, in the present paper, to the
investigation of the consequences of the sufficient
condition (11).

We note that it follows directly from Theorem 3
that the solutions of (6) are continuous in « for
sufficiently small « > 0 in the uniform topology.
Thus, we have essentially! completed the stability
problem for the scattering states and the rest of the
paper will be primarily concerned with the bound-
state problem.

V. STABILITY OF THE HOMOGENEOUS
FADDEEV EQUATIONS

We can obtain from (11) two weaker conditions

1CEul, < d llully (16)
and
C@ully < d|luly, with ueXy,
D(C)> D(A), and d< lfa. (17)

Condition (17) is usually described by saying that C
is A-bounded,® whereas (16) tells us that C € B(X;).
Lemma 1 states that A(z) is a closed linear operator.
If (17) holds with d < 1 it follows (K.IV.1.1) that
H(xk, z) is also a closed linear operator. However, as
noted above, the inequality d < 1 need not be satisfied.
Thus, we need to impose a more stringent condition
on the operator C. We will show, however, that this
proposed condition actually follows from (16).

Definition 2°: Let T and S be two linear operators in
a Banach space X such that D(S) > D(T). S is T-
compact if, for any sequence u, € D(T) with both
{u,} and {Tu,} bounded, {Su,} contains a convergent
subsequence. Equivalently, {Su,} is relatively compact,
l.e., it has compact closure.

We now have
Theorem 4. If (16) holds then C is 4-compact.

This condition is stronger than 4-boundedness, but
the assumption that d < 1 is not required. In order to
prove this theorem we use the following standard
result.

Lemma 3 (Ascoli-Arzela theorem): Let C(RY, 0) be
the Banach space of complex-valued continuous
bounded functions normed by

1flle = Seulg(l + D’ IfGL 0> 4 (18)

1 The uniqueness of these solutions will be established in Theo-
rem 5.
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Consider an infinite sequence {f,(x)} € C(R', ) such
that: f,(x) is equicontinuous on each closed sub-
interval of R,

lim sup |f,(x) = f,(x)| =0 foralln, (19)
<é

30t [z—a'|<

and there exists a uniform bound M and a positive
number r such that

112001 < MIIxI°, 6>,

for all x such that [x| > r and all n. Then the sequence
{f.(x)} is relatively compact in C(RY, ), i.e., from
every such sequence a subsequence can be extracted
which converges uniformly on every compact subset
of RL.

(20)

In the usual statement of this result the domain of
the functions is taken to be a compact set. In that case
the theorem is true if these functions are uniformly
bounded and equicontinuous. In the case of interest
here, the treatment of Epstein'® shows that it is
sufficient to require that the functions be equicontin-
uous on each compact subset of the domain and
equibounded (in n) at (at least) one point, the
uniform-boundedness property following from these
conditions. In a paper on the two-particle scattering
problem (Lippmann-Schwinger equation) Belinfante®
stated the above theorem for functions on R® with a
condition similar to (20), but with 6 = 1. In the
three-particle problem, however, (20) is more natural,
as will be seen below.

Proof of Theorem 4: Consider a bounded infinite
sequence in Xy, {u}e X, |ul, <q=const. We
must show that the sequence {Cu,} has a subsequence
which converges in the norm topology of X;.

In terms of the norm on X, we have

”Ajuv“o S q’ ] = 0, 1'
1t follows from (16) that

[Cu,fly < dgq
or

“Ajcuv”() S an j = 09 1' (21)

Since any Holder-continuous function is a fortiori
continuous it follows that the norms of C(R?, ) and
X, are equivalent in the sense that two positive u-
independent constants « and B exist such that

« flulle < flulle < B lulo.

s B. Epstein, Partial Differential Equations (McGraw-Hill Book
Co., Inc., New York, 1962), p. 4.
18 J. G. Belinfante, J. Math. Phys. 5, 1070 (1964).

(22)
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This equivalence coupled with (21) implies that

fA’Cu,llo < dqq’s, ¢q' = const, j=0,1,

or
|A°Cu(x)] < dgq'(L + IxIy™*, j=0,1.

Hence, for sufficiently large r > 0,

A'Cu, ()] < 44
]

x| >r, j=0,1,

and the sequences {4’Cu (x)}, j = 0, 1, satisfy (20).
Now, introduce the norm
¥ Ifx 4+ y) = f(x)]
|yI*
>0 O<u<l.

b

Iflle = slu‘gl(l + |x|
(23)

Clearly this norm is equivalent in the sense of (22) to
the norms on C(R', #) and X,. Combining this fact
with (21) we obtain |A4'Cu o < dgq’, j=0, 1,
q" = const. Now using (23) we find

JA7Cu,(x + y) — A’Cu,(x)| < dqq” [y* (1 + |x])~°,
j=0,1.

Hence, the sequences {4°Cu }, j = 0, 1, are equicon-
tinuous on each closed (and hence compact) sub-
interval of R%.

It now follows from Lemma 3 that each of the
sequences {4’Cu }, j =0, 1, have convergent sub-
sequences in C(R?, 6). By the equivalence of the norms
these subsequences are also convergent in X, and,
therefore, the sequence {Cu,} has a convergent sub-
sequence in the norm topology of X;, which completes
the proof of the theorem.

Definition 3°: For T € C(X, Y) we define

nul T(nullity or kernel index of T)
= dimension of the null space of T,
def T (deficiency or deficiency index of T)
= dimension of the quotient space Y/R(T), in
which R(T) denotes the range of 7.

These quantities are either nonnegative integers or
infinite. If they are both finite and R(T) is closed,then
T is said to be Fredholm.'” In this case, the index of T
is defined as

ind T=nul T — def T.

If T satisfies the Fredholm alternative, thenind 7T = 0.

17 This condition can be relaxed by only requiring that one of the
pair nul 7, def T be finite. In this case ind 7 is still well defined and
T is said to be semi-Fredholm. We shall not require this more
general concept.
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It follows from Lemma 1 and an elementary result
that A — Iis a closed linear operator. From the proof
of Theorem 1 we have

nul (4 — 1) < oo, (24)
def (4 — 1) < o0,

and
ind (4 —1)=0. (25)

From these facts and the closedness of R(4),'® and
consequently the closedness of R(4 — I), we see that
A — Iis Fredholm.

We can now return to the discussion preceding
Definition 2 and prove that H(x, z) is a closed linear
operator without requiring the condition 4 < I.
Actually, we obtain additional results without stronger
hypotheses.

Theorem 5. If (11) holds then the operator H — I
is linear, closed, Fredholm, and satisfies the Fred-
holm alternative.

Proof: The linearity is obvious and the remaining
properties follow from the facts that 4 — [ is closed
and Fredholm, Eq. (25), and Theorems 4 and
K.IV.5.26.

This theorem states, among other things, that

ind (H—I) = ind (4 — I),

but says nothing regarding the relative magnitudes of
the respective kernel and deficiency indices. We now
consider this question. A preliminary result is

Lemma 4: 1f (11) obtains then the set of z-values for
which [I — H(x, z)I™* does not exist (in the sense of
Theorem 3) is at most countable, closed, and is con-
tained within a finite interval on the real axis.

Proof: Faddeev! showed that these statements hold
for [l — A(2)]7. It has been shown in Theorem 3
that, if [ — A(z)]! exists and (11) obtains, then
[/ — H(x, z)I* also exists. The proof of the lemma
follows immediately.

It follows from Theorem 35 that the set of z-values
discussed in Lemma 4 is precisely that for which
nontrivial solutions of (7) exist.

18 This can easily be shown by using some elementary considera-
tions and Eq. (7.8) of Ref. 1. This simple result was previously noted,
by the use of a slightly different argument, by K. Mochizuki, J.
Math. Soc. Japan 19, 123 (1967).
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We now have

Theorem 6: If A and H are as in Theorem 5, then
nl(H—D)<nul(4—1)< 0.1
Proof: Consider the equation

A@f @) = A2)f2),

where A(z) is the eigenvalue of 4 as a function of
energy.? Choose z, to correspond to a nontrivial

solution of (2), i.e.,
Mzp) = 1. (27)

Since z, is an element of a set which is at most count-
able, we can draw a circle around z,:

e> 0,

such that if ze€Z, and e is sufficiently small then
A(z) # 1. In other words, [A(z) — A(z)]* exists in the
sense of Theorem 2 for z € Z_.

As z ranges over Z,, A(z) traverses some path in the
complex plane which can be taken as a circle I'
enclosing the point A = 1. We now define the operator

= 51; L [i(z) — A" dA

(26)

Ze={Z:|Z_ZOI = 6}7

(28)

and note that I" separates the spectrum, i.e., the z, in
(27) is unique. P is the eigenprojection onto the closed
linear manifold, M, consisting of all f satisfying
(26) with 4 = 1. Furthermore, by (24),

nul (4 — I) = dim M < oo. (29)

Now consider the operator
P =5 [ U2 = B T a2, (30)
2w Jr

where z and I are the same as above and A(x, z) is the
eigenvalue of H(«, z) as a function of « and z.
From the estimate

IPE)llm1 < p (A, 2) — Hx, 2)) Himas
p = radius of I,

and Theorem 3 it follows that P(x) exists as an
element of B(X,,, X;) and is continuous in « for
sufficiently small « > 0 in the uniform topology.

1% This theorem is true in a finite-dimensional space (see Ref. 9,
Chap. 1) and is what one expects physically. In the present case with
infinite dimensionality it can be proved if C is A-bounded with
d < 1 (K.IV.5.22). This restriction on d can be lifted if C is a single
operator and, furthermore, the equality holds in this case
(K.IV.5.31). We pointed out in Sec. II, however, that this condition
is too abusive to the physical problem. By making use of our previous
results we give a different proof of this theorem, unhampered by the
restrictions noted above.

20 There should be no confusion concerning our two usages of the
word ‘‘eigenvalue.” In (26), 4 is an eigenvalue of A4, whereas z is a
discrete eigenvalue of the Hamiltonian.
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Furthermore,® P(x) is a projection and is the sum of
the eigenprojections of all eigenvalues of H{x, z)
lying inside I'. This shows that I' separates the
spectrum of H(x, z) and completes the proof of the
theorem.

A direct consequence of this theorem is that, in
physical terms, the eigenvalues A(x, z(«)) of H(k, z(x))
are derived from the corresponding eigenvalue A(z)
of A(z) by splitting, i.e., by breaking the degeneracy.

We can now establish the stability of the bound
state energies.

Theorem 7: If H is as in the above theorem, then
the eigenvalues z(x), obtained from (7), are continuous
functions of « for sufficiently small « > 0.

Proof: Let P(x) be as in the preceding theorem, and
denote its range by M(x). It then follows from
K.I1.4.10 that M(x) and M are isomorphic. In partic-
ular,

dim M(x) = dim M. (1)

It now follows from K.VII.1.8 that the eigenvalues,
Mec, z(x)), of H(k, z) are continuous functions of «,
i.e., branches of one or several analytic functions
which have at most algebraic singularities near
x = 0.2 Moreover, Kato’s discussion emphasizes
that, since we are dealing with a finite system of
eigenvalues (the part of the spectrum inside I'), the
problem is reduced to a problem in a finite-dimensional
space. We need only restrict ourselves to the subspace
M(x).

In view of the finite-dimensional nature of the
problem we can now use the result?® that A(, z) is
continuous separately in the variables « and z if
H(x, z) has this property. The continuity of z(«) in «
now follows from the continuity of A(«, z) in the two
variables separately, the mapping (27), and the
discussion following that equation. This completes
the proof of the theorem.

Theorem 8: If H is as in Theorem 5, then the
nontrivial solutions of (7), F(«, z), are continuous
functions of « for sufficiently small « > 0.

Proof: This result follows as a corollary to the proof
of the preceding theorem.

21 Kato states this theorem for the case in which H(k, z) is holo-
morphic in « near « = 0, whereas we have been concerned with the
case in which H(x, z) is only continuous in « € [0, 1] for sufficiently
small «. Following a discussion by Kato, however, (Ref. 9, p. 365)
we can consider H(k, z) to be real holomorphic if it admits a Taylor
expansion at each x € [0, 1]. In this case, H(x, z) can be extended by
the Taylor series to complex values of « in some neighborhood D of
[0, 1). This extended H(x, z) is then holomorphic for «k € D. We note
that in the present case the Taylor expansion is entailed by (5).

22 See Ref. 9, p. 116.
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We have now completed our discussion of the
stability of the Faddeev equations. The final theorem
gives more information concerning the eigenvalues

z(x).

Theorem 9: If H is as in Theorem 5, then the eigen-
values z(x), obtained from (7):

(a) are at most countable, form a closed set, are
contained within a finite interval on the real axis,

(b) have finite multiplicity, and

(c) have the same accumulation points as the eigen-
values z obtained from (2).

Proof: 1t is known that the eigenvalues z, obtained
from (2), have the properties (a) and (b).»* It follows
from Theorem 5 and Lemma 4 that (a) holds for
z(x). The validity of (b) for z(«) follows from (29) and
(31). Finally, (c) follows from Theorems 4 and
K.1V.5.35, and the theorem is proved.

We see from this theorem that H has the spectrum
of a compact operator, as does 4. It does not neces-
sarily follow, however, that some power of H has a
compact extension to the entire space, X,, although
A has this property.> However, if we take the point
of view, implied by the discussion at the end of
Sec. 11, that (6) and (7) evaluated at some «, € (0, 1]
are legitimate Faddeev equations, i.e., that Faddeev’s
estimates apply to them, then Theorem 1 will obtain
and consequently the H™, m >n, have compact
extensions to all of X,. We note, however, that all
our results are independent of this additional assump-
tion.

%3 These results were proved under different conditions on the
two-particle potentials than those imposed by Faddeev by W.
Hunziker, Helv. Phys. Acta 39, 451 (1966).

%4 In this case, the Hilbert space provides a less varied situation
than other Banach spaces. It is known in the case of either a bounded
normal operator in an arbitrary Hilbert space or a sclf-adjoint oper-
ator (not necessarily bounded) in L*(—00, o) that operators with
spectra of compact operators are necessarily compact. Discussion of
these results and references to the original papers can be found in
Ref. 13, p. 611. Note added in proof: However, this property does
not necessarily hold if the condition of normality is removed. See
C. R. Putnam, Commutation Properties of Hilbert Space Operators
(Springer-Verlag, Inc., New York, 1967), p. 48.

W. W. ZACHARY

VI. CONCLUDING REMARKS

It has been shown that the hypotheses of Theorem
3 are sufficient to prove the stability properties of the
Faddeev equations. These conditions provide criteria
for the validity of some of the previous formal
investigations.”®

Our results could be extended in at least two ways.
First, it would be interesting to see whether or not the
two-particle potentials used in practical problems”
lead to operators which satisfy our sufficient con-
ditions. Secondly, necessary conditions for stability
could be obtained by considering the consequences of
the requirement that the spectral radius of the opera-
tor S, introduced in Theorem 3, be less than unity, or
by considering some equivalent condition. Alter-
natively, an attempt could be made to prove the
existence of [I — H(xk, z)]™* without using the series
(13).

After this paper was completed, we received a
preprint of Hepp’s interesting work on the N-particle
problem?® which contains, among other things, some
results concerning stability. In obtaining these results
stronger conditions are imposed on the two-particle
potentials than in the present work. These conditions
require that the homogeneous form of the generalized
Faddeev equations have no nontrivial solutions.
On the other hand, his results hold for the
N-particle problem, whereas we have been concerned
only with the case N = 3. It appears that, with regard
to the problem of stability of the Faddeev equations,
the methods and results of the two approaches are
complementary.
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Evaluation of ‘‘Kondo”’’ Integrals
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Exact and approximate expressions are given for the integrals

Unm = [ 2, X"(x2 4 A%)-"(efe 4 1)1 dx.

The integrals

D wo®

= [ @ e,
where f(w) = (ef* + 1) is the Fermi function
(8 = 1/kT), occur throughout the theory of the
Kondo effect. Most recently, the case m = 2 has been
discussed by Klein' who approximated them by taking
the derivative of f(w) as a pulse function. The purpose
of this note is to point out that these integrals can be
evaluated “‘exactly.”

First of all, only the cases m = 1, n = 0, 1 need be
treated in detail since the others may be obtained by
differentiation with respect to A. For D = oo, these
integrals have been evaluated by Adawi and the
author® in terms of the digamma function.

Next we note that

D w® n
Dam = f T U@ + (Dol do. @

Since f(w) + f(—w) = 1, if n is even, v,,, is elemen-
tary. Thus, only the case v;; need be considered, and
we have

D fw
vy = —J; 1 A tanh (—2—) do. 3

For the case of low temperatures, which we define as
kT < Alw, Fermi integrals are easily evaluated by a
variety of methods. For example,? to order ¢ 2,

2
e cin s (3

+§1 KBy (2% — 1)(5’75)%, @

where B, is a signed Bernoulli number, For kT «
Alm,
D 2

e —31n [1 + (—)} + Ty, (5

A 6A®

1 A. P. Klein, Phys. Rev. 172, 520 (1968).
2 1. Adawi and M. L. Glasser, J. Appl. Phys. 37, 364 (1966).
3 M. L. Glasser, J. Math. Phys. 5, 1150 (1964).

which agrees [to lowest order in (A/D)] with Naga-
oka’s estimate.*

For the high-temperature case k7T > Afwr, exact
expressions can be derived as follows. We first evaluate
the integral

® X
J =J; 1 Al tanh ax cos xy dx. 6)

Since the integrand is even,

“© x tanh ax
J=}Re f x tanh ox
: —®© x2 +A2

and we evaluate this by residues by closing the con-
tour in the upper half-plane. x(x* + A?)™! has a
simple pole at x = iA with residues }, tanh ax has
simple poles at x = kmi/2« with residue o2, k =1,
3,5, (we assume 2aA 3 kw so there is no double
pole), so we obtain

e dx

)

. ke~(k1r/2a)y . A
J=2m3 % _ Tian(ad)e™. (8)
v (km)? — (QeA? 2

Thus, by the Fourier inversion theorem,

Ry tanh ax
J‘eo 4 z ke—(k'lr/2a)y A Ay
= ——— —ta T dy.
, [ T 2 k)’ — (D) n(«A)e ]cosxy y

©®
We now integrate both sides of (9) from 0 to D
(taking o« = }B) and then integrate with respect to y
(or vice versa), all integrations being trivial. Thus
we obtain

_ k tan™! (8D/kn)
vy = tan (3fA)tan"' (D/A) — 4 —_——
11 (364) (D/A) ”kgm (km)? — (ﬂA)z

(10)
Thisis valid for kT % Afm,A[37, -+« . ForkT > Alm,
we find easily that

v1, ~ 3BA tan—! (D/A) — 3AD. (11)

%Y. Nagaoka, Phys. Rev. 138, A1112 (1965).
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For the case kT = A/, a double pole occurs in the
integrand in (7), but in this case the series which
arises can be summed. We give only the result:

2 (DA 1 3TAYD*—AY
%mA=ﬂ=lef+N_X5dkm+AW
N

-t (%51))}}. (12)

This cannot, of course, be differentiated with respect
to A to obtain other v, , but the same procedure can
be applied to obtain all v,,,,, (Af = pw)in similar closed
form.

In conclusion, we discuss the integrals v, = v,
evaluated by Klein. We have, exactly,

D 1 1
Uy = m tan (D/A) (13)
1. __ b
vy = tan™ (D/A) — 3 D" 1 A (14)

which agree to zero order in (A/D) with Klein’s
estimates. For v; we obtain

1 D a?
v 2 — —[Dz A + 3—A2(kT)2:|’

2A®
for low temperature,
DA

1 -1
o~ — —t D/A) |,
o 4AkT[D2 + A? an™ (D] )jl
for high temperature.

(15)
The leading term (to zero order in D/A) in each case
agrees with Klein’s estimate but, for example, the
lowest temperature-dependent correction for small T
is given incorrectly by a factor of 10. For v, Klein
obtains (appendix, Ref. 1), to lowest order in (A/D),
vy ~ In (A/D) + (12A%)(KT)",
for low temperature,

~ (m[2)(fA) — In (BD) — 1,

for high temperature. (16)
Our results show
u~In(A/D) + (=*[6A*)(kT)*
~ (7[4)(BA) — 3BD. amn

M. L. GLASSER

As a final example we consider the double integral
which arises in evaluating the averaged value of a
localized spin®

J« J« {ep(e—e ) B ’3 }
(e — €) e —¢
X f(e)[1 — f()] de de'.
By means of the identity

1
u e — 1) —u? =f (1 — et dt
0

(18)

and the invariance of the resulting integrand under
the substitution ¢t — 1 — ¢, (13) can be written as

1
s =1 [ anreoyy, (19)
0
where
8D ta: (1—t)z A,,t—1 —t
FQBD):J -‘—j—e—dx=fu—j-idu,
0 14 ¢° 1 14u
A= (20

The integral in (15) can easily be approximated for
large as well as small 4. For example, writing

A 0 1 4]
I
from a table of Mellin transforms we have
F(BD) = mescmt + (t — D)WA-LF(, 1 — ¢
2— ¢, =AY = AL F(L 1 4+ =47, (21
Thus, for kT « D,
S~ 2DIn kT + 21n (D/kT) + const
and, for kT D,
S =~ ¥(D|kT)* + O[(D]kT)].

Approximating the Fermi function by a trapezoid
again gives the leading term correctly, but in each case
the first correction is given incorrectly in sign and
magnitude.

® M. L. Glasser and J. I. Kaplan, Nuovo Cimento (to be

-published).
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Knowing only the zero-field magnetization (e.g., Yang’s result) of the Ising model in any number of
dimensions, one can construct a lower bound on (%), the magnetization in finite field. Knowledge of u,
the internal energy per bond, enables a more efficient lower bound to be constructed. Both are applica-
tions of the Griffiths inequality, as recently generalized by Kelly and Sherman, and should prove useful
in the lattice gas problem where it is essential to know m(#).

We present nontrivial Jower bounds on the mag-
netization in finite magnetic field |m(h)| of the Ising
model. An ‘“‘upper upper” bound is |m(h)| = 1.
Subsequently we hope to derive an improved upper
bound which, together with the present result, should
help constrain the true m(h) fairly well.

Consider an isotropic M X N lattice, with a spin
at every site and periodic boundary conditions, and a
Hamiltonian

Hh =-JY o0, —h>o,. ()
(i4) )
The partition function Z(M, N, k, f) is:
Z(M, N, h, B) = Tr {e*H}
= Z(M, N, I’, BP0y, (2)

where ( ), indicates “thermodynamic average w.r.t.
H(#").” Expanding:

) . /MN \
(P Pm, = cosh™™ f(h — WY TI(1+ o) )
\ /v
)
in which ¢ = tanh pg(h — &').
We factor the product into pairs and apply the
generalized Griffiths inequality' due to Kelly and
Sherman.?

MN - \\
\1:[( Gz't)/hl

tmN
2 11] ({1 + tlo; + 0is1) + t20{0i+1]>h" 4)

By transiational invariance, all factors are equal, and
the rhs of (4) is

(1 + 2mm(h’) + ¢ |u(h))HHS, (5)

* This research supported by the United States Air Force,
AFOSR grant No. 69-1642.

! R. B. Griffiths, Phys. Rev. 152, 240 (1966).

2 D. G. Kelly and S. Sherman, J. Math. Phys. 9, 466 (1968).

In the limit MN — o followed by A" — 0, Griffiths
has shown that m is positive and obeys

lim lim mh") > my, (6)

R0 MN— o0
where my is the (positive) magnetization calculated by
Yang.? Similarly, the limit:

lim lim |u(h")] = |u] @)

=0 MN->w
is the zero-field short-range correlation function—i.e.,

the absolute value of the internal energy per bond.
Thus,

Z(M, N, h, B) > Z(M, N, 0, )(cosh™¥ gh)
x (1 + 2tmy + 2 [u)}¥N. (8)
On the lhs, we have

Z(M, N, h, ) =exp [M Ng f hdh”m(h”):IZ(M , N, 0, B).
1
®

Because m(h") is a nondecreasing function of its
argument,

R
hm(h) > f dh"m(h"). (10
Combine (10) and (8) to obtain
m{h) > (hf){log cosh Bk
+ dlog (1 4+ 2tmy + 2 {u)}. (1)

We illustrate this result in Fig. 1, plotting the rhs of
(11) for one temperature above T, (curve A), one at
T, (B),and two below T, (C and D).

A lower bound, which is somewhat less efficient
above T, but almost as good as (11) below it, can be
obtained with far less numerical work; according to
Refs. (1) and (2), |u| > m5, therefore using this on
the rhs of (11) we find

m(h) 2 (ph)~ log (cosh fh + my sinh Bh). (12)

Above or at T,, my, = 0, and the resultant lower
bound is shown as the dotted curve in Fig. 1. Below

3 C. N. Yang, Phys. Rev. 85, 808 (1952).
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F1G. 1. Lower bounds to the mag-
netization at finite field m(k) plotted
vs x = tan fh at various temperatures.
For A, T|T,=1.83; for B, T=T,;
for C, T|T, = 0.927; and for D, T/T, =
0.61; all using inequality (11). Dotted
curve is inequality (12) at all T > T,.

X = TANH /QH

T, the lower bound (12) rapidly approaches (11) and
would be indistinguishable from curves C and D at the
temperatures we have chosen, on the scale of our
graph.

It is hoped that the present results might be useful

in lattice gas theory as well as in magnetism. It should
be noted that they are not at all restricted to two
dimensions; once a variational estimate of m in zero
field is known for three dimensions, it can be used
forthwith in Eq. (12).
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Given an irreducible unitary representation of a noncompact group, what happens if one tries to
diagonalize one of the noncompact generators ? We study some aspects of this question on an example,
chosen to be a representation of the discrete series with j = —~4 of the special real linear group in two

dimensions.

I. INTRODUCTION

Classical Fourier analysis is the standard example
of diagonalization of a noncompact generator (in this
case, the generator of translations along the real line).
Some interesting properties arise when such an
Abelian noncompact group is imbedded in a larger
structure. This occurs, for instance, when one studies
the group G = SL(2R), of two-by-two real unimodu-
lar matrices. Let us first recall elementary properties
of this group that will be used. An arbitrary element
g € G is of the form z = (%), a, b, ¢, d real, ad —
bec = 1. The Lie algebra of this simple group is realized
as traceless real two-by-two matrices, a basis of which
is

1(1 0) 1(0 1) 1(0 —1)

h == y fa=— sy I'=7 s

2\0 -1 2\1 0 2\1 0
8y

satisfying the commutation rules
[r, tl] = ta, [tl!tZ] = —7. (2)

These generators are such that, given a unitary
representation of G, their representatives are skew-
adjoint operators. Let us assume that we are given
such a representation, and let us denote by Ty, T,
and R these representatives. Since R generates a com-
pact subgroup, its spectrum, though unbounded, is
discrete. From the commutation rule

[R, (T, £+ iTy)] = i:i(T1 + iTy),

one sees that T, & i7, play the role of raising and
lowering operators. On the other hand, suppose we
diagonalize T, . Its spectrum will be continuous of the
form iA (4 real). The commutation rule

[Tu RF T,)] = :':(R F 1)

seems to indicate that acting with R F T, on some
“improper states™ |4), corresponding to the spectral
value A of —iT;, will lead to the “improper state”

[r,t] = —1,,

* Work supported by the U.S. Atomic Energy Commission.
1 Permanent address: Service de Physique Theorique, CEN
Saclay, BP No. 2, 91, Gif sur Yvette, France.

|A Fi). We intend to discuss more precisely this
question.

To do this, we shall specifically study one irreducible
representation of G which we choose to be one of
the discrete series.! In Sec. II, we describe this
representation following Ref. 2. Section III is devoted
to the diagonalization of T, through a Mellin trans-
form. It turns out that we are naturally led to study
some properties of a set of orthogonal polynomials,
of a type introduced by Pollaczek.® Finally, in Sec.
IV, we consider the representation of G in this new
basis.*

It will be understood in the following that when a
real positive number x is taken to complex power y,
arg x = 0. The complex conjugate of z will be
denoted z*.

II. A REPRESENTATION OF THE
DISCRETE SERIES

As in Ref. 2, let us consider the vector space D of
analytic functions such that if fe D:

(1) f(2) is analytic for Im z > 0, and continuous
with all its derivatives in Im z > 0;

() f(z) = (1f2)f(—(1/2)) is also continuous with
all its derivatives in Im z > 0.

As a result of (1) and (2), one can define a norm on
D through

=L f " ax LGP 3)
W J—0

Equipped with this norm, D is not complete. Its com-
pletion is a Hilbert space J of analytic functions in
the upper half-plane. Indeed, if fe D, its value at a

! V. Bargmann, Ann. Math. 48, 569 (1947).

2 [. M. Gel'fand, M. I. Graev, and N, Y. Vilenkin, Generalized
Functions, Vol. 5 (Academic Press Inc., New York, 1966), Chap.
VII, Sec. 5. .

3 G. Szegd, Orthogonal Polynomials (American Mathematical
Society, Providence, R.1., 1959).

4 While completing this paper, we received a preprint from
A, O. Barut and E. C. Phillips (“‘Matrix elements of representations
of noncompact groups in a continuous basis,” University of
Colorado, 1967), which deals with a similar subject.
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given point z(Im z > 0) is such that
|

X —2Z

<= [Pty

Imz > 0:|f(2)] < I/1/2(Im 2)%, 4

Equation (4) shows that a Cauchy sequence in D,
with respect to the norm (3), will converge uniformly,
in the ordinary sense, on any compact set of the upper
half z-plane, to an analytic function. D is dense in JC,
but it is clear that it is not all of J€ as shown by the
example of [1/(z + i)} log (1 — iz)/2,which belongs to
Je but not to D; it is, however, the limit of

dx

+o
RC)

@) = 2177

or

A
S-(z-D(z+ ",
Tp
which belongs to D.

For an alternative description of J¢, we introduce
the functions f,(z) € D:

i@=@C-)"C+i)™"" n=0,1,---,
(fo | f) = Bum- (5)

Let us show that the system {f,} is complete. It is
sufficient to prove that if f€® and (f, |f) =0 for
all n, then f = 0. Indeed, an explicit computation
leads to (d/dz)"(z + i)"f(2)|,~; =0, for n=0,
1, . By recurrence, all derivatives of f vanish at
z = i and since f'is analytic, f = 0. As a consequence,
the elements of JC are characterized by sequences of
complex numbers {a,}, n nonnegative integer such
that Y |a,|? < oo; the analytic function itself is
obtained as za" a, f,,(2z). This series converges uniformly
in any compact domain of the upper half-plane,
since such a domain can be enclosed in a circle
|(z — )/(z + 1)] £ p < 1, where one has
N © b3
Sa.fd| < |Slalio =]

Let (©%) = g € G and f € D; the set of transformations

_ 1 az + ¢
[ U@, UESE = df(bz 1 d) ®)

leave D invariant and can be extended to a unitary
representation of G in JC. This representation belongs
to the discrete series!; it is irreducible and will be
studied in the following. From the global form (6),
we can derive the representatives of the generators
T,, T,, and R definedin theintroduction. They are the

C. ITZYKSON

differential operators

T, = l(1 + 2z i),
2

dz
1 d
= — =} o) — 7
T, 2[z+(z 1)dz], ™
1 9 d
= iliz + (Z + 1) dz]'
The complete set { f,,} satisfies
Rf, = i(n + Hf.,
(Tl + lTZ)fn = nfn—l’ (8)

(T, —iT)f, = —(n + D foia-

In other words, in this basis R is diagonal with eigen-
values of the form i(n + %), where n is a nonnegative
integer. The Casimir operator T3 4 T3 — R? takes in
this representation the value —4. If this is written as
Jj(j + 1), it corresponds to a value of j equal to —3.

III. DIAGONALIZATION OF A NONCOMPACT
GENERATOR

Our aim is now to diagonalize a noncompact
generator, Ty, say. An eigenfunction of the corre-
sponding differential operator (7) is a homogeneous
function z% For no value of the exponent does such
a function belong to JC. This is to be expected: T has
no eigenvalue (in the sense that they would correspond
to normalizable eigenstates) but we expect its spectrum
to be purely imaginary, or (izI — T;)™* to exist as a
bounded operator for Im z 7 0.

We shall obtain this diagonal form by studying
the following Mellin transform. Let f'e &; we intro-
duce the function of the real variable 4, F(1) by

s~ F Ry =i SR T ppipyptn, (o)

It is clear that the integral converges in the ordinary
sense for fe D, We shall extend it with the help of
the transforms {F,} of the basic functions {f,} intro-
duced in Sec. 1I:

fa—Fu,
Fu(i) = SR [ o — 1y 1yt

(10)

A convenient way of performing the integral (10) is
to observe that the series

30— 0+ )

1
e+ D —tp—=1)’

<1, 0<Lp,
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converges absolutely and uniformly in
e} <1~ €l x [0 p < 0]

Hence, we obtain for the set {F,} the generating
function:

ke . coshwlf“’ p
H< LY F (A)=—] d
1< g @ T Jo Pp(l—t)+(]+1)

)—éﬂ',a’ (11)

~h—ia

= (1 + 0731 —
where we have used the fact that

Fy) = cosh 74 f
= 11m

p +1
—ﬂA i€
et 277 [f w0—i€

by Cauchy’s theorem.

In formula (11), the phases of (1 4-¢) and (1 — )
are zero for —1 <72 < +1L.

We summarize elementary properties of the
functions F,(4) in the following:

~%—u

—%-—zl

Proposition 1:
(a) F,(4) is polynomial in A of precise degree n and
F(i2) = 1;

(b) (=)"F*3*) = (=1)"F,(~1) = F,(})
= F(—n, %+ ik;1;2); (12)
(o) for |1] < 1,
S () = (1 + 07— b
+o0 * ; d)t _ ) )
@ f R A P T SRR (D

(€) 2iAF,(A) = nF, (1) — (n + DF,,(2).

Proof: Proposition 1 asserts that the F,(4) forms an
orthonormal set of polynomials in the Hilbert space
of functions F(2) such that

00 d;l
|| = f
-~ cosh 7d

We have already proved (c),from which (2) and (b)
easily follow. Indeed, F,(A) appears equal to the
polynomial of degree n:

(= i), (= + iD(—)
FAD“% (n— p)! p!

where (x), = I'(x + p)/T'(x). Hence the coefficient
of A" in F,(1) is

(= I)“Z

[F(AI* < 0.

,» (14)

1 _ (=2)"
pln—p! nl

# 0.
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From the integral representation (10), we obtain
the expression (12) of F, in terms of the hypergeo-
metric function from which the value F,(i/2) =1
follows.

To establish the orthogonality relation, we make
use again of the generating function. From the
equality (|Im x| < =/2):

+o0
[
-0

for —1 < u, t < 1 we derive,

di 1
cosh 74 coshx’

2 iz

Mg * }
m%_o” : f D)
f+°° [(1 — (1 + u)]“ di
T l—u )(1 —~ (1 + (1 — u)] cosh #A
1 men
- 1 —1tu —m,;z—ooémnu -

Since we are dealing with an analytic function of ¢
and u in |¢| < 1, Ju} < 1, we can identify the coeffi-
cients of its Taylor expansion and thus arrive at the
desired orthogonality property.

Finally, the relation (¢) is an immediate consequence
of the representation of the Lie algebra of G. Indeed,
from Eqs. (6) and (8), we have

${nF,a(d) — (n + DF ()]

coshwh{t° 4 d op,..
- __Lf dpp = (273, (ip) ey
a . do

/2

0
_ cosh . f d P__%_M d [e
- do.

In the last integral, interchange of the order of
integration and differentiation is allowed. As a result:

YnF,o() — (1 + DF ()]
= L (e F (D], = iF ().
do

n(ipea)Lz:O *

The polynomials F, belong to a class which has
been studied by Pollaczek.®* We denote by H the
Hilbert space of square-integrable functions on the
real line with measure dA/cosh wA. As usual, two

functions which differ on a set of measure zero are
identified.

Proposition 2: The polynomials F,, form a complete
orthonormal basis in H.

Proof: In view of Proposition 1, it is sufficient to
prove that the functions A", n a nonnegative integer,
form a complete set in H. Let F € H be orthogonal to
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all A». Consider the function

1;(S)=fJroo a2 -

— cosh 74

e“*F(}).

It is analytic in the strip [Im A| < #/2 and all its
derivatives vanish at the origin. As a result, g(s) = 0
and F(A) vanishes almost everywhere. This proves
that the system {F,} is complete.

We can recover f, from F, through an inverse
Mellin transform:

I Y — ) Eia
5 = [ =i

di ,—Z<arg(—iz)<§.

cosh 74 2 (15
With these results, we can return to the integral
transformation (9). First let fe D; then the integral
in (9) is absolutely convergent. Moreover, one readily
shows that for real A, |[F(1)] e "14/2 0 as |A| -
faster than any power of |A| and hence F € H. Using
(15), one finds that, if f=37a,f,, then F=
> a,F,. In other words, the Mellin transform M
is an isometric mapping from D < J¥ in a dense
subset of H which will be denoted D. By continuity,
it is then uniquely extended to a one-to-one isometric
mapping M from ¥ to H.
We close this section by mentioning some properties
of D. Let f stand for the nth derivative of fe D,
and f(z) = z71f(— z7Y); then:

Proposition 3: Any F = Mfe D can be extended
as an entire function in the complex A plane. More-
over,

f(n)
Fl—i} + n)] =" — O,
f(;z)
F[i(%+n)]=i‘2‘"’7(0), n=0,1,---, (16)
and .
F() = MF(A) = —iF(—A).

Proof: Note that one can write

F2) = ¢:1(}) + iy(4),

where

by = i ST [y i

1
bty = 1< f Fipp i,

¢, is deduced from ¢, by changing A — —A and
f—F. Thus it is sufficient to consider ,. At first it is
analytic for Im A > —4, vanishing at the points
il + n], for nonnegative integer n. Furthermore,

C. ITZYKSON

integration by parts gives, for an arbitrary positive
integer p and Im 4 > —1%,

i cosh 74

& — ilym
{Z( )"l( )r_lf(lp) = —%—m-p'p_l

+ [ a2 sup |t}

The zeros of the (4 — i), are just cancelled by those
of cosh w4. We can then analytically continue this
formula to Im4 > —4% — p. Since p is arbitrary,
#,(2) is an entire function of A. If we set p =n + 1

(i’l(l) =

and A = —i(} + n), n a nonnegative integer, in the
above expression, we get

H*d» it
bl + 1= L ) = £ 0,

Combining these results with similar ones for ¢, we
arrive at formula (16).

IV. REPRESENTATION OF G

The isometric operator M of the preceding section
enables one to carry the representation U of G, defined
in J, to an equivalent representation ¥, defined in
H through V(g) = MU(g)M. The inverse trans-
formation V~! was already indicated in (15). Hence,
for ¥(g), we obtain the following expression:

F—V(g)F,
o0 +o
V@R = A “dppt-a[ iy 4 aytw

X (ap — zc)_‘}‘L”‘F(,u)

COSh 7T,ll,
(a b)
4 d ’

p>0, ——<arg(

with

ic T
ibp + d) 2’ ()
At first, this formula is defined when Fe D. It is
then extended by the unitarity property to all H.
Assume F € D and none of the real numbers a, b, c,
dto vanish. The interchange of the order of integration
is allowed in (17). Let us, therefore, compute the
kernel

howh [ o L
K0 ) = S5 “apprbeiing + gyt

x (ap — icy+in,

(18)



GROUP REPRESENTATION

Let G, denote the subgroup of elements of the form

/2 0
o) = el = (e )
g(e) 0 et

The manifold S of elements g in G, such that abed # 0,
is invariant under right and left translation by G;.
Moreover,

Kg(a)gg(ﬁ)(l’ /") = e“aKg(l.u)ei”ﬁ’ (19)

which enables one to compute K only for representa-
tives of each type of double coset G,\G/G, .

These fall into four classes. We select representa-
tives of the form

(4) = et = (cosh A sinh A),
sinh A cosh A4
(B) = €2 = (cosB —sin B)
sinB cosB
(€) = ( sinh C cosh C ), (20)
—cosh C —sinh C
(D) = (sinh D —cosh D)’
cosh D —sinh D

where the parameters 4, B, C, and D are all different
from zero. The last two classes are taken into account
by remarking that they can be obtained from the first
one by left multiplication by g, = (_{*}), or right
multiplication by g1, and that one has

Kyog(}" ,u') = _lKg(_z': y),
Koy (2, p) = iK, (A, — p), @0
a fact which is readily related to the properties of the
mapping F — E. Let us, therefore, compute
K(A) = KezAtz and K(B) = KGZBr.
We present in some detail the calculation for case
(4) with 4 positive. We have:
coshmA*, 1,
KA p) = ——f dppt-4*
27 Jo
x (ip sinh A + cosh Ayt
x (p cosh A — isinh Ay,
We define a single-valued integrand by performing
cuts in the p plane from 0 to + 0o and from i tanh 4
to i coth A along the imaginary axis. The branch of
the function is characterized by Eq. (17),which takes
the following form for p slightly above the real
positive axis:
—m[2 < arg (p — itanh 4)
— arg(iptanh 4 + 1) < 7/2.

arg p=0,

With these conventions we can replace the original
integration in p from zero to infinity by a line integral
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encircling the point zero clockwise, starting at p =
+00 — ie and ending at p = +00 + ie, provided
we replace the factor cosh 74 by 4e~"4. Observing that
we can close the contour at infinity, we are left with
an integral along a contour C which encloses counter-
clockwise the cut from i tanh A to i coth 4. This is
equal to the integral from i tanh 4 to i coth 4 of the
discontinuity of the integrand since the end points do
not give any contribution. Collecting all the factors,

cosh M _z1

K 4%, p) = cosh 4~ —Hinginp gm0 T 5
T

coth 4 i
X f dxx—2t
t

anh 4
X (coth 4 — x)‘&"”‘(x — tanh A)‘*““,

which after the change of variable

t

x=tanh4 + ———
sinh A cosh A

yields, for 4 > 0,

K(A)(z, [l) — %e—n(l—u) cosh Ai(}.+#) sinh A—l—t’(l+n)
x F(3 + ik, 3 + ig, 1; —1/sinh® 4).
In obtaining this last expression we have made use of

the classical representation of the hypergeometric

function:
Fla,b;c;z) = I'(©)

I(c — b)I(b)
X f 1dt(l — zt) (1 — 1)L

Proceeding along the same lines we obtain, for an
arbitrary 4 # 0,

K(A)(l ﬂ) 4#(1—#)/2[cosh A]'('H"“)[Ismh AI]_l_,(H_”)

X F(3 + il, % + iu; 1; —1/sinh® A),
e = Af|A]. (22)
For Class (B), we make again use of relation (21),

which allows one to restrict B to 0 < B < #/2, and
obtain

K g4, p)

— %eﬂ(u—l)/Z F(% + lﬂ')
I'G — iwld 4+ (A + w)
X (sin B)**~#(cos B)"**#
X F(} + iu, 3 + iu; 1 + i(A + p); cos® B)
+ ijertitme ' +i4)

I'G + iwlA + i(A — )

X (sin B)i*~#)(cos By *A+s)

X F(3 — iu, ¥ — iu, 1 + i(A + p), sin® B). (23)
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Expression (22) can be brought to a form similar to
(23) using transformation properties of the hyper-
geometric function.

On the manifold G—S (which contains the subgroup
G,), the kernel is singular. Of particular interest is the
representation of the subgroup G;. It follows from
(17) that

V(e*)E(J) = ¢**F (). (24)

In other words, in this basis the representation of this
subgroup is diagonal. Our calculation of the kernel
K, is not very well suited to obtain the other gener-
ators, but they can be readily recovered using, for
instance, the Pollaczek polynomials of the preceding
section. Indeed, we have
TiF,(3) = HnF,a(2) — (1 + DF (D] = i2F,(3),
(25a)
RF,(3) = i + mF,(4)
=4[} + iDF, (A = D)+ — iDF, (2 + D],
(25b)
T2Fn(3') == %l[nFn—-l(z') - (Y! + I)Fn+1(‘z)]
= 3G + IDF, (A — ) — G — iDF(4 + D).
(25¢)

The first equation is the recurrence relation already
proved in Sec. III, and only reflects the fact that 7
is diagonal. The two others are derived, using the
generating function (11). For instance,

S ("RF ()

= i3+ DIFD)

(1 d ~4-id ~3+id
=+ t—}1+1 1—1t
l(z + dt)( + 07 )

HIG + i + t)‘g—“(l — t)é'*“
+ (3 — A + oL — o

= 30U+ DEA ~ )+ (G~ iDF,2 + D)
0

and similarly for T,. As a result, wherever they are

defined (and at least on D), the generators are ex-

pressed in the Hilbert space H as difference operators

by the formulas

C. ITZYKSON

T,F(%) = iAF (D),

TF(A) = 4l + iDF(A — i) — (3 — iHF(A + )],

RF(A) = [} + iDF(A — i) + (4 — iDF(A + i)},
(26)

It is easily verified that Ty, T, and R satisfy the
correct commutation rules and are antisymmetric on
D. For instance, one can directly show that, for any
two Fand G in D,

(G| [T, + RIF) + ([T, + RIG| F) = 0,

Indeed, the left-hand side can be written as a contour
integral:

; j‘ di
¢ cosh 7wl

where G(4) = G*(2*), and the contour C consists
of the lines ImA =0, Im 4 =i, and two infinitely
remote segments joining these two lines on Re A =
+A4, A— oo. The integrand is nowhere singular
inside this contour since the zero of cosh #A for
A =i[2 is cancelled by the factor (} + i1) and, as a
result, the integral vanishes as expected.

The relations (26) give a precise meaning to the
remarks made in the introduction concerning the
representatives of the other generators in the basis
where T is diagonal. When the generators are realized
as differential operators in a Hilbert space of functions,
we require the existence of an adequate supply of
infinitely differentiable functions, though the whole
Hilbert space need not contain only differentiable
functions. In very much the same way, we are led in
the present case to the existence of a sufficient number
of entire functions to be able to exponentiate the
generators.

Similar considerations can be extended to other
representations of G or, more generally, to those of
semisimple noncompact groups.’®

G + iHFQ — 1),
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