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We have studied the problem of obtaining the rotation matrix elements dN(O) = (NI e-;~J, IN), where 
IN) refer to a particular degenerate class of basis vectors of a symmetry group G which embraces 
the rotations SU(2)J as a subgroup. For G = SO(v), SU(v), and SU(v) (S9 SU(v), we prove that these 
particular representation functions are proportional to the Gegenbauer polynomials C:(V-'I(COS 0), 
cl(V-ll(cos 0), and C:V(cos 0), respectively. The reduction of such functions into one another according 
to the formula C{ = I:N aNC; has been solved in generality for complex values of N and. corresponds to 
the reduction of Regge poles of G into Regge poles of one of its subgroups. The reductIOn formula for 
functions of the second type E;: = I:N bNE; has also been derived; here one simply meets an infinite 
series. 

1. INTRODUCTION 

There are three main lessons to be drawn from the 
nonrelativistic Coulomb problem: (i) the special 
nature of the dynamics provides the higher symmetry 
group SU(2) (S9 SU(2) ~ SO (4) ; (ii) the bound states 
fall into simple classes of representations of the group, 
namely of the type (N, N); (iii) the Reggeization 
procedure for the bound and scattering states is more 
easily discussed by working directly in the plane of the 
principal quantum number rather than returning to 
the conventional angular-momentum plane. In line 
with these three ideas, a schemel has been recently 
developed for hadronic matter having the following 
ingredients: (i) Strong interaction dynamics is evi­
denced by the existence of an approximate super­
multiplet group G which contains the rotations as an 
SU(2h subgroup; (ii) the hadronic states belong to 
simple, degenerate classes of G representations; and 
(iii) Reggeization is carried out in the plane of the 
Casimir operator which labels the physical sequence 
of G multiplets. Reduction to the angular-momentum 
plane is necessary only for introducing simple sym­
metry-breaking corrections to G and for comparison 
with the results of standard Regge theory. 

One of the crucial mathematical problems which is 
encountered in these Reggeized supermuItiplet schemes 
is, for the degenerate series IN) of G-representations 
in question, the determination of the rotation matrix 
element 

the analog of difo«() = P Acos () for SU(2)J. We 

* The research reported in this document has been sponsored in 
part by the Air Force Office of Scientific Research OAR through the 
European Office of Aerospace Research, United States Air Force. 

1 A. Salam and J. Strathdee, Phys. Rev. Letters 19, 339 (1967); 
R. Delbourgo, A. Salam, and J. Strathdee, Phys. Rev. 172, 1727 
(1968); R. Delbourgo, J. Math. Phys. 9,1936 (1968); R. Delbourgo 
and M. A. Rashid, Phys. Rev. 176, 2074 (1968). 

prove in Sec. 2, for particular most-degenerate 
sequences of basis vectors (fully specified there), that, 
when G is SO(v), SU(v), and SU(v) (S9 SU(v), the 
generalized rotation functions are the Gegenbauer 
polynomials 

Ct(V-2)(COS (), Ct(V-l)(COS (), 

and 
Cx,v(cos (), 

respectively, appropriately normalized. A second 
important aspect of the Reggeization scheme con­
cerns the reduction of the (above) series of functions 
pertaining to G into the functions belonging to various 
subgroups-for instance the reduction of Cl into 
Cl = P for the H-atom case-and this is fully 
treated in Sec. 3. Formula (29) summarizes the work 
and expresses the fact that (stated in terms of repre­
sentations of the first kind) a Regge pole of a higher 
symmetry group decomposes into a series of Regge 
poles of a subgroup plus a specific background inte­
gral. An alternative decomposition (stated in terms of 
representations of the second kind) is given by formula 
(32). 

2. DEGENERATE REPRESENTATION FUNCTIONS 

Let us recall how one proves that the rotation 
functions diio«() = (JOI e-i8J 'IJO) of SU(2) are the 
Legendre polynomials. This will serve as a good 
introduction and guide to the subsequent determina­
tion of the rotation functions for the higher groups. 
There are at least two simple methods for finding the 
dJ «(). 

(a) The first utilizes the SU(2) Lie algebra by 
expressing the commutators [e- iOJ., J] as commuta­
tors [e-i8J., J3] and differentials of e-iOJ •• Sandwiching 
[e-iOJ., J2] between the states in question provides a 
differential equation whose regular solution is known 
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to be the Legendre function. In fact this technique is 
no more difficult to apply for finding the full set of 
dinlI,(e) functions in closed form. 

(b) The second makes use of the basic tensor 
representation qIL (q being a unit vector) and the fact 
that general Ij) vectors correspond to forming sym­
metrized traceless tensor products 

Q/l1" '/lJ = q/l1 ••• q/lJ - trace terms. 

The rotation functions come as scalar products 

Q~''''/lJQ/ll'''/lJ' where q/lq~ = cos e. 
That they are the Legendre polynomials may be estab­
lished by finding the recurrence relation between 
three contiguous such functions and assuming regu­
larity at e = O. The general dlnw(e) are then found 
from the P J by releasing indices2 from the scalar 
product QQ'. They are not immediately writable in 
closed form. 

Let us now turn to a larger group G which contains 
the rotations as a subgroup and see how to determine 
the relevant rotation functions. One must, for a start, 
specify the class INW) of G-basis vectors which charac­
terize the degenerate series in question; here N refers 
to Casimir operator labels of G and W to the further 
subgroup labels which completely specify the states. 
Now, in practice, when G is one of the groups SO(v), 
SU(v), and SU(v) @ SU(v), it is easiest to specify the 
degeneracy character of the basis vectors by stating 
precisely the nature of Young tableaux that represent 
the sequence of representations (the relationship 
between the number of boxes in various rows of the 
tableau), which corresponds to stating specific rela­
tions between the Casimir operator labels N of G. 
This already indicates that one should apply the 
tensor representation technique (b) rather than differ­
ential method (a). A more important reason for 
abandoning method (a) is the fact that the Lie algebra 
may be quite complicated with the additional difficulty 
that even if one knew the relations between the 
(quadratic, cubic, ... ) Casimir (C) operators of G and 
the commutators [e- i8Jo , C] the sandwiching of the 
identities would provide involved second-, tbird-, ... , 
order equations3 for 

d~JV,(e) = (NWI e- i8Jo INW') (1) 

which, on the face of it, appear difficult to disentangle 
and solve. We shall therefore adopt method (b) below 

• For example, di'0(1l) is obtained from d~o(ll) by evaluating 
€t(q)[o(Q' Q')/oq/ll where' €/l is a polarization vector orthogonal 
toq. 

• The representation functio~s for SO(3, 1) satisfy a pair of 
coupled second-order differential equations which, in general, lead 
to a quartic one after decoupling. 

to compute the rudimentary functions dft(e) in which 
the W-subgroup is trivially represented4 as a singlet. 

A. G = SO(1') 

We assume v ~ 3 in order that G :::::> SO(3)J. The 
most degenerate class of base vectors IN) is charac­
terized by the Young tableau consisting of N boxes 
in the first row and no others. It is constructed from 
the basic unit vector5 q/l (f-l = 1, ... , v), q/lq/l = 1, by 
forming the symmetrized scalar product 

J.l perms 

+ bN L 0/l1/lOO/l3/l.q/lS··· q/lN+ ••• 
J.l perms 

and imposing tracelessness: Q/l/lIL
3

" 11 = O. This pro­
vides the coefficients aN' bN , ... ani it is easy to find 

aN = -(v + 2N - 4)-1. 

The basic recurrences follow by noticing that 

q/llQI ..... llN+l + qlloQ/ll1l3"'IlN+1 + ... + q/lN+1QI11"'/lN 
N+l 

== L qlljQ/l1"'(j)"'/lN+l 
j 

is a symmetric polynomial of degree qN+1 and vanishes 
under a double tracing operation. Accordingly it can 
be expressed as the linear combination 

OCQ/l1'" /IN+1 + fJ L 0/lil';Q/ll'" (ij) ... /IN+1' 
I' 

where the coefficients oc and fJ can be found by com­
paring terms of order q.V+1 and qN-1. One finds 

1\'+1 

L Q/l;Q/l1'" (j) ... IlN+1 
j=1 

= (N + 1)Q + 2(v + N - 3) 
1l1"'IlN+l (v + 2N - 2)(v + 2N - 4) 

N+l 

X L 0lli/ljQ/l1'" (ii) ... IlN+l . (2) 
i.i 

The representation functions6 (corresponding to W­
singlets) are proportional to 

FN(COS e) = Q~, .•• Q~NQJl1'" JlN' Q' q' = cos e. (3) 

If we contract identity (2) over q:, ... q' , we obtain 
""1 JlN+l 

4 These are the analogs of d~o(ll) wherein the U(l) subgroup is 
trivially represented. 

5 If we designate the generators by J /lV which obey the standard 
Lie algebra of the orthogonal group, 

[J"A,!/lvl = i(r'"i"vh/l + (h/lJ"v - r'"i"/lhv - r'"i;'vJ"/l)' 

then one may identify the rotations as the subgroup consisting of 
J03 , J31 , and J 12 , and to determine (e-i8Jo) below one fixes q/l = 
(0,0, 1,0,0,"') and q~ = (sin Il, 0, cos Il, 0, 0," '). 

• Strictly, FN = Q~", 'llNQ/ll" '/IN but the tracelessness and 
symmetry conditions allow it to be rewritten as (3). 
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the recurrence relation 

FN+l - cos OF N 

N(v + N - 3) F - 0 + N-l - , 
(v + 2N - 2)(v + 2N - 4) 

letting 

Fv=N! CN "'v(v-2), 
. (v + 2N - 4)(v + 2N - 2) 

(4) 

(N + l)CN+l - (v + 2N - 2) cos 0 CN 

+ (v + N - 3)CN _ 1 = 0, (5) 

w.hence we at once recognize the recurrence relation 
for the Gegenbauer polynomial Ct(V-2) (cos 0). Thus, 

dN(B) = r(N + l)r(v - 2) C!(V-2)(COS B} 
11 rev + N _ 2) N ' 

(6) 

which is a well-known result1; however, the next two 
cases are new.s 

B. G = 8U(v) 

Here we take v ~ 2 in order that G => SU(2)J. We 
shall consider the class of basis vectors consisting of 
2N boxes in the first row, N boxes in the second 
row, .. " and N boxes in the (v - l)th row, the 
degenerate Feynman series as it is sometimes termed. 
This sequence is generated9 from the fundamental 
tensor q! (A, B = 1, ... , v), q~q~ = v, by forming 
the symmetrized product 

+ b . "' !,/fIOB2i)'hOB4 lJ 5 • •• UN + ... 
N ~ Al A2 A3 A.qAs qA.v 

and imposing traceless ness QCCAB <:: BIN = O. This deter-
2 .... N 

mines the coefficients 

aN = - [2(N - 2)!(v + 2N - 3)]-1 

and so on. Basic recurrences are established by ob­
serving that 

7 A. Erdeiyi et al., Ed., Higher Transcendental Functions, Vol. 2 
(McGraw-Hill Book Co., Inc., New York, 1954), Eq. 11.2(8). 

8 Actually the formulas for the degenerate series of SU(v) @ 
SU(v) were given in Ref. 1. However, they were obtained by a much 
more cumbersome method than the one we have presented here. 

• If one designates the generators of SU(v) by Ji, (J~ = 0), the 
Lie algebra is given by the commutation rules [Ji, Jg] = (j~J~ -
(j~J~ and the rotation subgroup J is given by the generators J~ + 
J! + ... , J~ + J: + ... , and ~V: - J~ - J~ - J1 + ... ), where­
upon one identifies the tensors below: 

qi = q • (J)i, q:l = q' • (J)i, 

q = (0, 0, I), q' = (sin 0, 0, cos 0). 

is quadruply traceless and hence can be written in the 
form 

ex and f3 are deducible by comparing terms of order 
qIV+l and qN-l, and we obtain the basic identity 

+ _---"(_v....:..+_N_-_2-'.} __ _ 
(v + 2N - l)(v + 2N - 3) 

(7) 

Upon contracting over an index pair, formula (7) 
provides the corollaries 

"' [lhQ1h"'(k)"']JNC+ C QBI···B.v ] 
~ qc AI"'AN qAk AI"'(k)"'ANC 
k 

_ 2(v + N - 2) ~ t/fiQ1h···{j)···BN (7') 
- ~ Ai AI···(j)···A.v 

V + 2N - 3 i.i 

and 

C BI···R.v_ID 
qnQ.11··· A N_IC 

(v + 2N - 2)(v + N - 2) QB I " 'lJN_I (7") 
(v + 2N _ 3) AI" 'AN_I 

which are used below. 
The rotation function is proportional to1O 

F ( FJ) ,AI 'AN RI" 'Bv 
N cos = qRI .,. qBNQAI"'A:v; 

B 1.'1 FJ 
qAqB = V cos . (8) 

Upon contracting (7) over q'J/" I ••• q'J/N+I and making 
free use of corollaries (7) and (7"), a liti1~ work shows 
that the F.v satisfy the recurrence formula 

FN+l - (v + 2N) cos FJF N 

+ N(v + 2N)(v + 2N - 2)(v + N - 1) F r = 0 
(v + 2N - 1)(v + 2N - 3) ,\-1 , 

whereupon, defining 

FN=N! v(v+2)"'(~+2N-2) C
v

, (9) 
(v - l)(v + 1) ... (v + 2N - 3) . 

we get 

(N + l)CN+l - (v + 2N - 1) cos BCN 

+ (v + N - 2)CN _ 1 = 0, (10) 

which allows us to identify C,VV-l)(COS B). Thus for 

10 Again it is tracelessness and symmetry which allow FN = 
Q~~~·".//Qi::: :i~ to collapse into (8). 



                                                                                                                                    

960 DELBOURGO, KOLLER, AND WILLIAMS 

the degenerate SU(v) series considered, 

dN(O) = r(N + l)r(v - 1) C!(v-l)(cos 0). (11) 
11 r(N + v _ 1) N 

Note that when v = 4 we meet C.t polynomials. In 
spite of the isomorphism SU(4) R; SO(6) these differ 
from the orthogonal functions C2 for SO(6) because 
the series of representations are quite different; in one 
case the space coordinates are assigned to the [6] 
representation, in the other case to the [15]. 

C. G = SUCv) (5<) SU(v) 

Again we take v ~ 2 and shall assign the rotationsll 

to the diagonal SU(2) subgroup. We consider the 
degenerate class of vectors described by tableaux 
(N, 0, ... ,0) and (N, N, ... ,N) for each, respec­
tively, of the SU(v), as well as the adjoint series. These 

are constructed from the basic tensor (N = 1): q~ 
[A = 1,'" ,v; jj = 1," . ,v; hatted and unhatted 

indices referring to each of the SU(v) groups], q~q~ = 
vb~, by forming symmetrical products of these 

They are already irreducible representations of 
SU(v) (5<) SU(v), though not of the diagonal SU(v) 
(since they are not traceless under AB contractions). 
Clearly, 

and it is also easy to establish directly from the basic 
definition that 

1\ "" A A 

CQB1 '" lJND ( ) B 1 ,,· BN (' 
qi> A1'''ANC = '1'+ N QAI"'A.v . 12) 

The fundamental representation function is pro­
portional to 

Consequently, contraction of (12) overq';,4 1 ... q',AN+l, 
BI BN+l 

making use of (12'), yields the recurrence 

FN +1 - (v + 2N) cos OFN + N(N + v - I)FN _ 1 = 0 

11 The Lie algebra here is provided by 

[J! ' JZ] = <5g.J;t - <5;tJ~, 

[J~ ,J~] = 0, 
A A A A 

[11 ,fa] = <5~; - <5~Ja ' 

with J~ = J1 = O. We take the diagonal subalgebra (J)~ + (J)1 
with J defined in Footnote 9 for our rotation subgroup and identify 

our basic tensors q! = q • (J)1 and qJ = q' • (J)!. 

or, setting 
FN = N! CN' (14) 

(N + I)C,V+l - (v + 2N)CN 

+ (N + v - I)CN = O. (15) 

We recognize here the Gegenbauer function 

cy(cos 0). 

Thus for the degenera~e SU(v) (5<) SU(v) series in 
question, 

dt';,(O) = r(N + 1)r(v) d;(cos 0). (16) 
r(N + v) 

Notice that when '1'=2 we have the 0(4) functions 
Cl because the series of representations for both 
groups coincide. 

We note a few of the properties of these functions 
and their relationship with the group theory before 
we treat the reduction problem in the next section. 
From the definition 

CA( ) - r( oc + 2.1.) F( 2 ' ., 1 . .1 1) 
'aZ - OC+ 1I.,-OC,II.+"2'2-"2Z, 

r(OC + l)r(2A) 
(17) 

it is well known that the Gegenbauer function satisfies 
the symmetry property, 

C; = -sin oc7T[C_2 _ 2.dsin 7T(OC + 2.1.)]. (18) 

Translated in terms of the normalized d functions (6), 
(11), and (16), we have the "weak equivalence" 
relations 

dN(fJ) = d-N- V+2(O), for SO(v), 

dN(O) = d-N-v+\O), for SU(v), 

dN(O) = d-N-V(O), for SU(v) (5<) SU(v), 

which simply reflect the fact that the three quadratic12 

Casimir operators N(N + v - 2), N(N + v - 1), and 
N(N + v) that label the three sets of degenerate series 
are invariant under the substitutions N ->- -N -
'1'+2, -N - '1'+1, and -N - v, respectively. 
Indeed, the positions of the symmetry axes at N = 
1 - tv, t - tv, and - tv, respectively, are associated 
with the principal unitary infinite-dimensional repre­
sentations of the noncompact extensions SO(v - 1,1), 
SU(v - 1,1), and SL(v, C); and from the symmetry 
point to N = 0 (the first, trivial, finite-dimensional 
representation) stretch the supplementary series of 

12 Stated in terms of the generators given in Footnotes 5, 9, and 
. . BA BA ll: 

11, the CasImIr operators are ~1;;J/JvJ/Jv, VAJB,andl(JAJB+J~l'b), 
respectively. 
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representations.13 Moreover, as the asymptotic be­
havior of C!(z) is (za + z-a-2A), the unitary representa­
tions C~A (z) of the noncompact group extensions have 
the lowest possible asymptotic behavior and are 
square-integrable over the corresponding group mani­
fold. 

3. ANALYTICAL REDUCTIONS 

According to the generalized Regge scheme,l a pole 
belonging to a higher symmetry group G provides an 
amplitude of the type (J(t) da(t)«())/sin 7l'!X(t), where 
da(t) is the generalized rotation function continued 
along the trajectory to complex N = !X(t). One may 
naturally ask what sequences of ordinary SU(2)J 

Regge poles (and trajectories) are implied from the 
higher group. At integer N values this question is 
straightforwardly answered since it amounts to a 
reduction of the higher multiplet (labeled by N) into 
sets of J multiplets; analytically this corresponds to 
decomposing the CN(cos ()) polynomials into series of 
Legendre polynomials P A cos (). More generally, one 
is interested in the reduction problem for complex 
N = !X (i.e., along the whole trajectory) from G to one 
of several possible subgroups-stated analytically, 
how C!: decomposes as a series of C!. The solution 
to this problem is embodied in formula (29) and is 
valid for arbitrary complex A and X, although 
physically one is concerned only with integer or half­
integer values of A and A'. We have obtained it in three 
stages: in the first almost trivial step the decomposition 
for integer N has been obtained to serve as a boundary 
check on the succeeding formulas; the second step 
makes use of the basic recurrence relation between 
CA and CA+1 to write C~' as a finite series Ik C:_2k Plus 
a finite number of "background terms," valid when 
A and X differ by an integer; the last stage consists in 
rewriting the finite remainder as a difference of two 
infinite series which permit analytic continuation in 
A and A' to values which differ by half integers as well; 
these "background series" are expressible as integrals 
over the principal unitary representations, the analog 
of the background integral at j = - t which appears 
in ordinary Regge theory. 

The case of integral N is simply resolved. The poly­
nomial character of C;;(z) and its oddness or evenness, 
according to whether N is odd or even, means that a 
decomposition of the form 

[N/2J 
C%(z) = 2 akC~-2iz) (19) 

is possible for arbitrary A and A' with [NI2] denoting 
the largest integer less than or equal to N12. The 

,. These statements can be verified for the welI-known representa­
tions of SO(2, I) "'" SU(I, I) and SO(3, I) "'" SL(2, C). 

coefficients ak may be found from the usual orthog­
onality properties of the Gegenbauer functions 

ak = 
(N - 2k + J.)r(N - 2k + 1)[r(J.)]2 

x fIC;;(Z)C1v-2iz)(1 - Z2)"-! dz (20) 

for, upon using Rodrigues's formulas,14 

C'<,(z) = (-2)Nr(N + J.)r(N + 2A) (1 _ Z2)!-A 
}; r(A)r(N + l)I'(2N + 2A) 

N 

x (~) [(1 - Z2)NH-!] (21) 

and 

(~)r C\ = 2rr(r + A) CrH (22) 
dz!.. rCA) N-r, 

we getl5 

ak = 22N-4k+2.<-1 

= 

X _r(",-N_-_2_k ....:..+_A-'-')_r('-N_-_2----=-k+_A_+"'----'1 ),-r~( A) 
7l'r(2N - 4k + 2A)r(A') 

x fIC~-2kH'(Z)(1 - Z2)N-2kH-! dz 

(N - 2k + A)I'(k + A' - A)r(N - k + X)r(A) 

r(k + 1)r(N - k + A + 1)r(X)r(A' - A) 

(23) 

We may actually continue the series (19) up to k = 
teN + n) for positive integer n < 2A since the ak are 
finite and the C~n vanish identically.16 But we cannot 
extend the k summation up to infinity as the r func­
tions occurring in ak do not vanish to permit the series 
to terminate naturally. Consequently the analytic 
continuation to complex N = !X cannot be trivially 
deduced from formula (19). 

We therefore follow a different approach which 
hinges upon the contiguity relationl7 

C;+1 - C;~: = (!X + A)C;IA. (24) 

Writing (24) for values of !X decreasing by units of 2 
and summing, we get 

I 

C;+l = 2r \!X + A - 2k)C;_2k + C;~:l-2' (25) 
k=O 

Let us fix Ion the right in such a way that !X - 2/ is as 

U A. Erdelyi, Ed., Higher Transcendental Functions, Vol. I 
(McGraw-Hill Book Co., Inc., New York, 1953), Eqs. 3.15 (10), (30). 

,. Tables of Integral Transforms, Vol. 2, A. Erdelyi, Ed. (McGraw­
Hill Book Co., Inc., New York, 1954), Eqs. 16.3(4). The hypergeo­
metric function 3F. of unit argument is evaluated by Eq. 4.4(6) to 
give formula (23). 

" Through the r functions appearing in definition (17). 
17 Reference 14, Eqs. 3.15.2 (27), (28). 
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close as possible to the right of the symmetry point 
-A, i.e., let 0 ::::;; r:t. - 21 + A < 2; by this device the 
remaining function C;~L2 is of "background size" 
relative to the C\ in so far as it is more convergent 
in its asymptotic Izl behavior; for integer r:t. the back­
ground term vanishes automatically and the decom­
position (25) reduces to (19). The same trick can be 
applied successfully to obtain decompositions for A 
and A' values differing by integers (see the Appendix 
for details). One arrives at 

/, ).'-). 

).' "C). "BC).+r C,. = £.. ak a-2k + £.. r a-21-2' (26) 
k=O r=1 

where A' - A is a positive integer, 0::::;; rx - 21 + 
A < 2, and 

(r:t. - 2k + A)r(k + A' - A)r(rx - k + A')r(A) 
a

k = r(k + 1)r(rx - k + A + l)r(A/)r(A' - A) , 

(27) 

B = r(l + A' - A - r + 1)r(r:t. + A' - [)r(A + r) 
r r(l + l)r(A' - A - r + l)I'(rx + A - 1+ r)r(A') 

(28) 

Formula (26) tells us that a Regge pole of a higher 
group decomposes as a sum of Regge poles of a lower 
group plus a number of "background terms"; and 
the square-integrability18 of these background terms 
allows them to be expressed as a background integral 

1:_ooB(p)C!.HiP(A
2 + p2) dp 

over the principal unitary series of the noncompact 
extension of the lower group. The distribution B(p) 
is perfectly definite, being given19 by (26), but we shall 
not belabor the issue by determining it here. 

All the above is not quite general enough as we 
often require decompositions for A and A' differing by 
half integers, the Toller -+ Regge pole decomposition, 
C1---+ Cl, being a case in point. As a matter of fact, 
we can cover this situation with very little more work. 
We formally rewrite the finite background sum as the 

18 The asymptotic behavior ~lzl"-21-2 of these background terms, 
stronger than any single function C;(z), means that they can only be 
expressed as a distribution over the most conveJ\gent of these, viz., 
C_).+ip(Z); these functions pertain to the principal unitary repre­
sentations of the noncompact group extension and in fact there are 
standard theorems that any square-integrable function f(z) defined 
over the group can be decomposed in terms of them. See Footnote 
19. 

1. If B(z) satisfies j;x> IB(z)l" (Z2 - 1»).-! dz < 00, then one may 

write B(z) = f C!.).+i/z)B(p)(A· + p2) dp, with the inverse transform 
B(p) = f;' B(Z)C!.).+ip(Z)(Z· - l)).-! dz according to the standard 
references [see, for instance, I. M. Gel'fand and M. A. Naimark 
Unitiire Darstellungen der klassischen Gruppen (Berlin, 1957)]. 

difference of two infinite series 

).'-). 00 00 

~ BrC;+r = ~ bk C;+k+1 + .2 ck Cr+k+1, (29) 
r=1 k=O k=O 

with B)., -A+k+1 = b)., -Hk = - Ck , and analytically 
continue in A' - A. The correctness of this step can be 
checked by writing each Gegenbauer function as a 
sum of two hypergeometric functions of argument 
Z-2 [formula (31) below] and comparing20 all powers 
of z. Our final result therefore is summarized by 

10000 

).' " ). "b C H k+1 "C).'+k+1 C a = £.. akC a-2k + £.. k a-21-2 + £.. Ck a-21-2' (30) 
k=O k=O k=O 

where 0 ::::;; rx - 21 + A < 2, ak is given by Eq. (27), 
bk = -CkH_)., = Bk+1' and Bk is given by Eq. (28). 
Hence, for general A and A' we encounter an infinite 
series of background terms; these cancel to a finite 
series when A' - A is integral and disappear altogether 
as they must when r:t. is integer. The reduction formula 
for the actual representation functions dN(O) is 
obtained from (30) by renormalization with the factors 
occurring in formulas (6), (11), and (16). 

For the sake of completeness we provide below the 
reduction formula for representations of the second 
kind, which appear in the Mandelstam form of the 
Regge pole amplitude «(3Q_a_1/sin 1Trx in ordinary 
Regge theory). These functions of the second kind, 
E;(z),in contrast to functions of the first kind ,C;(z), 
are singular near z = 1 and possess no symmetry 
under the substitution rx -+ -r:t. - 2A. [For A = t, 
cos r:t.1TEa(Z) coincides with the Legendre functions of 
the second kind Q.(z).] On the other hand, they have 
simple asymptotic characteristics. They arise in the 
break up 

A sin rx1T). A 
C.(z) = -- [E. + E-0 - 2.<1, (31) 

1T 

E; == r(rx + 2A) 1T (2zr.-2A 
r(A)r(rx + A + 1) sin 1T(rx + A) 

X F (rx + 2A + 1 , rx + 2A ; rx + A + 1; ~) . 
2 2 z 

(32) 

For Re rx > -A, the asymptotic behavior as Izl-+ 00 

is governed by E~a_2)" which is a series of decreasing 
powers in Z2 starting from z<l. Accordingly, we are 
interested in a decomposition of the type 

20 In fact, this was the method by which we originally derived (29) 
hefore realizing it could be recovered from (26) by the method 
described in the text. 
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which is easily discovered, once it is recognized that the 
Ea satisfy the same contiguity relations as the Ca; 
for we can follow the same steps which led to formula 
(26) to obtain 

except that we no longer have any compulsion to 
prevent I being as large as we like-there is no longer 
any well-defined "background line" which governs the 
asymptotic behavior of representations of the second 
kind. In fact, since 

E,Hr _ O( 1 ja-21-2r--2) 
-a-2.<+2l+2 - Z , 

it is clear that all remainder terms on the right (33) can 
be made as small as we please for Izl > 1 by making I 
sufficiently large. Consequently we can extend the 
summation over k to infinity for Izl > 1 and drop all 
remainder terms. Thus, for Re rx. > -A and Izl > 1, 

(34) 

where the coefficients ak coincide with the ones ob­
tained previously for representations of the first kind 
and are given by formula (27),2l 

APPENDIX 

This contains the details of derivation of formula 
(26) from (25). Repeated application of (25), when 
Ie' - A is a positive integer, gives 

(rx. + Ie' - 1 - 2k,.'_;,) X ... 
(A' - 1) 

(rx. + ), - 2k1 - ... - 2k;,'_) 

A 

21 In the special case k = l. A = t this agrees with the "Lorentz 
pole" decomposition into Regge poles; see A. Sciarrino and M. 
Toller, J. Math. Phys, 8, 1252 (\967), 

(rx. + Ie' - 1 - 2k,.'_),) x ... 
(A' - 1) 

(rx. + A + r - 2kr+1 - ... - 2k;,,_;,)}. 

(A + r) 

Rearranging the summations, 

I ;,'-;, 

C;' = .L a ):.k.;,C;-2k + .L B;",r.;,C;~;1-2' (AI) 
k~O r=1 

where k = k1 + k2 + ... + k;,'_;, and 

(rx. + A - 2k)r(A) _ 
a;".k.;' = rCA') a).',k.;', (A2) 

rCA + r) I _ 

B;",T,;' = rcA') k~O(rx. + A + r - 2k)a;",k.Hr> (A3) 

with 
k k-k1 k-k 1- ' , '-k;,' -),-2 

£l)".k.). =.L .L'" .L 
kl =0 k2=0 k;: -),-1 =0 

X {rx. + A + 1 - 2(k - k1)} .•• 

{rJ. + Ie' - 1 - 2(k - ... - k ' )} ;, -;'-1 • 

(A4) 

Careful inspection of (A4) reveals the recurrence 
relation 

£l;:,k,). = (rx. + A + I - 2k)£l;".k.H1 + £l;",k-l,A 

which solves as 

a , = r(rx. + A' - k)r(A' - A + k) (AS) 
;, ,k,). r(rJ. + A + I - k)I'(A' - A)I'(k + 1) . 

The summation in (A3) is easily performed if the 
recurrences among the a are used and one gets 

B , = rcA + r) a , 
;, ,r.), rCA') ;, .1.r+).-1 

rcA + r)r(l + A' - ). - r + l)r(rx. + A' - I) 

r(),')r(l + l)r(A' - ). - r + 1)I'(rx. + ). - 1 + r)' 

(A6) 

Hence, expression (26) follows. 
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Comments on Kinetic Equation for Autocorrelation Functions 

P. REsIBOIS, J. BROCAS, * AND G. DECAN 

Free University of Brussels 

(Received 5 January 1968) 

The non-Markoffian kinetic equation for the one-particle momentum autocorrelation function, 
derived by Zwanzig and studied in great detail recently by Berne, Boon, and Rice, is analyzed in the weak 
coupling limit. It is shown that, in this limit, this kinetic equation remains non-Markoffian because the 
kernel which determines the memory effects only decays very slowly. More precisely, it tends to zero over 
times of the order of the relaxation time itself and not, as could be expected, over the much shorter collision 
time. The comparison with the more traditional approach, based on the solution of a transport equation, 
is also discussed. 

1. INTRODUCTION 

Time-dependent autocorrelation functions (af) have 
played an important role in the recent development 
of nonequilibrium statistical mechanics. In particular, 
they appear as a major tool in the theory of transport 
coefficients.! 

The traditional method for evaluating these quan­
tities is based on the solution of a transport equation 
of the Boltzmann type for a one-particle distribution 
function (df), from which the af can be computed 
(see Ref. 1). However, the possibility exists of deriving 
a kinetic equation which directly applies to these af. 
This elegant alternative was first exploited by Zwan­
zig2 and recently reconsidered with much detail by 
Berne, Boon, and Rice.3 

In particular these authors obtained a kinetic 
equation for the one-particle momentum af, denoted 
by'Y(t) [see Eq. (2.5)], of the following non-Markof­
fian type: 

c\'Y(t) = - fdt'K(t - t')'I"(t'), (1.1) 

where the kernel K(f), a function of time only, is 
defined in terms of the N-particle Hamiltonian with 
the help of projection operators. The simplicity of 
Eq. (1.1) is remarkable; in particular, it opens the 
way to powerful semiphenomenological approxi­
mations in cases, like dense fluids, where explicit 
calculations cannot be performed. This is an important 
result which cannot be achieved by the transport­
equation approach. 

Yet the price paid for this apparent simplicity is 
fairly high; indeed the whole difficulty of the many­
body problem is "hidden" in the kernel K(t), which 

* Charge de Recherche au Fonds National Beige de la Recherche 
Scientifique. 

1 See, for instance, P. Resibois, J. Chem. Phys. 41, 2979 (1964), 
and references quoted therein. 

• R. Zwanzig, Phys. Rev. 124, 983 (1961). 
• B. Berne, J. P. Boon, and S. Rice, J. Chem. Phys. 45, 1086 

(1966). 

has very complicated analytical properties, even in 
the simplest cases. It is the aim of the present paper 
to illustrate this point: we discuss in detail the prop­
erties of the kernel K in the limit of weak coupling. 

In Sec. 2, we first review briefly previous work 
leading to Eq. (1.1) and then discuss a very simple 
approximation leading to a Markoffian kinetic equa­
tion, describing an exponential decay for 'Y(t). At 
first sight, this approximation seems to correspond to 
the weak coupling limit of Eq. (1.1). 

In the third section, we reconsider the same prob­
lem from the more traditional point of view: we 
calculate 'Y(t) from the solution of the Fokker-Planck 
transport equation which governs the evolution of the 
one-particle momentum df in a weakly coupled gas. 
The surprising result is that this calculation runs in 
conflict with our approximate solution obtained in 
Sec. 2. 

The reason for this discrepancy is analyzed with 
great detail in Sec. 4. Using the formulation developed 
by Prigogine and co-workers,4.5 we show that even in 
the weak coupling limit [1\2 ->- 0, t ->- 00, (1\2t) finite] 
one is not allowed to take the Markoffian approximation 
to Eq. (l.l). Indeed, we show that the simplified 
kernel K(t), which results from this limit, is a distri­
bution which only tends to zero after times of the order 
of the relaxation time of the system (1\-2); moreover, 
its explicit form remains rather complicated. When 
this exact limiting form for K(t) is taken, we recover 
of course from the kinetic equation (l.l) the result 
derived before from the transport-equation method. 
However, it looks as if, for the particular exact model 
discussed here, the intermediate stage (1.1) is more 
a step backward than a step forward in the analysis 
of the behavior of'Y(t). 

This result does not, of course, put any discredit 

• I. Prigogine, Non-Equilibrium Statistical Mechanics (Interscience 
Publishers, Inc., New York, 1962). 

5 P. Resibois, in Many-Particle Physics, E. Meeron, Ed. (Gordon 
& Breach Science Publishers, Inc., New York, 1967). 

964 
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on the above-mentioned semi phenomenological ap­
proaches, valid in dense systems, but shows the 
difficulty of using Eq. (1.1) in exact models. 

2. KINETIC EQUATION FOR THE VELOCITY 
AUTOCORRELATION FUNCTION 

We consider a system of N classical particles 
enclosed in a volume .a. Its Hamiltonian (mass m = 1) 
IS 

N N 
HN = Ho + AV = I tp~ + A I V(lfi - f;i), (2.1) 

i=l i>j=l 

where fi and Pi' respectively, denote the position and 
the momentum of particle i; V(lfi - f;1) is the inter­
action between particles i and j. 

The Liouville operator associated with (2.1) is 

(2.2) 
with 

(2.3) 

AbL = IA I -. - - - . . N oV (0 a ) 
i> ;=1 Ofi; 0Pi 0Pi 

(2.4) 

The one-particle momentum af is defined by 

where the bracket denotes the average over all phase 
space weighted by the canonical distribution 

( ... ) = J drN dpN ... p"J. (2.6) 

Here we have used the symbols rN for (r1' f2' ... , 
fN), drN for df1df2' .. dfN , etc. 

Moreover, we write for later convenience the 
canonical equilibrium distribution prJ as 

N 

p"J == P'J.,?(rN ) II cprq(Pi)' (2.7) 
i=l 

where CP~q(Pi) is the normalized one-particle Maxwell­
Boltzmann df, while P"J(rN ) denotes the configuration 
distribution 

P"J(rN) = exp ( - ~AV). (2.8) 

J drN exp (-~AV) 

As shown by Zwanzig and by Berne, Boon, and 
Rice, 6'Y(t) obeys the following non-Markoffian kinetic 
equation: 

Ot'Y(t) = -A2fdtlK(tl; A)'F(t - t' ). (2.9) 

• See, respectively, Refs. 2 and 3. 

In this formula, the kernel K(t; A) is defined by 

K(t; A) = -( \ (F1 exp [-i(l - P)LN t]F1), (2.10) 
P1> 

where F 1 is the total force acting on particle 1, i.e., 

F1 = -I OV(lf1 - f;i) , (2.11) 
;=2 Of1 

and P is a projection operator defined as foIIows: 
for any phase vector G{rN, pN) one has 

eq 

PG(rN, pN) = P1~N Jdr'N dp'Np~ • G(r'N, piN). 
(P1) 

(2.12) 

The proof of Eq. (2.9) is fairly simple but will not be 
reproduced here; the reader is referred to the refer­
ences mentioned above. 

We want to consider here a very simple model, 
where all calculations can in principle be performed 
exactly; hence we discuss the weak coupling limit of 
Eq. (2.9). 

Let us first naively expand the kernel K(t; A) in the 
coupling parameter A, so that 

00 

K(t; A) = K(2)(t) + I ;.m-2K(m)(t). (2.13) 
m=3 

Let us assume that this expansion converges for 
small enough A and that each term K(n)(t) tends to 
zero after some time T c' independent of A. 

Moreover, we make the hypothesis that the integrals 

Loo dt tmK(n)(t) (m > 0; n ~ 2) 

converge. We then formally expand (2.9) as 

ot'F(t) = -A2fdt l [ K(2)(t' ) + J/nK(n+2)(t')] 

X ['Y(t) + m~l( _~,/m O;"'Y(t)} (2.14) 

We also notice that 
(1) Ot'Y(t) as well as higher order derivatives are at 

least of order;' 2 ; 

(2) in the limit t » Teo we have 

fdt l K(n)(t')t"n = L 00 dt' K(n)(t')t ,m, (2.15) 

a result which is A-independent. 
Thus taking the well-known weak coupling limit 

A2 -4- 0, t -4- 00, (A 2t) finite, we arrive at the following 
Markoffian form 7 : 

Ot'Y(t) = -A2,(2)'Y(t); A2 -4- 0, t -4- 00, ().2t) finite, 

(2.16) 

7 See Ref. 5, as well as H. Terwiel and P. Mazur, Physica 31, 1813 
(1966); P. Mazur and H. Terwiel, Physica 36,289 (1967). 
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where IX and ~ denote Cartesian components of a vector 
(0: = x,y, z; ~ = x,y, z). 

where the coefficient ~(2) is defined by 

~(2) = 100 

dtK(2)(t). (2.17) Using (2.6), Eq. (3.1) can be cast in the following 

Deliberately, we have not tried to derive Eg. (2.16) 
with much rigor because this would require the 
knowledge of the analytical properties of the kernel 
K(t; }.), which we have not yet investigated. It is, 
however, interesting to point out here that standard 
complex variable theory allows to formulate fairly 
weak sufficient ~onditions on the Laplace transform 
of the kernel K(t;}.) for Eq. (2.16) to be rigorously 
valid. This matter is discussed in detail in Appen­
dix A. 

Using (2.10), (2.11), and the obvious property 

PLo ' .. = 0, (2.18) 

we may cast (2.17) in the explicit form 

y(2) 1 fOOd (. ~ = -2 t(FI exp -ILot)FI)o, (2.19) 
(PI) ° 

where the subscript 0 means that the average is taken 
with the unperturbed canonical distribution. 

Because 'Y(O) = 1, Eq. (2.16) tells us immediately 
that the decay of the one-particle af is governed by a 
single exponential 

'Y(t) = exp (_}.2~(2)t), }.2 __ 0, 

t -- 00, (}.2t) finite. (2.20) 

In the next section, we show that an alternative 
approach of the weak-coupling behavior of 'Y(t) 
throws doubt on the validity of this result. As a 
matter of fact, we see in Sec. 4 that the assumptions 
made here about the behavior of K(t; }.) are incorrect. 
Yet, at first sight, the analysis given here seems just 
as satisfactory as what is generally accepted as 
"correct" in most work on nonequilibrium statistical 
mechanics. 

3. ANALYSIS OF THE af IN TERMS OF THE 
FOKKER-PLANCK EQUATION 

For reasons which will become clear soon, let us 
formally rewrite the af (2.5) as 

lY(t) = u-2(u. PI exp (-iLNt)[1 + (u. Pl)/kT]), 

(3.1) 

where u is an arbitrary parameter with the dimensions 
of a velocity. The equivalence between (2.5) and (3.1) 
is readily obtained once the following elementary 
properties are noticed: 

(PI) = 0, (p~) = 3kT, (3.2) 

(pia) exp ( - iLNt)pi fJ ) = b!~r (pia) exp ( - iLNt)pia), 

(3.3) 

form: 

with 

and 

ps(r", p:Y; t) = exp [-iL.i\·t][l + (u· PI)/kT]p'j.,? 

(3.6) 

Clearly, p . .,(rN , rV; t) is a solution of the Liouville 
equation 

iotpsCr'V, pS; t) = L",p;v(r''', pN; t) 

and is normalized to one: 

J drN dp"'PN(rN, pN; t) 

= J drN dpN PN(r"', p."'; 0) 

= J drN dpN[1 + (u • pl)/kT]p~1 

(3.7) 

= 1. (3.8) 

It may thus be interpreted as an N-particle df and, 
from (3.5), lPI(PI; t) is a one-particle df. 

The motivation for writing 'Y(t) in the form (3.1) is 
now quite clear: the introduction of the formal 
parameter u allows us, with the help of (3.4), to 
calculate the af from the one-particle df lPI(PI; t), 
which has been extensively studied in the literature 
(see Refs. 4 and 5, and references quoted therein). In 
particular, let us consider the weak coupling limit 
}.2 __ 0, t __ 00, (}.2t) finite. From (3.6) (taken at 

t = 0 and in the limit ). -- 0), we also deduce the 
following initial condition: 

lPI(PI; 0) = [1 + (u. Pl)/kT]lPiq(PI), (3.9) 

IPI(P.;; 0) = IPrq(Pi)' i ¥= 1. (3.10) 

It is then well known that IPI(PI; t) obeys the follow­
ing equation: 

0tIPI(Pl; t) = }.2Q(2\Pl)lPlpl; t), (3.11) 

where Q(2)(PI) denotes the linear Fokker-Planck 
operator 

n(2) P J J 0 ~~ (PI) = -3 dk dp2 kVk • - m5[k. (PI - P2)] 
871' OPI 

x k Vk • (::,0 -~) IP~q(P2)' (3.12) 
UPI OP2 
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Here, Vk is the Fourier transform of the interaction 
potential 

v,.. = f dryer) exp (-ik. r); (3.13) 

o(x) is the Dirac delta function, and p is the particle 
density. 

The eigenvalues and eigenfunctions of (3.12) are 
not known; however, it is readily verified that the 
operator [<p1<Jj-IQ(2)(Pl) is self-adjoint and satisfies the 
conditions which guarantee that the Sturm-Liouville 
type of problem, 

[<p~q r IQ(2)(PI)<D n(PI) = An[ <p~<J rl<D n(PI), (3.14) 

possesses a complete set ,f eigenfunctions <Dn with 
real eigenvalues An (Ref. 9). 

Moreover, we have the orthonormality property 

(3.15) 

It is also known that Q(2)(Pl) is a seminegative 
definite operator such that (see Refs. 4, 5, and 8) 

Ao = 0, <DO(PI) = <P~<J(PI)' 

An < 0 (n > 0). (3.16) 

If we expand <PI (PI; t) in the series of eigenfunctions 
<Dn , so that 

, co 

<PI(PI; t) = (3/kT)'l I I u(a)C;~)(t)<Dn(PI)' (3.17) 
a=x,Y,z n=O 

one obtains easily from (3.11), (3.14)-(3.16), the 
following convergent formal expansion for the af 
'Y(t): 

\f'(t) = I I Ic~a)12 exp (-A2IAnl t). (3.18) 
cr=X,JJ,Z n >0 

The expansion coefficients C;;) == c~a)(o) are given 
by 

C;;) = (3/kT)kf dpIPia)<D,,(PI) (n > 0) 0.19) 

and obey the sum rule 

I I Ic~a)12 = 1. (3.20) 
(X=X,Y,z n> 0 

Comparing (3.18) with (2.20), we immediately see 
that these two expressions are only compatible 

(a) if ,(2) is one of the eigenvalues, say An, (nl ,e 0) 
of (3.14); 

8 See especially, I. Prigogine and R. Balescu, Physica 23, 555 
(1957). 

• R. Courant and D. Hilbert, Methods of Mathematical Physics, 
Vol. I (lnterscience Publishers, Inc., New York, 1953). Note that all 
equations are written here for a discrete spectrum. Because of the 
very fast decay of the initial condition (3.9) at infinity, this result 
appears to be correct in view of recent rigorous analysis [see C. H. 
Su, J. Math. Phys. 8, 148 (1967»). However, our conclusions would 
be unaffected if the continuous spectrum of Q(2)(p,) contributed to 
the evolution of!Pt (Pt; t). 

(b) if simultaneously 

(3.21) 

Let us first show that condition (a) also implies 
condition (b); then we verify that (3.21) cannot be 
true. 

We write (2.19) explicitly as 

,(2) = ~ I co dt ~ fdkfd Pt fd P2k Vk 
(PI) 0 87T 

X exp [- ik· (PI - P2)tjk Vk<P~q(P])<P~q(P2) 

= ~ fdkfdP1fdP2 
(PI)87T 

X kVk 7TO[k. (PI - p2)jkVk<P~q(PI)<P~q(P2) (3.22) 

and, with (3.2) and integration by parts, as 

,(2) = - <:i> f dpI[<p~qrl[pl<p~q]n(2)(pl)[PI<P~qj. 
(3.23) 

With the help of (3.15) and (3.19), this also gives 

,(2) = I I IC~)12IAnl, (3.24) 
a.=X,Y,Z n>O 

which immediately shows that condition (a) implies 
condition (b). 

Now, this latter requirement in turn imposes that 
Pl<P1Q(Pl) is an eigenfunction of Q(2)(PI)' Direct calcu­
lation immediately tells us that this is not the case, and 
we are thus lead to a contradiction. 

4. ANALYTICAL BEHAVIOR OF THE KERNEL 
K(t, J.) IN THE WEAK COUPLING LIMIT 

The results of the preceding sections lead us to a 
paradox: we have found a different behavior for 'Y(t), 
according to the method we have used! If we look 
back at the various steps of the calculation, we realize 
that the weak point is in the unchecked assumptions 
made on the series (2.13), a crucial step for obtaining 
the simple exponential decay (2.17). 

We now show that these assumptions are indeed 
incorrect: even in the weak coupling limit, one has to 
retain an infinite class of terms in the expansion (2.13). 

In order to prove this, it is simpler to consider the 
Laplace transform K(z; }.) of the kernel K(t; A). We 
write 

K(t; A) = -. dz exp [-izt]K(z; }.), (4.1) -If -
2m c 

where the contour C passes above all singularities of 
K(z; .Ie). We have from (2.10) and (2.18) that 

- 1 / 1 \ K(Z;A)=- FI F] . (42) 
<pi> \ Lo + (1 - P)AoL - z / . 
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A possible reason for a nontrivial behavior of 
R(z; A) for small z [and thus of K(t; A) for large tl is 
apparent in Eq. (4.2); the projection operator P, 
defined by (2.12), appears in the denominator. This 
makes it very difficult to prove any statement about 
the analytical properties of R(z; A); in particular, the 
theory of Cauchy integrals, which plays such an 
important role in the theory of Prigogine and co­
workers (see Refs. 4 and 5), is not directly applicable 
to (4.2). 

In order to circumvent this difficulty, we establish 
an equivalent form for R(z; A) which involves in the 
denominator another projection operator Po, defined 
by 

PoG(rN, p."') = n-Nf dr,NG(r,N, p"), (4.3) 

The following identities can then be shown to hold: 

K- z., = RO( z; A) 
( ,/I.) 1 _ Z-IA2RO(z; A) (4.4) 

with 

1(O)(z; A) = h) fdPIPl[l + z-IA2n(pl' z; A)l-1 
(PI 

X D(Pl' z; A)Pl tp;q(pJ. (4.5) 

In this last equation, we have introduced the one­
particle operators D and n, defined respectively by 

D(Pl' z; A) 

=fdrN dpN-1bL 1 Lv 
Lo + A(l - Po)bL - z . 

N 
X PN(r"') II tp~q(Pi) (4.6) 

i=2 
and 

n(pl' z; A) 

= _1_ JdrN dpx-1bL 1 bL 
nN Lo + A(t - Po)bL - z 

N 

X II tpiq(Pi)' (4.7) 
i=2 

Although this has not been proved rigorously, we 
assume that D(Pl' z; A) and n(Pl' z; A) have a finite 
value in the thermodynamic limit N --->- 00, n --->- 00, 

N/n = p finite; this is easily verified to lowest order 
in A. 

The proof of these identities is straightforward, 
although fairly long; for these reasons, we have put it 
in Appendix B. 

Equations (4.4) to (4.7) express the kernel R(z; A) 
in terms of operators which involve only the projector 
(1 - Po) in the denominator, but no more (1 - P). 

It may be asked, of course, what is the advantage of 

these new expressions, which look much more com­
plicated than the compact expression (4.2)? The answer 
is that the analytical properties of operators involving 
the projector (I - Po) are fairly well understood, in 
the frame of perturbation calculus at least. 

Let us consider for instance Eq. (4.7); we have, 
provisionally assuming convergence, 

<Xl 

A2n(pl' z; A) = LAnn(n)(pl' z) (4.8) 
n=2 

with 

n("\Pl' z) 

= (~~n f drN dpN-1bL[(Lo - z)-I(1 - Po)bLln- 1 

N 

X II tp~q(Pi)' (4.9) 
i=2 

We can write this quantity in Fourier space with 
respect to spatial coordinates: 

n(n)(pl' z) = (-It f dpN-l 

x ({O}I bL[(Lo - z)-\1 - p o)bLr-1 I{O}> 
N 

X II tp~q(p;). (4.10) 
i=2 

Here we have used the usual Dirac notation, in terms 
of kets I{k}) and bras ({k} I , for the Fourier matrix 
element of an arbitrary function or operator G(r"', pN): 

({k}1 C I{k'}) = ~fdrN exp [-iikjrj] n 3=1 

X C(rN, pN) exp [i~lk;rjl (4.11) 

It is well known that the operator (I - Po) has the 
following formal representation in Fourier space: 

(1 - Po) = L l{k}>({k}l, (4.12) 
{k}*{O} 

i.e., it picks up from a complete Fourier expansion the 
non vanishing wavenumber components. This prop­
erty has been studied in detail recentlyl0 and is also 
briefly discussed in Appendix C. 

For the operator 'IjJ, defined by 

'IjJ(z) = <{O}I bL[(Lo - z)-I(1 - po)bLr I {O}>, (4.13) 

we may thus write the equivalent form 

'IjJ(z) = ({O}I bL[(Lo - z)-lbLr I{O}\rr' (4.14) 

where the subscript "irr" (irreducible) is taken with 
the meaning used in the theory of Prigogine and co­
workers4.5; that is, in the evaluation of (4.14), all 

10 M. Baus, Bull. Acad. Sci. Belg. 53, 1291 (1967). 
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intermediate states are to be taken with nonvanishing 
wavenumbers {k} ¢ {O}. 

Operators of the type (4.14) have been extensively 
studied. We define 

1p+(z) = 1p(z) [z E S+], 

1p+(z) = [analytical continuation of 1p+(z E S+)] 

[z E S-]. (4.15) 

It can then be shown that, in the thermodynamic limit, 
the only singularities of 1p+(z) are in the lower half­
plane S-, at a finite distance from the real axis, inde­
pendent of the coupling constant (see also Refs. 4 and 
. 5). This result cannot, however, by any means, be 
considered as a mathematical theorem, and this 
without doubt brings a certain weakness in the con­
clusion to be obtained below. Yet, many model cases 
can be treated exactly, which confirm the statement 
made here. n 

More precisely, it can be safely assumed that the 
singularities of 1p+(z) are at a distance from the real 
axis characterized by 

1m z ~ -T-;\ (4.16) 

where Tc is some time characterizing the duration of 
the collision process. We se.e thus that if Izl « T-;I, 
then 1p+(z) may be expanded in a Taylor series around 
the origin. 

Let us now explicitly assume that the forces are 
weak (A « 1) and let us also preclude that we shall 
later be interested in values of z of the order .1.2 [(A2t) 
finite implies (A 2Z-1) finite]. We may then write from 
(4.8), (4.10), (4.14), and the basic assumption on 
1p+(z), that 

Q+(Pl' z; A) = ).2Q+(2)(Pl; z) + 0().3); 

.1.2 --+ 0, (A 2
Z-

1
) finite 

= A2Q+(2)(Pl; 0) + 0(.1.3); 

}.2--+0, (A2
Z-

1
) finite, (4.17) 

and a similar result holds for D+(Pl' z; A). Here, the 
superscript" +" has the same meaning as in (4.15). 

Moreover, from (4.6), (4.7), and (2.8), we see that 

D+(2)(pl> z) = Q+(2)(Pl, z) (4.18) 
and 

Q+(2)(Pl' z) = lim Q-NJdrN dll'-l(jL 1 oL 
<--0 Lo - iE 

N 

X II 9?~q(p;). (4.19) 
i~2 

11 A pathological case is found when one tries to expand 
1p+(z) as a virial series, in power of the density p; the well-known 
divergence in the virial expansion of the transport coefficients is 
related to a logarithmic singularity of 1p+(z) at the origin z = O. 

With the help of (2.3), (2.4), (3.13), and the well­
known formula 

lim [i(x - iE)r1 = 7TO(X) - iP(x-1
), (4.20) 

<--0 

it is easily established from (4.19) that 

Q+(2)(Pl' 0) = - iQ(2)(Pl), (4.21) 

where the Fokker-Planck operator Q(2)(Pl) was de­
fined in (3.12). 

It is now a matter of some elementary algebra to 
derive from the formulas established in this section 
the following expression for the kernel J(z, A), valid in 
the weak coupling limit .1.2 --+ 0, Z --+ 0, (A2Z-1) finite: 

.1.2 J(z; A) 

[If 1 J-1 

= (pi> dpIPl z _ i,12Q(2)(Pl) Pl9?r
q

(Pl) - z. 

(4.22) 

It is also easy to establish that, when .1.2 --+ 0, all the 
singularities of J(z; A) other than those described by 
(4.22) (i.e., for Izl finite) are located at a distance from 
the real axis given by (4.16). 

The difficulty with the assumptions made about 
expansion (2.13) is now easily understood. Indeed, if 
we formally expand (4.23) in a power series of .1.2, we 
get 

00 

,12J(+(Z; A) = ~;;'2nJ(+(2n)(z); 
n=1 

,1 --+ 0, Z --+ 0, (A 2z-1
) finite, (4.23) 

and the coefficients J(+(2n)(Z) have the form 

(4.24) 

Here the coefficients fJ2n are independent of both z and 
A, and the factor in is introduced for convenience. 
The explicit form of these fJ2n is complicated but not 
needed here, except for fJ2 which is immediate to 
calculate: 

fJ2 = - (:i) f dpIPl Q(2)(Pl)Pl 9?rQ(Pl) = ~(2). (4.25) 

Inserting (4.23) into (4.1) and performing the 
trivial residue evaluation at z = 0, we obtain the 
following expression for the time-dependent kernel 
[see also the argument after (5.1)]: 

).2K(t;).) = 2).2~(2)(j(t) + ).2K'(t;).) + o [exp (-tITe)]; 

with 
,12 --+ 0, t --+ 00, (,12t) finite, (4.26) 

A2K'(t; A) = i A2nfJ2n t
n
-

2 
; 

n~2 (n - 2)! 

.1.2 --+0, t--+oo, (A2t) finite. (4.27) 
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The full complexity of Eq. (4.26) should be appre­
ciated. First, let us notice that the leading term 
2}.2,(2)15(t), when inserted into (2.9), would imme­
diately lead to the simple exponential decay (2.20); 
moreover, the singular nature of this term is not re­
lated to the formal nature of expansion (4.23). As we 
show in Appendix D, this term remains when the 
compact form (4.22) is Laplace-inverted: it is related 
to the fact that the first derivative of o/(t) does not 
vanish at t = ° when the limit t ~ ° is taken after one 
goes first to the weak coupling approximation [see 
(3.18)]. 

Next, we notice that the remainder }.2K'(t; }.) is of 
order }.4 for times of the order }.-2 (assuming conver­
gence). Nevertheless, it does not satisfy the requirement 
of tending to zero over a time independent of}.. In other 
words, its total contribution for times of the order 
}.-2 is 

(tdt'K'(t';}.) = }.2IP2n (}.2 t)n-l = O().2); 
Jo n~2 (n - I)! 

}.2 ~ 0, t ~ co, (}.2t) finite, (4.28) 

a quantity of the same order as the integral of the first 
term in (4.26). We are thus not allowed to neglect this 
remainder, and the derivation leading to (2.16) is in 
error. 

We shall not pursue further the analysis of the 
expansion (4.24), because this would require a detailed 
calculation of the coefficients P2n' Moreover, in the 
next section, we derive the correct behavior for the 
af o/(t) by a direct method, independent of any 
perturbation expansion. Also a detailed model calcu­
lation, together with a few general properties of the 
kernel K(t; }.), are presented in Appendix D. 

5. CONCLUSION 

In the preceding section, we have established the 
correct form for the kernel K+(z; A) in the weak 
coupling limit [see Eq. (4.22)] and we have shown why 
the naive reasoning which leads to a simple expo­
nential decay for the afo/(t) is in error. 

We still have to prove that Eq. (4.22) for K+(z;}.) 
solves the apparent paradox we have found and leads 
to (3.18) for the solution o/(t). 

Let us first take the Laplace transform of Eq. (2.9); 
we obtain 

o/(t) = _1_ J. dz exp (~izt). (5.1) 
2rri 'Ye z + }.2 K(z;}.) 

The contour C is chosen as a parallel to the real axis 
in the upper half-plane, closed by an infinite semi­
circle in the lower half-plane; because the contribution 

to (5.1) coming from this semicircle vanishes, we may 
as well replace K(z; A) by its determination K+(z; }.), 
defined by a formula analogous to (4.14). Moreover, 
in the weak coupling limit, we may use expression 
(4.22) for the kernel K+(z; }.), because in Eq. (5.1) we 
are only interested in the singularities of the integrand 
located at a distance of the order}.2 from the real axis; 
all other singularities give asymptotically negligible 
contributions. After some straightforward algebra, we 
get 

'¥(t) = -. ~ dz exp ( - izt) -2 dplPl 1 ~ [ 1 f 
2m Ye (Pl) 

X '.2

1
0.(2)( )Plrp~q(Pl)J; 

z - II. Pl 

),2 ~ 0, t ~ co, (}.2t) finite. (5.2) 

The bracketed term in the integrand can be expressed 
as a series expansion in the eigenfunctions of Q(2)(Pl); 
using (3.14) and (3.19), we get immediately 

o/(t) = -. dz exp (-izt) L L .n. . 1 ~ [ Ic(a)1 2 
] 

2m e a~x,y.z n>O Z + Ik IAnl 
Commuting the sum and the integral, we get then the 
required result (3.18) by application of residue 
theorem. 

This shows the complete equivalence between the 
transport-equation method, as developed in Sec. 3, 
and the approach based on a kinetic equation for the 
af when the weak coupling limit is correctly taken. 

However, we see that for explicit detailed calcu­
lations, the apparent simplicity of the kinetic equation 
(2.9) is paid for by the great complication of the 
kernel, even in a simple limiting situation [see Eq. 
(4.22)]. 

This of course does not prevent these kinetic 
equations from being extremely useful in the semi­
phenomenological treatment of systems which are 
beyond the power of quantitative treatment; a nice 
example is furnished by the Berne-Boon and Rice 
analysis of Rahman's computer experiments. 12 Yet 
the present derivation shows very clearly the great 
care that has to be exercised when exact calculations 
are developed starting from these kinetic equations. 
Such difficulties are usually avoided in the more 
traditional treatment based on transport equations; 
as we exemplified in Sec. 3, the calculations, although 
less elegant, are then generally straightforward. 
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APPENDIX A: MARKOFFIAN LIMIT OF A 
NON-MARKorFIAN KINETIC EQUATION 

We formulate13 here rigorously sufficient conditions 
on the Laplace transform of the kernel K(t; A) which 
guarantee that the weak coupling limit of Eq. (2.9) is 
the Markoffian equation 

at\F(t) = -A2 [100 dt'K(2)(t ' )]'l"(t). (AI) 

This analysis is based on the Lagrange theorem,14 
which we recall here without proof: If K(z; A) is 
holomorphic in a domain including a circle on which 

(A2) 

and if 

I K(z; A)I =F 0 

inside this circle, then the equation 

(A3) 

z + A2K(z;A) = 0 (A4) 

has a single zero, Zo, inside this circle. Moreover, this 
zero is given by 

00 C- l)n[dn-1Rn(z' A)] 
z =I-- ' A2n. 

o n=1 n! dz n- 1 z=O 
(AS) 

From this result we want to prove the following, more 
general result: 

Theorem: Assume that the Laplace transform 
R(z; A) of the kernel [see (4.1)] exists and satisfies the 
following requirements: 

(1) K(z; A) is holomorphic in z in the semi-infinite 
plane 

1m z > _T;;-1 h > 0, A-independent) (A6) 

and holomorphic in A for A smaller than some finite 
value Ac; 

(2) R(O; A) is finite for all IAI < IAcl, so that 

IR(O; A)I > B > 0 (B is A-independent); (A7) 

(3) I K(z; A)I tends to zero at least as fast as Izl-1 for 
z ---+ 00. 

Consider the solution of Eq. (2.9), which in general 
is 

'F(t) = _1 1. dz exp (-= izt) , (A8) 
27Ti J'o z + A2 K(z; A) 

where the contour C lies above all the singularities of 
the integrand. In the weak coupling limit A2 ---+ 0, 

13 It is gratefully acknowledged that the matter of this appendix 
is the result of fruitful discussions with Dr. M. De Leener. 

14 See, for instance, G. Sansone and J. Gerretsen, Lecture on the 
Theory of Functions of a Complex Variable (P. Noordhoff Ltd., 
Groningen, The Netherlands, 1960). 

t ---+ 00, (A 2t) finite, we then have the following as­
ymptotic result: 

'F(t) = exp [iA2 Rco; O)t]. (A9) 

First we establish a lemma. 

Lemma: Consider a region 

1m z ~ -r > -T;;-\ (AlO) 

where r is an arbitrary positive number, smaller than 
Tc; and consider values of A2 such that15 

A2 < rB/{A(r)[M(r) + Bl} (All) 

where M(r) and A (r), respectively, denote the least 
upper bound of the modulus of K(z; A) on a circle of 
radius r centered around the origin and in the whole 
region (AlO) [clearly M(r) ~ A(r)]. 

Then, under the conditions of the theorem, z + 
A2K(z; A) has only one zero in the region (AIO) and 
this zero is given by Lagrange formula (AS). 

Proof The proof runs in three steps: 
(a) From (All), the zeros Zo of z + A2R(z; A) in 

(AIO) are such that 

IZol = IA2K(zo; A)I < A2A(r) < rB/[M(r) + B]. (AI2) 

(b) Inside and on the circle of radius R, defined by 

R = rB/[M(r) + B], (Al3) 

the function R(z; A) does not vanish. Indeed, R(z; A), 
being holomorphic inside the radius r, has the ex-
pansion 00 

K(z; A) = I Qn(A)Zn, Izl ~ r. (A14) 
n=O 

Then 
OCJ 

IK(z; A) - R(O; A)I ~ IIQn(A)llzln. (AtS) 
n=l 

Moreover, by the Cauchy principle, we have 

IQn(A)1 ~ [M(r, A)]/rn < [M(r)]/rn, (AI6) 

where M(r, A) denotes the maximum modulus of 
R(z, A) on the circle of radius r. Thus 

IK(z; A)I ~ IR(O, A)I - IR(z; A) - R(O; A)I (AI7) 

> B - M(r)z(r - z)-l, Izl < r. (AI8) 

The second term increases when Izl increases, but 
clearly 

IR(z; A)I > 0 

when Izl ~ R [see (Al3)]. 

(AI9) 

15 We assume here rB/A(r)[M(r) + B] < A~; strictly speaking, 
instead of (All) we have A2 < min [rB/A(r)[M(r) + B], A~]; the 
case rB/A(r)[M(r) + B] ~ A~ is, however, trivial to treat. 
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Imz 

FIG. I. The con­
------t---n--~Rez tour of integration in 

r' r Eq. (AS). 
• Zo 

(c) On the circle of radius R, one has [see (All) 
and (Al3)] 

A2IK(z; A)I < rB M(r) < 1. 
Izl [M(r) + B]A(r) rB[M(r) + B]-1 

(A20) 

By (AI9) and (A20), we see that the circle R satisfies 
the conditions of Lagrange theorem; we have thus 
one zero inside this circle, which is given by (A5). 
From (Al2), there can be no other zero inside the 
region (AlO). This completes the proof of the lemma. 

With this lemma the proof of the main theorem is 
immediate. Indeed we can choose the contour of 
integration in (AS) as is indicated in the Fig. I, 
because the integrand of (AS) has Zo(A) as only singu­
larity in the region (AlO). As the two segments 
parallel to the imaginary axis do not contribute, we 
have 

'l"(t) = exp [-iZo(A)t] + ~exp(-tr) 
2m 

X dw _ . J 
oo-if exp [- iwt] 

-oo-if (w - ir) + A2K(w - ir; A) 

(A21) 

The integral in the second member exists because the 
integrand is regular and the condition imposed on 
IK(z; A)I at infinity insures that the limit w - cO poses 
no difficulty (in the Cauchy principal value sense). 

Thus 

J 
oo-iT exp [- iwt] 

dw . 2 _ • < c. 
-oo-iT (w - lr) + A K(w - lr; A) 

As IZol < R < r, we see that in the asymptotic limit 
t - 00, one has 

':Y(t) = exp -izo(A)t. (A22) 

Note that this result is valid for any A satisfying 
(All).16 As the right side of this latter equation is 
independent of A, we see that this condition is auto-

16 We see here that the asymptotic result (A22) is valid for;' 2 finite, 
satisfying (All). We do not know, however, whether this condition 
(All) is very restrictive or not. 

matically fulfilled when A2 - O. Moreover, the regu­
larity of K(z; A) with respect to A also insures that 

lim zoO.) = _A2 K(O; 0), (A23) 

and we thus get (A9) in the weak coupling limit. 
Note that neither (A6) nor the asymptotic behavior 

oJIK(z; A)I for Izl- 0 are satisfied by the kernel (4.22). 
Let us finally point out that the proof was possible 

because K(t; A) is an ordinary function. In transport 
theory, equations similar to (A5) are often used (see 
Refs. 4 and 5), but no comparable rigor can be achieved 
in their derivation, because in this latter case the 
kernel is an operator. 

APPENDIX B: PROOF OF EQUATIONS 
(4.4) TO (4.7) 

With the help of (2.4), (2.6), and (4.2), we can write 

A2 K(z; A) = (;~> f drN dpNP1AOL 

X Lo + A(l ~ P)(jL _ z LNP1Pj.r (B1) 

We use the identity 

[Lo + A(l - P)oL - Z]-1 = [Lo + AoL - Z]-1 

+ [Lo + AoL - z]-1PAoL[Lo + A(l - P)oL - Z]-1 

(B2) 
and insert it in (Bl). Using (2.12), we obtain 

K(z; A) = KO(z; A) + (A 2jZ)KO(z; A)K(z; A), (B3) 

where 

K(O)(z; A) = <;~> f drN dpNp10L 

X Lo + A~L _ z LN P1P'j,r (84) 

The identity (B3) was in fact already proved in Ref. 3. 
In a second step, we transform KO(z; A) by using the 

projection operator Po defined by (4.3). Let us first 
introduce the auxiliary operator A(rN,pN, z; A): 

A(rN , pN, z; A) 

= oL[Lo + AoL - zt1L.v 

= oL[Lo + APooL + A(l - Po)oL - ztlLN' (B5) 

An identity similar to (B2), but involving now Po, 
leads us to the following result: 

A(rN, pN, z; A)P1PJZ,q 

_ (N N ") eq 1 (N N ") 1 -1pr ,p ,Z,IIP1PN -;1pr ,p ,Z,II QN 

X f dr,NA(r,N, pN, z; A)P1PN1, (86) 



                                                                                                                                    

KINETIC EQUATION FOR AUTOCORRELATION FUNCTIONS 973 

where we have introduced the operator 

'IjJ(rN, pN, z; A) = bL[Lo + A(l - Po)bL - zr1LN . 

(B7) 

We decompose the equilibrium distribution p'K! 
according to (2.7) and integrate both members of Eq. 
(B6) over all positions and all momenta except Pl. In 
doing this, we take Hlto account that, in the product 
term on the right side of (B6), only particle I appears 
explicitly in both 'IjJ(rN,pN, z; A) and A(rN,pN, Z;A). 
If any other particle were common to these two 
operators, the corresponding contribution would 
vanish in the thermodynamic limit. More precisely, it 
is immediately verified that, after integrating (B6) over 
rN and pN-\ this product term vanishes except when 
PI appears in the two factors of the product; imposing 
one more particle to be common to these two factors 
reduces the contribution by a factor lIN, a negligible 
contribution when 

N -+ 00, Q -+ 00, NIQ = p finite. 

Using then a familiar trick,17 we may then formally 
write 

f drN dpN-l'IjJ(rN, pN, z; A) ~N 

X f dr'N A(r'N, pN, z; A)Pl IT rpfq(Pi)P'j.?(r,N) 

= f drN dpN-l'IjJ(rN, pN, Z; A) fi rpfq(Pi) ~N 

X f dr,N dp'N-1A(r,N, PIP'N-t, z; A)PIlPfq(Pl) 

X n IPfq(p;)p'j.?(r'N) + 0 (~). (BS) 

We get then from (B6)-(BS) the required Eqs. (4.5)­
(4.7). 

APPENDIX C: PROOF OF EQUATION (4.12) 

Take an arbitrary function G(rN, pN); its Fourier 
expansion is 

G(rN, pN) = I G{k}(pN) exp [iIkjfjJ. (e1) 
{k} j=l 

From (4.3), we immediately get 

(1 - P o)G(rN, pN) = I G{k}(pN) exp [i I kjf j] - G{O} 
(kJ j=1 

= I G{k}(pN) exp [ifkjfj]' (e2) 
{k).,,{O} j=1 

Following Dirac,t8 we may consider G(rN,pN) as the 

17 P. Resibois and H. T. Davis, Physica 30, 1077 (1964). 
18 P. Dirac, The Principles of Quantum Mechanics (Oxford Uni­

versity Press, London, 1947), 3rd ed. 

configurational representation of an abstract vector 
IG(pN»; we write then (e2) in abstract form as 

(rNI (1 - Po) IG(pN» = I (rN I {k})({k} I G(pN», 
(k}*(O) 

which also implies 

(1 - Po) IG(pN» = I I{k})({k} I G(pN». 
(kl*(o) 

This proves Eq. (4.12). 

APPENDIX D: FURTHER CONSIDERATIONS 
ON THE WEAK COUPLING LIMIT OF 

KERNEL K(t; A) 

Using Eqs. (4.22), (3.14), and (3.19), one obtains 
easily the following form for the weak coupling limit 
of K+(z; A): 

Unfortunately, this formula does not allow us to calcu­
late easily the time-dependent kernel K(t; A) in closed 
form, although, as seen below, some general properties 
of K(t; A) can be deduced. 

In order to have a better understanding of Eq. 
(DI), let us first consider a model calculation, in which 
only two coefficients c~a) do not vanish. Thus we 
write 

A2K~Odelz; A) 

= iA2IAIIIClI2/(Z + iA21A11) + IA21IC21
2
/(z + iA21A21) 

ICl I
2
/(z + iA21A1 1) + IC21

2/(z + iA21A21) 

(D2) 
with [see (3.20)] 

with 

ICil + IC~I = 1. 

(J. = ICillA21 + IC~IIAll, 
f3 = ICiIIA]1 + IC~IIA21. 

(D3) 

(D4) 

Some care has to be exercised in calculating the 
inverse kernel by (4.1). Indeed K;;;odel(Z; A) tends to a 
constant when Izl -+ 00. We may, however, write it as 

A2R~odelz; A) = i;t2[f3 + iA2IAtlIAzl.;t: (J.f3]. (D5) 
z + I (J. 

The first term gives a delta function by Laplace 
inversion, while the second may be calculated by 
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residue theorem. We obtain19 

with 

A,2K:"odelt; A,) = A,4(1A111A21 - rt.P) exp -A,2rt.t. (07) 

These results, in agreement with the discussion of 
Sec. 4, show that: 

(1) The singular term in the kernel (06) is inde­
pendent of any A, expansion; it just expresses the fact 
that 

(08) 

when one first takes the weak coupling limit and then 
lets t -+ O. 

(2) The remainder R/nodel(t; A,) is a well-defined 
expression of order A,4. However, it only tends to zero 
for times of the order A,-2. In particular, the integral 

is of the same order as the corresponding integral of 
the singular part. 

Let us now come back to the complete expression 
(01). In analogy with (05) and using (3.24), we 
write it as 

with 

A,2K'(z; A,) = iA2[~ IC~«)12(IA~1 - ~(2»)J 
«,n Z + iA IAnl 

[ 
IC~«)12 J-1 

X I 2 • 
«,n Z + iA IAnl 

(011) 

By Laplace inversion, the first term gives the dis­
tribution 2A2~(2)t5(t), but the remainder 

A,2K'(t;A,) = -~ldzexp(-izt)A,2R'(z;A,) (012) 
2mjc 

cannot be evaluated easily in closed form. Yet it is 
easy to verify that R'(z; A) is a meromorphic function, 
with poles in the lower half-plane. 

Then one shows readily that 

A2LOOdtK'(t; A) = -iA2K'(O; Ie) 

= A2[~ IC~«)12 (IAnl - ~(2»)J 
«,n IAn I 

X [~ IC~«)12J-1, (013) 
no. IAnl 

which again is of order A,2. 
Finally, let us point out that we have proved that 

the poles Yi of K'(z; A,) are purely imaginary, simple, 
and ordered in such a way that 

(010) IAil < IYil < IAi +1 1, i = 1,2, ... , n, .. '. (014) 

,. The factor 2 in front of the delta function arises because we 
adopt the convention f~ 2r5(t)[(t) dt = [(0+). 

We shall not, however, reproduce this calculation in 
detail here. 
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This is an article written to review with sufficient detail the so-called Gel'fand-Kirillov conjecture 
concerning the isomorphisms between the quotient fields of the algebras generated by canonical variables 
[pi, q;l = 0,;1 and the quotient fields of the universal enveloping algebras of algebraic Lie algebras. 
This conjecture sheds new light on the relation between the universal enveloping algebra of an algebraic 
Lie algebra and the Lie algebras of dynamic groups in quantum mechanics. 

I. INTRODUCTION 

The Gel'fand-Kirillov conjecture concerns the 
quotient field associated with the universal enveloping 
algebra of an algebraic Lie algebra. This conjecture is 
of some interest to physicists due mainly to the fact 
that it relates, through isomorphism, the field of 
quotients constructed out of the universal enveloping 
algebra to the field of quotients constructed out of 
some associative algebra generated by the 2n gener­
ators 

over the ground field K[x] which is just the polynomial 
ring on a set of indeterminates 

over the field (i.e., a commutative division ring) K. 
We note K is also the ground field of the Lie algebra 
of concern. The PI,'" 'Pn' ql,'" ,qn mentioned 
here are required to satisfy 

(1) 

where 1 UL denotes the unit element of the universal 
enveloping algebra UL of an algebraic Lie algebra L. 

We see that (1) is nothing but the quantum­
mechanical commutation relations of canonically 
conjugate operators. In order to state the conjecture 
we first define "algebraic" Lie algebras. To make the 
discussion more or less self-contained, we mention 
briefly some of the basic concepts and definitions of 
ring theory that are relevant to the conjecture. Then 
we shall discuss some properties of the universal 
enveloping algebra before we go into a fulI exposition 
of the conjecture. It is rather unfortunate that the 
conjecture cannot be fully understood without the 
mathematical machinery that may seem to be heavy 
to many physicists. 

• Four talks given at the Department of Physics, Syracuse 
University, in June and December 1967. 

t Work supported in part by the Graduate School of the Univer­
sity of Wisconsin, Milwaukee, Wisconsin. 

VS 
AA 

LA 

EndK V 

Aut V 
HomK (<1>, K) 

K[<1>] 

II. NOTATION 

Vector space 
Associative algebra; and when it is 
used as a subscript we simply mean 
to concentrate on the natural AA 
structure of the object 
Lie algebra; and if it is used as a 
subscript like .1iLA (where .it is an 
AA) we mean that the AA .it is now 
made into an LA by means of 
[a, a'] == a . a' - a' . a, where a . a' 
denotes the AA multiplication 
The set of alI K-endomorphisms on 
a vector space V over a ground field 
K (<1> == EndK V is also used for 
short) 
The set of all automorphisms on V 
The set of all K-homomorphisms 
from <1> to K when both are con­
sidered as AA's over K 
The set of all polynomial functions 
on <1> (i.e., on EndK V) with coeffi­
cients in K 
A is an ideal of B 
A composition; e.g., it sends (a, b) 
into a D b 

III. CONCEPT OF ALGEBRAIC LIE ALGEBRAS 

To define an algebraic Lie algebra we define first 
the concept of an algebraic group. 

DeI Algebraic group (I.e., "algebraic linear group" 
sometimes): An algebraic group G is defined as a sub­
group of Aut V (where V is a vector space over a 
field K) satisfying 

3S C K[<1>]: G = {1] /1]E Aut V, 71'(1]) = 0, '<171' E S}. 
RPt 

(2) 
Remarks: 
(i) S is called the defining set of G. S is obviously 

an ideal (w.r.t. associative multiplication!) of 

975 
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K[<I>]; therefore, S is also called the "ideal of 
polynomial functions associated with G." 

(ii) It is obvious that an algebraic group is a Lie 
group. 

(iii) K[<I>] has the structure of an associative alge­
bra; K[<I>] is the associative algebra generated by 
HomK (<I>, K) and the constant functions. 

DeI K[<I>] as a <I>-module (bimodule): 
(i) K[<I>] can be defined as a left <I>-module 

n.:.v X K[<I>]-K[<I>], 
i.e., 

defined by 

«((! • 7T)e/> = 7T(e/>' ((!), Ve/> E <1>, (3) 

where f-+ denotes element-wise mapping. 
(ii) K[<I>] can be defined as a right <I>-module 

no:p X <I> -P, 
i.e., 

no: (7T, ((!) 1-+ 7T 0 ((! 

The reason for such an alternative, but equivalent, 
definition is due to the following "necessary-and­
sufficient" type of theorem: Let 

L C [End K V]LA, 
LA 

then L is algebraic <=> every replica of any element of 
L belongs to L. 

IV. SOME IMPORTANT THEOREMS ON 
ALGEBRAIC LIE ALGEBRA AND 

ALGEBRAIC GROUPS 

Proposition 1: Let 

and 

X,X' C EndK V 
vs 

G = {g I g E EndK V, (g-lXg - X) EX' 

for any x EX}, (8) 

then G is an algebraic subgroup of the Lie group 
GL(n, K). 

defined by 
(7T 0 ((!)e/> = 7T«((!' e/», e/> E <1>. 

Remark: [EndK V]LA = glen, K) if dim V = nand 
(4) if we use a basis for V. Here we write glen, K) to 

denote the Lie algebra of GL(n, K). 
DeI The derivation don K[<I>]. d"" V((! E EndK V, 

is defined as the derivation on K[<I>] satisfying 

d",K = 0 (5) 

(K here means "constant functions") and 

Proposition: Let 

La == {((! I ((!E EndK V, d",S c S}; 
then 

(7) 

[La]LA C [EndK V]LA, 
LA 

where Lie algebra composition is the true bracket (i.e., 
[((!, ((!'] == ((!. ((!' - ((!' • ((!) and S is the defining set 
of some algebraic group G. 

DeI La is called the "Lie algebra of the algebraic 
group G." 

DeI a sub-Lie algebra, L, of [EndK V]LA is an 
algebraic Lie algebra if it is the Lie algebra of an 
algebraic group. 

Remark: There are a number of equivalent ways of 
defining algebraic Lie algebra; for instance, one could 
define it in terms of the so-called "replica." 1-3 

1 C. Chevalley, Am. J. Math. 65, 521 (1943). 
• C. Chevalley, Ann. Math. 48, 91 (1947). 
3 Semina ires S. Lie, Ecole Normal Superior, 1954-55. 

Proposition 2: 

La = {Y lYE EndK V, [x,y] E X', any x EX}, (9) 

where G means the Lie algebra of an algebraic 
group G. 

Proposition 3 : (char K = 0): Let 

L C [End K Vlr,A, 
LA 

then 

[Ga]LA C L, any a E L => L is algebraic, (10) 
LA 

where Ga is the intersection of all algebraic sub­
groups of GL(n, K) whose Lie algebras contain a. [Ga 
is the unique smallest algebraic subgroup of GL(n, K) 
for char K = 0 (char == characteristic).] 

Proposition 4: (char K = 0): 

L C [EndK V]LA => L(I) is algebraic, 
LA 

where VI) == [L, L]. 

Proposition 5: (char K = 0): 

(11) 

semisimple L C [EndK V]LA => L is algebraic. (12) 
J,A 
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Proposition 6: Let LiEI be a collection of subalge­
braic Lie algebras of [EndK V]LA' then 

L == nLi 
iEI 

is also a subalgebraic Lie algebra. 

Observations: 
(i) That G is a group is obvious, since 

h·g1-g1·h=0, anyglEG, 

h . g2 - g2 . h = 0, any g2 E G; 

If Gi is an algebraic group of automorphisms of V thus, 
such that Li is the Lie algebra of Gi , Vi E I, then L h . (gl . g2) = (h . gl) . g2 

= (gl . h)· g2 

= gl . (h· g2) 

= gl . (g2· h) 

= (gl . g2) . h, 

is the Lie algebra of the group 

G == n Gi . 
iEI 

Proposition 7: Let {Li}iEI be defined as above, then 
the Lie algebra generated by all the L i , i E I, is also 
algebraic. 

Proposition 8: If LK is a sub-Lie algebra of EndK V, 
and if K' is a subfield of K, then 

LK is algebraic => LK ' is algebraic. (13) 

Proposition 9: Let V be any nonassociative algebra, 
then the set Der V, of all the derivations on V, is a 
subalgebraic Lie algebra of [EndK V]LA; i.e., Der V 
is the Lie algebra of the group Aut V. 

Proposition 10: (char K = 0): Let G1 , •.• , Gm be 
closed connected subgroups of GL(n, K) and let G 
be the smallest closed subgroup of GL(n, K) such that 

then G is the sub-Lie algebra of [EndK VkA gener­
ated by Gi • 

Remark: In spite of the formal definition, it can be 
shown that the Lie algebra of an algebraic group 
coincides with the ordinary definition of Lie algebra 
when the algebraic group is treated as an ordinary 
Lie group.3 

v. SOME EXAMPLES ON ALGEBRAIC 
LINEAR GROUPS 

(A) For any finite-dimensional vector space V, 
Aut V is an algebraic linear group. 

Observations: This is obvious; we take the poly­
nomial as the product of all characteristic polynomials 
for Aut V. 

(B) For any fixed h E <1>, the set 

G = {g I g E Aut V, h . g - g . h = O} (14) 

is a subgroup of Aut V, and is an algebraic linear 
group (remembering that we denote <1> == EndK V). 

i.e., h· (gl . g2) - (gi . g2) . h = 0, thus gl . g2 E G. 
(ii) We now ask what is the defining set of G. To 

answer this we shall digress to discuss the following 
definitions: 

Digression: Let dim V = n and {v} == {VI' ... , vn} 
be a basis of V. Now we introduce a set of n2 elements 
gij EO <1> such that gij: Vk M V/J jk , i,j, k = 1,·· . ,n. 
Then h E <1> can be written as 

n 

h == L a;/h)gii' a;ih) E K, 
i,i=l 

where ai;(h) is clearly a K-linear mapping, with 

aij: <1> -.. K 

defined by 

DeI The aij(h) , i,j = 1, ... ,n, are called the 
coordinates of h (w.r.t. the basis {vn. 

Def: The set of n2 K-linear mappings, {aij}, i,j = 
1, ... ,n, is said to form a system of coordinate 
functions. 

We now return to the question of the defining set 
of G. Let {aij} be a system of coordinate functions on 
<1>. We know the mappings 

g M aii(h . g), 

g M aii(g . h), any g E Aut V, 

are obviously K-linear. Obviously, then, G is the set 
of all automorphisms given by all g E Aut V satis­
fying: 

aii(g· h) - aij(h . g) = 0. 

Therefore, the set of all mappings 

h M aii(g . h) - aij(h . g) = ° 
is the "defining set" of G. 
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(C) For any given (fixed) 1T E K[<1>], the set 

G == {g I g E Aut V, 1T(g. h) = 1T(h), any hE <1>} (15) 

is an algebraic linear group. 

Justification: 
(i) For any gl, g2 E G, any h EO <1>, 

1T«gl . g2) . h) = 1T(gl . (g2 . h» 

= 1T(g2 . h) 

= 1T(h). 

(ii) We simply consider the mapping 

EndK V ->- K, 
defined by 

g M 1T(g . h) - 1T(h) = 0, 

which furnishes the defining set of G. (We use <1> and 
EndK Vas equivalent notations.) 

(D) Let F be any polynomial function on V in K. 
Then, the set 

G == {g I g E Aut V, F(g(v» = F(v), any v E V} (16) 

is an algebraic linear group. 

Justification: 

(i) F«gi' g2)(V» = F(gl(g2(V))) 

= F(g2(V» 

= F(v), any gl, g2 E G. 

(ii) Simply consider the mapping 

EndK V ->- K, 
defined by 

g M F(g(v» - F(v) = 0, any v E V. 

(E) The special linear group, SL(n, K), is algebraic. 
(F) As an example of a nonalgebraic group, con­

sider the 2-dimensional real vector space V with a 
basis {VI' V2 }. Consider the set G of all K-endomor­
phisms of V describable in the form 

with real positive a and an irrational number t. In 
this case, G is not an algebraic group though G is a 
Lie group. 

VI. EXAMPLES OF ALGEBRAIC LIE ALGEBRAS 

These follow simply as the Lie algebras of algebraic 
groups; for example, the known algebraic Lie algebras 
are: 

(1) sl(n, K), with K being algebraically closed and 
of characteristic zero. 

(2) glen, K). 

(3) All nilpotent Lie algebras as sub-Lie algebra of 
glen, K). 

(4) All semisimple Lie algebras over a field of 
characteristic zero (e.g., real or complex number 
fields). 

(5) Representations of Lie algebras of diagonal 
matrices as Lie algebras of nilpotent matrices. 

(6) Representations of semisimple Lie algebras as 
derivations of solvable Lie algebras. 

VII. ON NOETHER RING, ORE CONDITION, 
AND QUOTIENTS 

We summarize in this section some of the standard 
mathematical concepts in ring theory to be used later. 

DeI Ring: A ring is an Abelian group and also a 
(noncommutative) multiplicative semigroup with or 
without a unit element. 

DeI Noether ring: A ring R is (left) Noetherian if 
every chain of (left) ideals of R: 

(17) 

terminates (i.e., 3 an index n: Rn = Rn+1 = ... ). 

DeI Ore condition: A ring R is said to satisfy the 
(left) Ore condition if for Va, b E R where b is a non­
zero divisor (a nonzero divisor b is defined as ~c ~ 0, 
C E R: cb = ° or bc = 0), then 

3a' , b' E R: b' · a = a' · b, 

where b' is also a nonzero divisor. 

(18) 

DeI A ring satisfying (left) Ore condition is called 
a (left) Ore ring. 

Now we can give the formal definition of quotients: 

DeI Quotients associated with an Ore ring: A 
quotient associated with an Ore ring R is defined as 
an ordered pair (a, b) with a, b E Rand b being a non­
zero divisor, equipped with an equivalence relation 
defined by: two quotients (a, b) and (c, d) are said to 
be "equivalent" (it is easy to verify that all axioms 
of equivalence are satisfied) if 

3 nonzero x, y: (xa, xb) = (yc, yd) (19) 

and we shall denote the (a, b) quotient by the notation 

(20) 

Definition for right quotients is similar and we denote 
them by ab- I • 
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Proposition 11: For any two left quotients a-1b, c-1d, 
defined in an are ring without zero divisor, we can 
find their "least common denominator" in the sense 
that 

3 E R a-1b x-1y and c-,--ld = X-1Y2' X,Y1,Y2 : =.1 

(2) subtraction: 

a-1b1 - a-1b2 == a-1(b1 - b2), 

(3) division: 

(a-1b1)-1 . (a-1b2) == bl
1b2 , 

(31) 

(32) 

(21) (4) multiplication: 

Proof' For a, c E R, the (left) are condition 
implies that 

3t, s E R: t· a = s· c, (22) 

i.e., 
(23) 

Next, we have 

a-I. b = a-I. t-1 . t . b (24) 

and, similarly, 

(alIbI) . (a;:lb2) == (bl1al)-1 . (a;:lb 2). (33) 

VIII. ON FILTRATION AND GRADED 
STRUCTURE 

Def' Filtration: Let R be a ring. If a chain of sub­
groups (w.r.t. the additive structure of the ring) of R, 

Ro C R1 C •.. , (34) 

satisfies the condition 
00 

c-1 • d = c-1 • S-l • S • d. (25) U R; = R, (35) 

We set [using (23)]: 

(26) 

and 
t· b == YI, s· d == Y2; (27) 

thus, substituting (26) and (27) into (24) and (25) 
gives 

and 
c-1d = x-1Y2' 

i=O 

then this chain is called an "increasing filtration" of R. 

Def' Graded Ring: If a filtration of a ring R satisfies 
the condition 

(36) 

then the ring R is said to have a "graded ring" 
structure w.r.t. this filtration. 

Def' gr R: For a graded ring, w.r.t. the filtration 

Ro C R1 C '" , (37) 
Next, we note that if R is an are ring without zero we define 

divisor then an equivalence relation can be established 
between any given left quotient and some right with 
quotient. This is quite obvious since R is Oreian, thus R; == 0, for Vi < 0, (38) 
for any nonzero a, b E R, and 

3CER and d(,eO)ER:ca=db 

which provides the equivalence relation 

d-1c 
,...---.., 
(left quotient) 

= ba-1 

~ 
(right quotient) 

(28) 

(29) 

De!' The quotient field: Since any right quotient 
(i.e., of the form Cd-I) can be written as a left quotient, 
we shall only deal with left quotients. The set of all 
left quotients associated with an are ring without 
zero divisor forms a noncommutative field (i.e., a 
division ring) w.r.t. the compositions of addition, 
subtraction, multiplication, and division as defined 
below: 

(1) addition: 

(30) 

00 

gr R == I gr (;)R, 
;=0 

(39) 

where the last expression signifies that V!X E gr R can 
be written as 

00 

(J.=~(J.. (J..Egr(;)R 
~ t' 'l (40) 
;=0 

with only a finite number of !X; being nonzero. 

Now, let 1T; denote the "canonical projection" 
mapping, 

(41) 

defined by 
1T;: a; I--t a; mod R;_l, (42) 

then it follows from 

(43) 
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that we have the mapping 

gr (i) R X gr (;)R -+ gr (i+j)R (44) 

which equips gr R with a "graded ring" structure. 
Next, we mention briefly some properties of the 

universal enveloping algebra of a Lie algebra. First, 
we recall the universal enveloping algebra UL of a 
Lie algebra L (over a commutative field F) is defined 
as an associative algebra (over F) satisfying the com­
mutative diagram 

LA-hom 
L -------------+-~ (UL) LA = "UL 

f I 

" I 
I 

" I 
AA-hom II f 

/ 
/ (any) 

I 
/ 

/ 
I 

I 
I 

;/ 
JI--=fr 

LA 

(any) (45) 

That is, for any given AA A and any LA-hom 'If, 
there exists a unique AA-homJsatisfying 

Jo q; = 'If. (46) 

One important property of UL is its uniqueness up 
to isomorphism; this is rather obvious because in the 
defining commutative diagram the A is arbitrary; 
therefore, we can draw 

L ---------)' (UL)LA = UL 

'f ... 
I 

f (AA-iso.) 

where TL is the tensor algebra on L, i.e., 

TL = ffi L; (49) 
i=O 

with (F is the ground field of L): 

Lo == F1, L1 == L, L2 == L ® L, etc., (50) 

and IL is the two-sided ideal (associative) generated 
by all elements of the form 

I ® I' - I' ® I - [1,1']. (51) 

Now we shall talk about filtration of UL. 

DeI Filtration oj UL: Let (UL)n be defined as a 
sub F-module (of UL) generated by the set of all 
q;(l1) . q;(l2) ... rp(lj) , j 5: n, V Ii E L. Thus, we have 

(UL)_l = 0, 

(UL)o = Fl, 

(UL)l = Fl ffi rp(L), 
m 

(U L)m = Fl ffi I rp(L) ... rp(L), 
j~l~ 

j copies 

and it is obvious that 

(UL)o C (UL)l C ..• 

which defines an increasing filtration of U L. 
Define, now, 

and define 
00 

(52) 

(53) 

(54) 

gr UL == Igr (n)uL. (55) 
n~O 

This newly constructed 

gr UL (56) 

can be made into an algebra w.r.t. 0*: 

0*: gr (m)UL X gr (n)UL -+ gr (m+n)UL, (57) 

defined by means of passing to quotient from 

(UL)m X (UL)n -+ (UL)m+n (58) 
defined by 

(u, u') f-t u . u', U E (UL)m' u' E (UL)n' (59) 
(UL)' LA " (UL)' 

(47) i.e., 

where (UL)' is another universal enveloping algebra 
of L. Therefore, it is only necessary to look for one 
construction of UL. It can be easily shown that we 
can achieve this by setting 

UL == TLjIL, (48) 

0*: «u mod (UL)m_1), (u' mod (UL)n_1» 

f-t (u mod (UL)m_1) * (u' mod (UL)n_1) 

== u . u' mod (UL)m+n_1' (60) 

The algebra gr UL (with 0*) is called the graded 
algebra associated with UL. 
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gr UL has the properties: 
(i) gr UL is generated by cpL; 
(ii) gr UL is an Abelian associative algebra. 

IX. THE ALGEBRA An(R) GENERATED BY 
CANONICAL ELEMENTS 

Let An(Z) be the associative algebra generated 
over the ground field of integers Z by the set of 
canonical elements 

satisfying 

[Pi> q,] == Pi' qj - qj . Pi = bijlA' (62) 

[Pi ,Pi] =0, [q;,q,] =0, (63) 

where lA is the unit element of the algebra An(Z). 
It is obvious, the ground ring can be extended 

from Z to an arbitrary Ore ring R by tensor product 
in the usual way. That is, we construct 

(64) 

by considering An(Z) as a right Z-module and R as a 
left Z-module. 

The algebra An(R) thus constructed has the follow­
ing important property. 

Proposition 12: The algebra An(R) is a free R­
module and it has a basis consisting of all the mono­
mials of the form 

(Pt)i l ••• (Pn)i"(ql)jl ... (qn)in == p(i)q(i) , (65) 

where (Pi)O = lA and (qi)O = lA' 

Proof' Our proof will be restricted to the case of R 
being a commutative field (i.e., commutative division 
ring) of characteristic zero, since this is the only case 
to be considered later on. 

(A) First, we want to show that the monomials of 
the form 

(66) 

generate the R-module An(R). Let us introduce a 
filtration of An(R), 

[An(R)]o C [An(R)]l C [An(R)]2 C •• " (67) 

defined by: 

[An(R)]o == R, (68) 

[An(R)]; == the set of all elements, in 
An(R), which can be written 
as polynomials on {p, q} with 
coefficients in R and of degree ~ i. (69) 

We have, obviously, 

An(R) = U [An(R)]k (70) 
k 

and we use mathematical induction on the index k 
to prove that the statement of (66) is applicable to all 
[An(R)]k' The statement i~ obviously true for k == 0. 
We assume now, by induction, that the statement is 
true for all k < ko• But, by using relations (62) and 
(63), 

[Pi,qj] = bijlA' 

[Pi,qi] =0, [qi,qj]=O, 

we can always reduce any monomial of degree ko to 
a monomial of the form (65) (i.e., with all p's on the 
left side) modulo [An(R)]k -2' This completes the 

o 
induction. 

Finally, since A nCR) is just the union of all [An(R)]k' 
(66) is proved. 

(B) Next, we can show that the different mono­
mials of type (65) are R-linearly independent. This 
can be proyed by contradiction; let 

(71) 

where aii E R and at least one of the aij is nonzero. 
Let us introduce a lexicographic ordering of (i,j) 
which represents the set 

(il,"',in,h,"',jn)' (72) 

Let (s, t) be the greatest set (according to the 
lexicographic ordering) such that 

(73) 

Using the notation of "adjoint" mapping, we write 

(adj rx)(3 == [rx, (3]. (74) 

By operating the quantity 

IT (adj qi)" IT (adj pj)!1 (75) 
i~l j~l 

on the left of (71), we get 

[IT (adj qi)"i n (adj pj)tl] ~ aiiP(;)q(J) = 0, (76) 
.~l '~l (.,1) 

i.e., 
(77) 

i~l 

But the lhs of (77) cannot be zero by nature of ast ' 

thus the contradiction. Q.E.D. 

X. THE FIELDS OF QUOTIENTS ASSOCIATED 
WITH An(R) AND WITH UL 

Before discussing the fields of quotients we state 
two useful properties of the Noether ring; the proofs 
of them are given in the appendices. 
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2n generators 

ring of integers ~ 
"'"'"',' '\.. ~ 

(AA over Z) An(Z) 

(free R-module) At (R) " An (2) ~ z R 

~ \ 
\ 

\ 

filtration 
\ 
\ 

\ 
\ 

(An(R))oC (An(R;)lC"'C 

\ 
'graded-;,\A 

\ 

(field of quot] ents) (propertif's) 

" 
\ 
\ 

'" gr An (R) ", 
" 

FIG. 1. Field of quotients Dn(R). 

Proposition 13: Let R be a ring. If gr R is a (left) 
Noether ring without zero-divisors then R is also a 
(left) Noether ring without zero-divisors (see Ap­
pendix A). 

Proposition 14: A (left) Noether ring without zero-

FIG. 2. Field of quotients Dn.t(F). 

divisors satisfies the (left) Ore condition (see Appen­
dix B). 

Proposition 15: An(R) is an Ore ring. 

Proof: Consider the filtration given by Eqs. (67)-(70) 
and introduce its corresponding graded-ring structure 

and 
00 

gr An(R) = 2 gr WAneR). (79) 
i~O 

By Proposition 12, we see 

gr An(R) ~ R[p, q], (80) 

where R[p, q] denotes the polynomial ring of (p, q). 
But R[p, q] is obviously a Noether ring without zero­
divisors (because it is a polynomial ring); therefore, 
due to isomorphism, gr An(R) is also a Noether ring 
without zero-divisors. Then, by Propositions 13 and 
14, we know that An(R) is an Ore ring without zero­
divisors. Q.E.D. 

The above property permits us to construct the 
associated field of quotients, to be denoted by D n (R). 

(2n generators) 

(AA over F[ xl ) 

(free F[ xl -module) 

(Field of Quotients) 

commutative 
field 

(indeterrr.ina tes) 

\/ integer 
ring cP F[xl 

i\n(Z) / 

!/ 
An • t (F) C An • t (2) 137, F[ xl 

" " " , , 
til tration 

" " " " I "-

(polyn. l\A) 

: (i\n,t(F))oC (An.t(F))lC .... 
I ~ ____ ---...,-------' 

I I 
I I 
I 
I 
I 
I 
(properties) 

\ 
\ 

\ 

\ 

" , 
" " 

graded-Ai'\. 
I 
I 
I 
I 
I 
I 
t 

isomorphi.c;m 

F[ xl [R,ql 



                                                                                                                                    

LIE FIELD 983 

(Lie algebra over F) 

(Universal enveloping 
algebra) 

(Lie field) D(L) 

corrunutative 
field 

UL 

t ", 
I ' 
I ' 
I filtration 
I ' 
I " 

I " 
: (UL) c:::: (UL) c= ..... 
I III ,0 i 1 ) 

F 

I 
(properties) 

\ 

I 
I 
I 
I 
I 

t 

" gr UL , / 

'...... ",../ 
...... _--

FIG. 3. Lie field DeL). 

J n particular, if the ground ring R is taken to be the 
polynomial algebra F[x] on the set of indeterminates 

{Xl' ... , X r } == X 

with coefficients in a commutative field F, then we 
have An(F[x]): 

An,tCF) == An(F[x]), 

Dn.t(F) == field of quotients associated with An,t(F) 

(see Figs. 1 and 2). 
Next, let us discuss the field of quotients associated 

with UL, where L is a Lie algebra over a commutative 
field F. The increasing filtration on which we define 
the graded structure, gr UL, was given by (52) and 
(53). The Poincare-Birkoff-Witt theorem says that 
gr UL can be expressed as the ring (or rather an 
associative algebra) of all polynomials on m variables 
(m = dim L). Therefore, gr UL is clearly a (two­
sided) Noether ring without zero-divisors. By Proposi­
tions 13 and 14, we conclude that UL is a (two-sided) 
Ore ring without zero divisors. This permits us to 
construct the field of quotients from UL; this field of 
quotients will be referred to as Lie field of L: 

D(L) = Lie field of L 
(see Fig. 3). 

XI. A CONCEPT OF DIMENSION 

We shall introduce some different concepts about 
dimensions in the sense that they are of invariant 

nature but differ from the usual definition which 
will be denoted by "dim" to avoid confusion. We 
shall define the new concepts for the case of an 
associative algebra A over a commutative field F and 
for the case of a field D (a division ring) over a com­
mutative field F. First, let a be any finite set, 

a=={al,"',as}, VaiEA, (81) 

and 

(a; N) == {p Ip E F[a],p E A, dimp ~ N}, (82) 

with F[a] being the ring of all the noncommutative 
polynomials on a. Now we define 

D · A S -I' In [dim (a; N)] (83) lmF == up 1m 
a 1V-+00 In N 

where lim refers to the least upper bound. 
Similarly, for the case of a division ring D we form 

any finite set 

a == {aI' ... , as}, Vai ED, (84) 

and form also 

ab == {al' b, a2 • b, ... ,asb}, Vb E D, b =;!: 0; 

(85) 

then we define 

D · D - S I f-I·- In [dim (ab; N)] lmF = up n 1m . (86) 
a b N-+oo In N 

As an illustration of the definitions we shall discuss 
two examples which are also useful. 

Proposition 16: 

DimF An/F) = 2n + t. (87) 

Proof: As in the definition of Dim, we consider a 
set 

rt. == {aI' ... ,ss}, Vai E A (F). (88) n,t 

Tn virtue of definition of A (F), the set n,t 

(3 == {PI' ... 'Pn' ql' ... , qn' Xl' ... ,Xl} (89) 

is the set of generators, with F as the ground field 
(instead of F[x]) for AniF). Thus, any element ai of 
(88) can be written into the form of a polynomial on (3. 
Let m be the highest degree among these polynomials, 
then obviously 

dim (rt.; N) ~ dim «(3; mN). (90) 

Next, we know the dimension of the subspace of 
all polynomials of degree ~ Non j indeterminates is 
just 

(91) 
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This result in fact also applies to polynomials on f3, 
even the polynomials are now noncommutative. The 
reason for this is that any two of the generators 
(from f3) which do not commute with each other are 
always pairs like {Pi' qi}; in this case we have 

(92) 

D · A (F) - S -I' In (dim (,8; N» 
ImF -n,t = up 1m 

P N .... oo In N 
1 C2n+t > lim n N+(2n+t) 

- N-+oo In N 

which does not change the dimension of the subspace 
since the appearance of 1 on the rhs of (92) only give 
rise to an extra term of lower degree w.r.t. the gener­
ators. 

Therefore, (91) applies, that is 

(93) 

= lim (_1_ 'In (N + 2n + t)(N + 2n + t - 1) ... (N + 1») 
N-+oo In N (2n + t)(2n + t - 1) ... 1 

= lim {_I [In (1 + ~) + In (1 + N ) + ... + In (1 + N)]} 
N-+oo In N 2n + t 2n + t - 1 

= lim [-l-(ln ~ + In N + ... + InN)] 
N-+oo In N 2n + t 2n + t - 1 

= lim -1-(ln N
2n

+
t 

) 
N-+oo In N (2n + t)! 

= lim _1_ {(2n + t) 'In N - In [(2n + t)!)} 
N-+oo In N 

I .. ~(2_n_+,--"t)_ln_N = Im-
N-+oo In N 

= 2n + t. (94) 

On the other hand, from (90) and the definition of De!' "leading term": For any given nonzero 
Dim, h E An.t(F), it is obvious that 

D · A (F) - S -I' In (dim (IX; N» 
ImF n,t = up 1m 

~ N-+oo In N 

< Hm In (dim (f3; mN» 
- N-+oo In N 

c2n+t 
= lim mN+(2n+tl 

N ... oo In N 

= 2n + t. (95) 

Finally, (94) and (95) together imply 

2n + t =::;; DimF An.t(F) =::;; 2n + t, (96) 

therefore, 

DimF An/F) = 2n + t. Q.E.D. (97) 

A property similar to Proposition 16 can be proved 
for the field of quotients D ... t(F) but we shall introduce 
the concept of "leading term" of a nonzero element 
hE An.t(F). 

3 integer i: 7TiCh) E gr wAn tCF), 
V ' 

(98) 

with 7Ti (h) ,.e 0 and 7T;(h) being well defined. We recall 
that the canonical projection 7T; [defined by (41)] maps 

(99) 

i.e., 

(100) 

and we call 7T;(h) the "leading part" of h, and it will 
be denoted by Ii. 

We have the following properties of leading terms: 

Proposition 17: 
(i) Ii is a homogeneous polynomial on P and q with 

coefficients in F[x] for any h E A (F). 
.. ".t 

(11) For any hl , h2 E A (F), 
n.t 

(101) 
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Proof" It is obvious. 

Proposition 18: For dE D n.t(F), we can write d into 
the form (not unique because of equivalence relation): 

(102) 

is linearly dependent only if 

degree (h) = -1. (109) 

Proof: We prove this by contradiction. First, con­
sider 

degree (h) > -1 (110) hil 
• h2' hi E An,tCF); 

then, the rational function 

h2! hI 
and assume a linear dependence among P(i, j, k; b)'s, 

(103) then 

depends only on the element d and not upon the way 
d is cast into the quotients. 

Proof: Let hal. h4 be an alternative quotient form 
for d, then it implies 

hil . h2 = hal. h4 • 

Taking their leading terms, 

(hil . h2( = (hal. h4(, 

i.e., /'--..... /~ 
(hil

) . h2 = (ha2
) • h4' 

i.e., 

(104) 

(105) 

where (101) was used. Equation (105) proved the 
proposition. Q.E.D. 

Proposition 19: 
(i) For d1 , d2 E Dn./F), 

/'--..... A A 

dl • d2 = dl • d2 • (106) 

(ii) The function d is invariant under inner auto­
morphisms of the field; i.e., 

(d· d' . d-l ( = J' (107) 

Proof" 
(i) We write dl and d2 into the quotient forms 

hil . hand h-;:1 . h', respectively. Then, 

/'--..... 
dl . d2 = «hil 

. h) . (h-;:l . h'»" 

= (hil 
. h( . (h-;:l . h')" 

= Jl . J2 , 

where we used (101). 
(ii) We have 

(d· d' . d-l)" = J. J' . (J)-1 = J'. Q.E.D. 

Lemma: For any nonzero bE DniF), the set :reb) 
of all the distinct monomials 

L Cij/,P(i,j, k; b) = 0, (111) 
(i,i,k) , 

where Cijk are coefficients from F and 

(i,j, k) == (il,'" ,in,h,'" ,jn, kl>"', k n)· 

(112) 

For convenience, hereafter, we denote the set of all 
distinct P(i,j, k; b) by :reb), then 

3w E An.iF): P(i,j, k; b) . WE AniF) 

for VP(i,j,k;b)E:r(b). (113) 

From (111), we have: 

L CiikP(i,j, k; b)' W = O. (114) 
(i,i,k) 

Taking the "leading part" we get 

.L Cijk(P(i,j, k; b)· w( = 0, (115) 

where the sum is now carried over all (i,j, k) such 
that 

degree P(i,j, k; b) = max {degree P(i,j, k; b) 

with nonzero Ciik}. (116) 

On the other hand, explicitly, 

P(i,j, k; b)· W = (p' by . (q' b)i . (x' b)k. W (117) 

whose "leading part" is 

(P(i,j, k; b) . w( = lqiXk(h)dW (118) 

with 
n t 

d == L ih + jh + L kh . (119) 
h~l h~l 

In view of (118), it is clear that (115) is impossible 
except if the Ciik'S are all zero. Further, we know the 
mapping 

u ~ n, Vu E Dn.t(F) 

preserves the "multiplication" composition of the 
division ring; therefore :reb) is a linearly independent 
set if 

degree (b) > -1. 

(qn' bY" . (Xl' b)kl ... (Xt . b)kt Similarly, we can prove this for the case of 

== P(i,j, k; b) == (p' bY' (q' b)i. (x' b)k (l08) degree (b) < -1. Q.E.D. 
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Proposition 20: 

DimF Dn,t(F) = 2n + t. (120) 

Proof: First, we proceed as in the proof of Proposi­
tion 16; consider an arbitrary, finite set 

(121) 

The same argument used in the proof of Proposition 
16 is applied here to establish 

DimF Dn,t(F) S 2n + t. (122) 

Next, we shall prove 

DimF Dn,t(F) ~ 2n + t (123) 

so as to establish the equality, 

By the preceding lemma, for any nonzero h, 
bE Dn.tCF), the set 'J(h ' b) of all distinct monomials 

P(i,j, k; h ' b) 

is linearly dependent only if 
/~ 

degree (h . b) = -1. (124) 
Thus, if 

degree h ¥- 0, (125) 

then clearly the two conditions (124) and (109) are 
not compatible. This means either 'J(b) or 'J(h . b) has 
to be a set of linearly independent monomials. Using 
this fact, and considering the set 

y == (1 u «(1 . h), (1 == {p, q, x}, (126) 

we obtain easily (following the same argument as in 
the proof of Proposition 16): 

dim (),b; N) ~ c~":in+t (127) 

which leads to 

Proof' Proof follows that of Proposition 20. 

Proposition 22: 

(i) An,t(F) ~ An',t'(F)<=>n = n', t = t', (132) 

(ij) Dn,tCF) ~ Dn',t'(F) <=> n = n', t = t'. (133) 

Proof' We know, by definition of An,t(F), that 

and 
Cen (An.t(F» = Ao,tCF) 

Cen (An'.r(F» = Ao.r(F), 

where Cen denotes the center, 
An isomorphism between An,t and An',t' implies 

trivially 

i.e., 
Cen (An,tCF» ~ Cen (An'.t,(F» 

Ao.lF) ~ Ao.t,(F) 

which is possible if and only if 

i.e" 
t = t', 

On the other hand, 

An.tCF) ~ An'.r(F) 

requires necessarily 

DimF (An.tCF» = DimF (An'.r(F», 
i,e., 

2n + t = 2n' + t', 
Equation (134) and above imply 

n = n' and t = t'. 

(134) 

Q.E.D. 

Remark: Proposition 22 gives the important result 
that no two An,t(F) and An',t,(F) are isomorphic unless 
n = n' and t = t', and similarly for Dn.t(F). 

Q.E.D. Proposition 23: Let L be a Lie algebra over a com-

Proposition 21: If A is an associative algebra over a 
commutative division ring (field) F with the property 
that there exists an increasing filtration of A, 

Ao(==F)cA1c,.. (128) 
with 

(129) 

such that its corresponding graded algebra 

00 

gr A == ~ Ai/Ai_1 (130) 
i=O 

is isomorphic to the algebra of polynomials in t inde­
terminates; then 

DimF (D(A» = t. (131) 

mutative field F, then 

Dimp (D(L» = dim L, (135) 

where "dim" is the ordinary dimension and "DimF" 
is the one defined previously by (86). 

Proof' The following facts: 
(i) UL is an associative algebra over F, 
(ii) UL has the graded structure given by (52), 
(iii) According to Poincare-Birkhoff-Witt theorem, 

the graded algebra gr UL is the algebra of all poly­
nomials on m indeterminates (or "variables," m = 
dim L), allow us to use Proposition 21, therefore, 
according to (131), 

Dimp (D(L» = dim L. Q.E.D. (136) 
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XII. THE GEL'FAND-KIRILLOV CONJECTURE 

We first note a few properties concerning the con­
cept of orbit before the statement of the Gel'fand­
Kirillov conjecture. The concept of orbit is well known; 
it is defined for a manifold M acted upon by a trans­
formation group G, as: 

(')V == orbit of a point v E M 

= {z I Z E M, 3g E G: gv = z}. (137) 

A connection between orbits and representations 
was very extensively explored by Kirillov.4 We note 
here an important property: 

Proposition 24: For an algebraic Lie algebra L, 

dim Q(L) = even, (138) 

where Q(L) denotes an orbit of general position in 
the vector space dual to the adjoint representation of 
the Lie group G L whose Lie algebra is L. 

Proof By dual space here we mean the representa­
tion y of GL in the vector space of all real linear 
functionals on L dual to the adjoint representation y. 

Introducing the bilinear form Bf on L w.r.t. a given 
functionalf, 

(139) 
given by 

Bj : {x, y} ~ Bix, y) == (j, [x, yD E F, 

for "Ix, y E L, fE Q. (140) 

First, an orbit Q containing the functional f can be 
expressed in the form of the factor group, 

GL/Gf (141) 

where G f is the stability group off E Q. This is rather 
obvious because, by definition, 

Gf == {g I ji(g)f= f, g E GL }; (142) 
thus, 

(143) 

gives all the other transformations that send f to all 
those elements, of the dual space, of the orbit Q. It 
is easy to see that the Lie algebra L f of the Lie group 
Gf is simply the set of 

{x I x E L, BtCx, y) = 0, for all y E L}, (144) 

because, corresponding to the action of stability 
group, we have its Lie algebra counterpart as "ad­
joint" mapping 

(adj x)y = [x, y] = O. (145) 

4 A. A. Kirillov, Ook!. Akad. Nauk SSSR 128, 886 (1959); 130, 
966 (1960); 138, 283 (1961) [SOY. Math. 2,588 (1961)]. 

Therefore, in the language of Lie algebra, we say 
the subspace L f is orthogonal to L w.r.t. the bilinear 
form Bf ; thus, 

dim L f = dim L - rank Bf , (146) 

but, by (141), 

dim Q = dim GL - dim Gf , 

dim Q = dim L - dim Lf . (147) 

We get finally that 

dim Q = rank Bf • (148) 

But Bf is obviously antisymmetric, remembering 
that 

Bix, y) == (j, [x, yD, (149) 

thus the rank of Bf must be even, i.e., 

dim Q = even. Q.E.D. (150) 

Remark: We also note for an algebraic Lie algebra 

codim Q(L) = Dimp (Cen D(L». (151) 

where "codim" means codimension of the sub vector 
space. 

Now we are in a position to state the Gel'fand­
Kirillov conjecture. 

Gel'fand-Kirillov Conjecture5: 

If L is an algebraic Lie algebra over a commutative 
field F, then we have the following unique isomor­
phism: 

(152) 

where 

n == !(dim L - codim Q(L» = t dim Q(L) (153) 

and 

t = codim Q(L). (154) 

Discussions: 
(i) Equation (153) is justified to be meaningful due 

to Proposition 24. 
(ii) The conject"4re was verified by Gel'fand and 

Kirillov for the following special cases: 
(a) L is any nilpotent Lie algebra over an algebraically 

closed F of characteristic zero, 
(b) L is the Lie algebra of GL(n, F), 
(c) L is the Lie algebra of SL(n, F), 

• I. M. Gel'fand and A. A. KiriIIov, Ook!. Akad. Nauk SSSR 
167,503 (1966) [SOY. Math. 7, 403 (1966)]; Preprint, V. A. Steyklova 
Institute of Mathematics, Akad. Nauk SSSR, 1965 [French trans!.: 
Pub!. Math. France 31 (1966)]. In regard to the latter, I am grateful 
to two persons: Professor A. Biihm, for helping in the translation 
from the original, and Professor H. Bacry, for making a prepublica­
tion copy of the French version available to me. 
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(d) L is a semisimple Lie algebra of rank two (no full 
detail; the only indication of proof is mentioned 
in Ref. 5). 

XIII. PROOF OF THE CONJECTURE FOR 
LIE ALGEBRAS gl(m, C) AND sl(m, C) 

The conjecture can be proved for these two cases 
and, in fact, the proofs are similar. To facilitate the 
discussion, we prove first the following property: 

Proposition 25: Let g/(m, C)o be the Lie algebra of 
all m x m matrices with last rows consisting of zeros 
only; then 

D(gl(m, C)o) ~ D!m(m-I).o(C). (155) 

Proof' Let us first introduce a basis for gl(m + 1, C)o: 

eik , i=I,"',m, k=I,"',m+I, (156) 

where eik has unity as the element of ith row and kth 
column and zero everywhere else. We can show that 
the following choice of canonical generators is the 
correct one: 

qi == ei ,m+1' i = 1, ... , m, 

Pi == eiiqi\ i = 1, ... , m. 

(157) 

(158) 

We note that qil is not defined in the ordinary 
sense as a matrix (since det qi = 0), but it is defined 
as a formal quantity whose rules of manipulation are 
conformed to the equivalence relation of quotients 
by Ore condition (cf. Sec. VII). 

First, we have 

[qi' qj] = qiq} - qjqi 

=0 (159) 

(by straight matrix multiplications). This also implies, 
by definition of quotients, 

qjq;1 = q;1qj, 

that is, qil and q} commute. 
Next, let us compute 

[Pi' qj] = Piqj - qjPi 

= eiiqilqj - qjeiiq;1 

= eiiqjq;1 - qieiiqi1 

= eiiqjq;1 - ej,m+1eiiqi1 
'-----' 

-1 = eiiqjqi 

= (Jol, 

° 

(160) 

(161) 

where Eq. (160) was used In obtaining the third 
equality. 

Similarly, we can verify 

and 

[Pi' p;] = 0, 

[bik , qj] = (J"jq;, 

(162) 

(163) 

[bik , Pi] = (jkjPj, i,j, k = 1,' . " m, (164) 
where 

(165) 

Next, we introduce a matrix H whose entries 
satisfy the condition 

.2 hi; = 0, j = 1, ... , m, (166) 
i 

and denote the set of all such matrices by Je. It can 
be verified that the mapping 

a.:Je--+ D(gl(m + 1, C)o) 

defined by 

a.: H f--+ .2 hubij (167) 
iIi 

satisfies the condition 

a.([H, H'D = [a.(H), a.(H')] for Y H, H' E Je. (168) 

It is easy to see that 

[a.(H), q;1 = 0, i = 1, ... , m, 

[a.(H),Pi] = 0, i = 1, ... ,m, 

since we have, from (167), 

[a.(H), qi] = .2 hjk[bjk , qi] 
j,k 

= .2 hjk(Jkiqi 
;,/r 

= .2 hjiqi, 
i 

(169) 

(170) 

(171) 

where (166) and (163) were used. Similarly, we get 

[a.(H), Pi] = .2 hjiPi 
j 

=0, 

where (164) and (166) were used. 
It is clear that the Lie field 

D(gl(m + 1, C)o) 
is generated by 

{a.(Je),PI'··· 'Pm,q1,'" ,qm}' 

(172) 

(173) 

Now we can use mathematical induction on the 
number m; i.e., we assume the lemma is true for m 
and want to show it is also true for m + 1. But this is 
not difficult to see since we can easily show 

(174) 

because Je consists of all m x m matrices such that 
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the m conditions 

I hii = 0, j = 1, ... , m 
i 

(175) 

Similarly, D(s/(m, C) is generated by 

~2' ••• , ~m and D(g/(m, C)o) (187) 

are satisfied. The isomorphism is, in fact, an obvious and, by Proposition 25, we get 

one; we simply choose the correspondence D(s/(m, C» = D!m(m-l).m-l(C), Q.E.D. 

hii = Mij, i = 1, ... , m - 1, j = 1, ... , m, 

and m-l 
hmi = - I Mij , j = 1, ... , m, 

i~l 

(176) 

(177) 

where Mij are matrix entries of any ME g/(m, C)o' 
By mathematical induction we assume now 

D(g/(m, C)o) +---? Dim(m-l).o(C), 

With (173), (174), and the fact that 

cx.: UJe ---+ D(g/(m + 1, C)o) 

(178) 

(179) 

is injective (which can be proved by choosing a base 
B' for Je such that cx.(B') = {b;i} with b;i == bii - eim , 

i = 1, ... , m, and j = 1, ... , m - 1), then we get 

D(gl(m + 1, C)o) +---? D!m(m-1l+m.o( C) = D!m(m+l).o(C), 

which completes the induction. Q.E.D. 

Proposition 26: 

D(gl(m, C» = D!m(m-l),m(C), 

D(sl(m, C» = D!m(m-l).m-l(C), 

(180) 

(181) 

Proof" This follows easily from Proposition 25. 
First, it is well known6 that 

Cen [U(gl(m, C»] is generated by the generalized 

Casimir operators ~l' ••. , ~m' (182) 

where !J.k is defined as follows: choose the matrices 
eH [the (i,j)th entry of the matrix eH is + 1, whereas 
the other elements of eii are zero] as the base of 
gl(m, C); then, m 

!J.1 == I eii , 
i~l 

(183) 

(184) 

We note that eii is a matrix and not just an entry of it. 
Since D(gl(m, C» is generated by 

!J.l, ... ,!J.n and D(gl(m, C)o), (185) 

Proposition 25 implies 

D(g/(m, C» = D!m(m-l).m(C), (186) 

• I. M. Gel'fand, Mat. Sb. 26, 193 (1950). 

XIV. PROOF OF THE CONJECTURE FOR 
NILPOTENT LIE ALGEBRAS 

Let the L in this section be a nilpotent Lie algebra 
over a commutative field F of characteristic zero. 
Then the conjecture can be proved by means of 
Proposition 28. First, we mention the following 
theorem due to Dixmier. 7 

Proposition 27: 

(i) 

(ii) 

Cen [D(L)] = D(Cen UL), 

D(Cen UL) +---? D(Rt[x]), 

(188) 

(189) 

where Rt[x] is the set of all rational functions of t 
variables. t is even (odd) if dim L is even (odd). 

(iii) If Lo is an ideal of codimension 1 in L then 
either 

Cen ULo C Cen UL (190) 
or 

Cen ULo :::> Cen UL. (191) 

Proposition 28: 

3Xl, ... , Xn , Yl, ... , Yn' Zl, ... , Zt E UL (192) 

(where the integers nand t depend on L) such that: 
(i) D(L) is generated by: 

Xi'Yi,Zk, with i,j=I,"',n, k=I,···,t; 

(ii) Xi' Yi' and Zk satisfy 

[Xi> Xi] = 0, 

[Yi'Yi] = 0, 
[Zi, zi] = 0, 

(193) 

[Xi' Zi] = 0, (194) 

[Yi' zi] = 0, 
and 

[Xi,y;l = c5iiW, 

where W E Cen UL and W ~ O. 

Proof" The proof is carried out by a mathematical 
induction on dim L. Let Lo be an ideal in L with 

codim Lo = 1; (195) 

then we have, as according to Proposition 27 (iii), two 
possibilities and they are treated separately as follows. 

, J. Dixmier, Bull. Soc. Math. France 85,325 (1957); Arch. Math. 
10, 321 (1959). 
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(A) Cen ULo C Cen UL. In this case, 

3 y E Cen U L: y ¢ Cen U Lo . 

Let x ELand x ¢ Lo; then we can write 

n 
'" n-i y == L..., uix , 
i=O 

with X O == 1 understood. 

(196) 

(197) 

Since y is in the center of UL, by definition we have 

[y,v]=O forany vEL. (198) 

Thus (197) gives 

[un' v]xn + (nuo[x, v] + [Ul' v])xn- 1 + .,. = 0 

(199) 

which implies 
[uo, v] = 0, (200) 

nuo[x, v] + [U1' v] = 0 (etc.). (201) 

From (200) and (201), we conclude, respectively, 

Uo E Cen ULo (202) 

and 
(203) 

By mathematical induction we now assume that 

3X1' ... , xn, Y1, ... ,Yn' Zl' •.• , Zt E UL. (204) 

Then from (203) we introduce 

Zt+1 == nuox + Ul E Cen UL. (205) 

It can be immediately verified that 

satisfy the required conditions of (194). This com­
pletes our mathematical induction on t. Q.E.D. 

(B) Cen ULo :::J Cen UL. The proof for this is 
slightly more complicated and we refer to the original 
paper of Gel'fand and Kirillov for details. 

Proof of the Conjecture: Now we are in a position 
to prove the conjecture, i.e., 

for a nilpotent Lover F. The proof is easily carried 
out by putting simply 

and 

where w is defined in (194). Q.E.D. 

XV. FURTHER REMARKS 

It is clear that the Gel'fand-Kirillov conjecture is 
actually much more ambitious than the solid proofs 
they gave for the case of 

(i) gl(m, C), 
(ii) sl(m, C), 
(iii) nilpotent Lie algebras over an algebraically 

closed commutative field of characteristic zero. 

Gel'fand and Kirillov have also indicated in their 
papers that they have a proof for the case of a semi­
simple Lie algebra L of rank two over an algebraically 
closed commutative field by direct construction of a 
proper basis in D(L). They indicated the choice of 
such a basis is facilitated by the fact that D(L) is 
generated by the subfield spanned by the maximal 
solvable subalgebra L' in L and by the subfield con­
sisting of the elements that commute with the elements 
of L'. 

lt is clear that algebraic Lie algebras cover many 
more cases than the cases proved by Gel'fand and 
Kirillov and, therefore, the conjecture leaves a large 
domain as an open question subject to further 
investigation. 

For those who are interested in the Gel'fand­
Kirillov conjecture as an indication of possible 
realizations of algebraic Lie algebras by p's and q's 
satisfying the so-called "canonical commutation 
relations" [i.e., relations (62) and (63)], the explicit 
constructions are hinted at in the proof of Proposi­
tion 25 for the cases of gl(m, C) and sl(m, C) which 
are particularly interesting to physicists working in 
particle physics or dynamic groups. The conjecture 
also serves a useful purpose to identify a "dynamic 
group" (i.e., if An.t(F) is known as an algebra gener­
ated by 2n generators p's and q's and t indeterminates) 
with an algebraic Lie algebra, up to isomorphisms, 
under certain circumstances. 

As to the general statement concerning classifica­
tion of algebraic Lie algebras, the present knowledge 
seems to be,9 if we restrict ourselves to an algebraically 
closed ground field of characteristic zero, that the 
following are the known cases of algebraic Lie 
algebras: 

(i) nilpotent linear Lie algebras, 
(ii) representations of diag (n, C) as derivations of 

nilpotent linear Lie algebras, where "diag" means 
all the diagonal matrices, 

(iii) representations of semisimple Lie algebras as 
derivations of solvable Lie algebras. 

8 I. M. Gel'fand and A. A. Kirillov, Dokl. Akad. Nauk SSSR 
167, 503 (1966). 

• G. Seligman (private communication). 
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The proofs of some of the facts, e.g., sl(n, C) is 
algebraic, can be found in Ref. 10. 
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APPENDIX A: PROOF OF PROPOSITION 13 

The proof of Proposition 13 is as follows. 

Proof: Consider an increasing filtration 

with 

and 

Ro C R1 C R2 C ... , 

Ri ' R j C Ri+; 

We define, as usual, 

gr (i)R == Ri1R i- 1 

and 
00 

gr R == I gr (;) R. 
i~O 

(AI) 

(A2) 

(A3) 

(A4) 

(AS) 

Let B be an ideal of R, then we can also introduce 
an increasing filtration inherited naturally from that 
of R: 

(A6) 

by requiring that 
(A7) 

Since gr R is Noetherian by assumption, 

3n: gr Bn = gr Bn+l = .... 

We want to show, then, that 

(AI2) 

(Al3) 

Consider Vx E Bn+1 (let 1(+) be the set of all nonnega­
tive integers) and let k E 1(+) be such that 

B(k) - B R x E n+1 = n+1 n k' 
and 

d: B(k-1) - B '"' R x 'F n+1 = n+1 I I k-1' 
Since 

gr Bn+! = gr Bn , 
--------- ----EEl; gr iBn+! EEl j gr ;Bn 

gr;Bn+! = gr;Bn , for VjEI(+). (AI4) 

In particular, for j = k, 

(A1S) 

B . d B(k-1) -3Y1 E n'X mo n+1-
~ 

Y mod B(k-1) 
~ 

€ gr kBn+! € gr kBn = gr kBn+! 
i.e., 

x - Y E B(k-1) 
1 n+1' (AI6) 

Similarly, 

(A17) 
therefore, 

3Y2EBb:X - Y1modB~~12) = 
~ 

Y mod B(k-2) 
~ 

€ gr k-1B = gr k-1B n n+1 
i.e., 

3Y2 E Bn:(x - Y1 - Y2) E B~~2). 

Proceeding in this manner, we get, finally, 

3YI, ... , Yk E Bn:[ x - i~ YiJ E B~D).l' 
Using 

(At8) 

(A19) 

then, we can proceed to define the graded structure 
associated with the increasing filtration we just i.e., 
introduced for B: 

(A20) 

(A21) 
00 

gr B = I gr (;) B, (A8) 
i=O 

where 

gr wB == BdBi- 1. (A9) 

We can see that 
gr B~ gr R (AlO) 

and also, 
gr Bo ~ gr B1 ~ .... (All) 

10 C. Chevalley, Thiorie de grollpes de Lie; Tome II: grollpes alge­
briqlles (Hermann, Paris, 1955); G. Seligman, "Algebraic Groups" 
(Yale University lecture notes, available from the Mathematics 
Dept.). 

we obtain, therefore, 

but 

k 

3Yk+! E Bn: x - I Yi = Yk+1, 
i=l 

k+1 
x = IYi EBn· 

i=l 

(A22) 

(A23) 

Remembering we started with VX E Bn+l' it follows 
that 

(A24) 
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Next, it is not difficult to see that R of the theorem 
does not contain any zero divisors: Consider any two 
nonzero elements al and a2 in R, and let kl and k2 be 
the smallest integers such that 

and 
(A2S) 

(A26) 

Therefore, by the canonical projection mapping 
defined in (41), we have, obviously, that 

(A27) 
and 

1Tk.(a2) =F O. (A28) 

Equations (A27) and (A28) lead to 

1Tk,+k.(al· a2) = 1Tk,(al) . 1Tk.(a2) =F 0; (A29) 

:. al' a2 =F O. Q.E.D. (A30) 

APPENDIX B: PROOF OF PROPOSITION 14 

The proof of Proposition 14 is as follows. 

Proof' Let R be a Noether ring without zero 
divisors, then, by definition any chain of ideals of R, 

Rl (£ R2 (£ ... (£ Rn 

terminates at some integer n. That is, 

3n: Rn+l = Rn. 

(B1) 

(B2) 

Now consider the particular case of the (left) ideal 
Rn generated by the set of elements 

where a and b are any two nonzero elements of R. 
Therefore, (B2) allows us to write 

n 
a . bn+1 = '" c· . a . bi 

k • , (B4) 
i=O 

where Ci are elements in Rand bO = 1 (unit element 
of the ring). Let k be the smallest integer such that, 
in (B4), 

Ck =F 0 (i.e., Ck-l = 0). 

Equation (B4) can be written as 

i.e., 

i.e., 

i.e., 

i.e., 

where 

n 
a . bn+1 = '" c· . a . bi 

k' , 
i=k 

n 
a . bn+1-k = '" c· . a . bi - k 

k' , 
i=k 

n 

a . bn+1-k - ! Ci ' a . bi - k = Ck . a, 
i=k+l 

[
a . bn- k -. i C;' a . bi

-
k- 1] . b = Ck . a, 

.=1<+1 

h· b = Ck ' a, 

n 

h == a . bn- k - ! Ci ' a . bi - k- l • 

i=k+l 

Therefore we have, from (B6), 

3ck =F 0, Ck, hER: ck . a = h . b, 

(BS) 

(B6) 

(B7) 

{a a' b a' b2 ••. a' bn } , , , , , (B3) which is the (left) Ore condition. Q.E.D. 
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It is suggested, on the basis of soluble models, that generalized Bose condensation results from a 
broken symmetry associated with a nonvanishing pairing amplitude with very large low-momentum 
components, leading to a nonzero "pairing density" pc as well as a nonzero generalized condensate 
density pc. For systems of interacting bosons it is proved that (1) nonzero pc implies nonzero pc, and (2) 
pc = 0 in one or two dimensions and, more generally, for geometries finite in one dimension and infinite in 
the other two (films) or finite in two dimensions and infinite in one (pores). It is pointed out that this does 
not exclude superfluidity in such geometries, but does show the need of a new mechanism to explain it. 

There exist proofs1.2 that the usual type of Bose 
condensation cannot occur at any nonzero tempera­
ture unless the system is infinite in at least three 
dimensions. This presents a problem for the theoret­
ical interpretation of experimental results, which 
show, e.g., that superfluidity occurs at sufficiently low 
temperatures in films of 4He as thin as a few atomic 
diameters.3•4 

However, the type of Bose condensation usually 
assumed, namely "simple Bose condensation" (SBC) 
characterized by the presence of a nonzero fraction of 
the particles with momentum exactly zero, is only a 
very special case of a generalized type of Bose con­
densation (GBC) characterized by the presence of a 
nonzero fraction of the particles in an infinitesimal 
neighborhood of the origin of momentum space.5 •6 

There exist simplified models which exhibit a thermo­
dynamic phase transition at a temperature Tc > 0 
below which GBC is present, but nevertheless SBC is 
absent.s.7 It has been pointed out by Krueger2 that 
GBC might be present in restricted geometries, since 
the existing proofs1•2 do not exclude this possibility. 
The main purpose of the present paper is to show that 
the hope of explaining the experimental results on 
films and pores by such a generalization from SBC to 
GBC is illusory; we extend Hohenberg's proof! to 
show that the type of broken symmetry expected in the 
case of GBC also cannot occur in restricted geometries. 
This does not absolutely rule out G BC or, more 
generally, superfluidity, just as the existing proofs1.2 

do not absolutely rule out SBC. However, it does 
show that the superfluidity observed in restricted 

1 P. C. Hohenberg, Phys. Rev. 158, 383 (1967). 
• D. A. Krueger, Phys. Rev. Letters 19, 563 (1967). 
3 E. Long and L. Meyer, Phil. Mag. Suppl. 2, I (1953). 
• D. F. Brewer and K. Mendelssohn, Proc. Roy. Soc. (London) 

A260, I (1961). 
• M. Girardeau, Phys. Fluids 5, 1468 (1962), Eq. (48) If. 
• M. D. Girardeau, J. Math. Phys. 6, 1083 (1965). 
, Reference 6, Sec. 4. 

geometries cannot be associated with a broken sym­
metry of the type expected in a system with GBC, just 
as it cannot be associated with SBC. 

A system of interacting bosons has a Hamiltonian 
of the form 

(1) 

where Nk = a~ak and V is some functional of the 
density operatorS 

per) = a-I I pqeiq." Pq = I a!akH . (2) 
q k 

We assume periodic boundary conditions with 
periodicity volume (or length or area) a. In case a 
degenerate phase of the type associated, e.g., with 
superfluidity is present, the usual grand canonical 
ensemble does not lead to correct results for thermo­
dynamic averages of observables which have an 
infinite susceptibility to a degeneracy-breaking per­
turbation; in this case the grand-canonical average 
should be replaced by the Bogoliubov quasiaverage9 

( ... ) = Tr ( ... e-PH
,) , (3) 

Tr e-pH, 

where 

(4) 

and V, is an appropriate symmetry-breaking term 
which vanishes as € ~ O. This limit is to be taken 
after the thermodynamic limit (a ~ 00 for fixed ft). 

GBC is characterized by a nonvanishing condensate 
density Pc, where Pc is defined by5.6 

Pc = lim lim lim therm a-I I (Nk) (5) 
ko-+O (-+0 k<ko 

8 In the n-particle Schrodinger representation, this means that 
V = V(r i ' •• rn). This includes two-particle interactions as a special 
case, as well as any interactions with the walls. 

• N. N. Bogoliubov, Physica 26,1 (1960). 
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and "lim therm" denotes the thermodynamic limit. 
One can also define a condensate pairing order 
parameter or "pairing density" Pc bylO 

Pc = lim lim lim therm 0-1 L !(aka-k)!. (6) 
ko-->O f-->O k<ko 

The symmetry-breaking term is taken to be 

V. = I O'(k)( Eaka-k + €* a~kar), (7) 
k 

where O'(k) is a real, even function ofk. The motivation 
for the definitions (6) and (7) is that the known models 
which exhibit GBC (Pc> 0 for T < TJ also have 
Pc > 0 for T < Tc' provided that the symmetry­
breaking term is of the form (7). This is rather obvious 
for the model of reference5 which contains pairing 
interactions even before inclusion of the symmetry­
breaking term. However, it is also true for the plane­
wave Hartree-Fock modeJ.7 This model remains 
exactly soluble in the thermodynamic limit after 
addition of Vf , and the solution has the property that 
! (aka-k)! -- (N k) as k -- 0; this is shown in the 
Appendix. On the other hand, (aka-k) would vanish 
identically if averages were taken with an ordinary 
grand canonical ensemble. 

In fact, any Bose system with Pc > 0 exhibits GBC. 
To prove this we note that the quasiaverage (AtB), 
defined according to (3), satisfies the necessary prop­
erties of an inner product, the operators A, B, ... 
being interpreted here as elements of a vector space. 
Thus, the Schwartz inequality 

is satisfied. Taking A = at , B = a_k gives 

!(aka_k)!2 ~ (akat>(a~ka_k) 

(8) 

= «Nk ) + l)(N_k ) = (Nk )2 + (Nk ), (9) 

the last equality following from the assumption that 
the geometry of the system is symmetrical enough 
that (Nk ) = (N-k)' Now 

«Nk) + (Nk)!)2 Z (Nk)2 + (Nk), (10) 

so that 

! (aka_k)! ~ (Nk) + (Nk)!' 

Then (5) and (6) imply 

(11) 

o ~ Pc ~ Pc + lim lim lim therm 0-1 I (Nkl (12) 
ko-+O €-+O k<ko 

Define an inner product 

(IX, fJ) == L IXkfJk' (13) 
k<ko 

10 One might be tempted, instead, to define a generalized order 
parameter in terms of the values of (ak>' However, the spatial 
homogeneity of a liquid implies that (ak> = 0 for k "" O. 

Then the Schwartz inequality, with IXk = (Nk)l, fJk = 
I, gives 

o :::;; lim lim lim therm 0-1 I (Nk)! 
ko-+OE:-+O k<ko 

1 

:::;; p~ lim f(ko) = 0, (14) 
ko-+O 

wherell 
1 

f(ko) = [lim therm 0-1 L 1J2". (15) 
k<ko 

Hence (12) reduces to 

Pc Z Pc Z O. (16) 

In particular, Pc > 0 implies Pc > O. 
We now prove that Pc > 0 is impossible in restricted 

geometries. The proof is a modification of Hohen­
berg's proofl of the impossibility of superconductivity 
in one or two dimensions. We start with the Bogoliu­
bov inequalityI2-14 

l({A At}) > KT !([C, A])!2 (17) 
2 , - ([[C, H

f
], ct]) , 

where K is Boltzmann's constant. Defining 

where S(k) is a function which will be specified later, 
one has by (I), (2), (4), (7), and (17) that 

to-1 L S(k)[S*(k) + S*(q - k)] 
k 

+ to-1 I !S(k) + Seq - kW (Nk ) 
k 

+ 0-1 I S(k)S*(k')(at,aJ_k,aq_kak) 
kk' 

> KT IA-1 t [S(k)+S(q-k)](aka_k)12 

- pq2_20-1 L [O'(k)+O'(q-k)](€(aka_k)+€*(a~kat»' 
k 

(19) 

where P = 0-I(N) = 0-1 Ik (Nk ). Choose S(k) to 
vanish for k > ko and to have unit modulus and phase 
opposite to that of (aka-k) for k < ko: 

!S(k)! = I, S(k)(aka_k) = !(aka_k)!, k < ko, 

S(k) = 0, k > ko• (20) 

I f one applies the three limits involved in the defini­
tions (5) and (6), then most of the summations in (19) 

11 For systems of one, two, or three dimensions, f(ko) is equal to 
(ko/7r)f, (k~/7r)t, or (k~/61T2)t, respectively. 

12 N. N. BogoIiubov, Physik. Abhandl. Sowjetunion 6, I, 113, 
229 (1962). 

13 H. Wagner, Z. Physik 195, 273 (1966). 
14 N. D. Mermin and H. Wagner, Phys. Rev. Letters 17, 1133 

(1966). 
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will vanish for fixed q ¥= 0 provided that 

lim lim lim therm 0-1 L (Nq_k) = 0, q ~ 0, 
ko->O .->0 k<ko 

lim lim lim therm 0-1 .I I (aq-kak-q)1 = 0, q ~ O. 
ko->O <->0 k<ko 

(21) 

These conditions could be violated only if there were 
GBC into the neighborhood of q ¥= 0; however, we 
are assuming that G BC, if present at all, occurs in the 
neighborhood of the origin of k space. Thus (19) 
reduces, with (5) and (6), to 

T 2 
lim lim lim therm F(q) ~ K ;e - iPe' (22) 
ko->O.-->O pq 

where 

F(q) == 0-1 I I S(k)S*(k/)(a~,a:_k,aQ_kak)' (23) 
k<ko k' <ko 

Multiplying (22) by riO·r and integrating over the 
region of momentum space satisfying q < qo, where 
qo is independent of 0, E, and ko, one finds in the 
thermodynamic limit 

lim lim ff(r - r/)a(r', qo) dVr' 
ku-O E-+O 

T 2 [ -iq·r 

> K Pc _e_ dv _ 1 ( ) 
_ 2 q 'lpca r, qo , 

p .q<qo q 
(24) 

wheref(r) is the Fourier transform of F(q): 

F(q) = Jf(r)eiq
•
r dVr 

and 

(25) 

(26) 

here 11 is the number of dimensions of the system (1, 
2, or 3). The explicit forms of (26) are 

a(r, qo) = 21'-1 sin (qor), 11 = 1, 

= 2rrqor-1J1(qor), 11 = 2, 

= 4rrr-3 [sin (qor) - qor cos (qor»), 11 = 3, 

(27) 
where JI is the Bessel function of order one. 

To obtain a bound on the left side of (24), we sub­
stitute for the ak and a~ in terms of the Bose field 
operators 1p(r) , 1pt(r) of which they are the Fourier 
transforms, obtaining, with (23), (25), and (20), 

F(q) = 0-11 fer - r/)e;q·(r-r') dVr dVr', 

f(r1 - r2) = I s(r' - r2)s*(r - r1) 

X (1p t(rI)1p t(r)1p(r/)1p(r2» dVri dVr2 , 

s(r) = 0-1 .I e-i .9keik.r, (28) 
k<ko 

where {}k is the phase of (aka-k). The dependence of 

{}k on k is determined by the geometry of the system 
and the interparticle interactions. The simplest case 
(analogous to S-wave pairing in superconductors) is 
that in which {}k = {}, independent ofk. Then by (26) 

s(r) = (2rr)-Ve-i.90'(r, ko) (29) 

in the thermodynamic limit, so that 

f(r i - r2) = (2rr)-2VJ a(lr' - r21, ko)a(jr - rII, ko) 

X (1p t(r~)1pt(r)1p(r/)1p(rz» dVri dVr2. (30) 

The Schwartz inequality (8) implies 

I (1p t (rI)1p \r)1p(r/)1p(r2» I 

:::;; I (1p \rI)1p t(r)1p(r)1p(rI»I! I (1p t (r2)1p t (r/)1p(r/)1p(r2»j! 

= l(p(rI)p(r» - (p(r»b(r - rI)l t 

x I(p(rz)p(r/» - ,p(r'»b(r' - r2)1! 

= l(p(rI)p(r»I! l(p(r2)p(r/»jl, (31) 

the last equality (when inserted into an integral) 
following from the facts that (p(r» is finite and that the 
square root of the Dirac delta function integrates to 
zero. Since the density-density correlation function 
(p(r)p(r/» is integrable (in fact, everywhere finite), 
it follows that the same is true of (1p t(rI)1p t(r)1p(r/)1p(rz». 

To proceed we separately consider the small- and 
large-distance contributions to (30). From (27) one 
sees that as ko ~ 0, O'(r, ko) vanishes like k~ for all 
finite r. Hence the contributions to (30) from finite 
values of r l and r 2 vanish in the same limit. On the 
other hand, a(jr - rII, ko) and a(lr' - r2j, ko) exhibit 
a damped oscillatory behavior as Ir! - rl ~ 00 and 
Ir2 - r/l ~ 00 for fixed ko. Noting that the density­
density correlation function must approach the un­
correlated form at large separations, 

(32) 

and making use of (27), one can estimate the contri­
bution to (30) from the region 1'1 > 1'0' 1'2 > '0, where 
1'0 is large but finite, as 

11 = 1: [p roo X-I sin x dXJ2 
Jkoro 

= [p si(koro)]L.--)o- (trrp)2, 
ko-->O 

11 = 2: [p roo Jix) dXJ2 
Jkoro 

"-' [p [00 X-! cos x dXJ2~ 1rrp2, 
JkOTO ko-+O 

11 = 3: [p [00 x-resin x - x cos x) dXJ2 
Jkoro 

= indeterminate. (33) 
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We thus conclude thatf(rt - r2) is finite and of order 
p2 for v = 1 or 2. It is unlikely that ~~is concl~sion 
would be changed in cases where the pamng amphtude 
does not have S-wave symmetry, giving an angular 
dependence of {}k; this would be expecte.d to increase 
the cancellations in the integral (28), makIngf(r t - r 2) 

still smaller. 
Substitution of these estimates for fer t - r2) into (24) 

and repetition of the same argumen~ leads to t~e .con­
clusion that the integral on the left SIde of (24) IS Itself 
finite and of order p2 for the cases of one and two 
dimensions; thus, 

O(p2) ;::: KTp~ r e-
i
:.

r 
dVq - !pcO'(r, qo), 

p Jq<ao q 

V = 1 or 2. (34) 

The integral on the right side diverges at low momenta 
in both one and two dimensions. This is compatible 
with (34) only if 

Pc = 0, v = 1 or 2. (35) 

This completes the proof of the impossibility of a non­
zero pairing density in one or two dimensio~s. For 
n = 3, no such conclusion follows, and In fact 
counterexamples are known.5.7 Since SBe is a special 
case of GBe, our proof also excludes SBe for v = 1 
or 2, although the simpler proofs1.2 are certainly 
adequate for that purpose. The connection between 
our proof and a proof of the impossibility of SB.e 
becomes clearer if one regards the order parameter In 
the case of SBC as I (a~)ljn == Po, rather than the usual 
choice of (ao) as order parameter. 

The generalization to the case of pore geometries 
(d X d X L, L --+ ex) and film geometries (d X L x 
L, L --+ ex) is straightforward. It is clear from Figs. 
1 and 2 and the definition (20) of S(k) that, as soon as 
ko < 1Tjd and q < 1Tjd, the sums on the left side of (19) 
and in the numerator of the right side will have con­
tributions only from the plane through the origin of 
k space (v = 2) or from the line through the origin 
(v = 1). Thus the proof reduces in all essentials to that 

k=O 

FIG. 1. Geometry of k space, seen edge on, for a film of thickness d. 

• 

FIG.2. Geometry of k space, seen end on, for a pore with dimensions 
d1 X d2 • 

already given. We conclude that films and pores also 
cannot have Pc > 0. If d is large enough that 

KT ?> 21T21i2jmd2 

at the experimentally relevant temperatures, then the 
combined process of integration over individual ~lan~s 
or lines and summation over different planes or hnes IS 
well approximated by integration over a thre~­

dimensional k space, so that the thermodynamIC 
properties become experimentally indistinguishable 
from those of a system macroscopic in all three 
dimensions, except for a rounding of the thermo­
dynamic singularities in a temperature interval of 
order 21T21i2jKmd2 about the A point. In such a case, 
one expects that true symmetry breaking, i.e., Pc > 0, 
would be replaced by a "nearly-broken symmetry" in 
that the pairing amplitude (aka_k) (or, in the case of 
SBC, (ao» will retain its bulk value as E is decreased, 
until E becomes so small that the symmetry-breaking 
term makes an energy contribution (per particle) 
small compared to 21T21i2/md2• 

The experimental observations3 do in fact show that 
the logarithmic specific-heat singularity disappears as 
the temperature falls below ,....,21T2/i2/Kmd2, and the 
specific-heat anomaly becomes more diffuse as the 
temperature falls. The results on the flow properties of 
thin films are, however, quite different. It is observed3 .4 

that even for films a few monolayers thick, there is a 
well-defined temperature Ts below which the film flows 
as a superfluid at sufficiently low velocities. For such 
thin films Ts is considerably lower than the tempera­
ture of any observed specific heat anomaly15 and the 
specific heat does not exhibit any observable anomaly 
at T = Ts. 

How is this observed superfluidity to be reconciled 
with the proofs of the impossibility of a broken sym­
metry in such geometries? It would seem that the 
crucial point here is that the existence of Bose­
Einstein condensation, either simple or generalized, 

l' D. L. Goodstein and W. D. McCormick, Phys. Rev. Letters 
16,8 (1966), plus other references cited there. 



                                                                                                                                    

BROKEN SYMMETRY AND GENERALIZED BOSE CONDENSATION 997 

has not been shown to be necessary16 for superfluidity. 
The Landau criterion17 shows that a necessary con­
dition for superfluidity is that the quasiparticle 
excitation spectrum E(k) must satisfy 

min k-1E(k) > O. (36) 
k 

In all presently known many-boson models which 
satisfy this criterion, Bose-Einstein condensation 
plays a crucial role. However, (36) could arise as a 
result of some mechanism other than Bose condensa­
tion, or it could arise from a relaxed definition of 
condensation in which not all the limiting processes 
involved in (5) and (6) enter. 
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APPENDIX: BROKEN SYMMETRY IN THE 
HARTREE-FOCK MODEL 

Taking H in (4) to be the plane-wave Hartree-Fock 
model Hamiltonian, 7 one finds 

HE = 27T(N - 1)pIX + 2 (tk2 
- ft)Nk 

Write 

k 

+ 27TO-1IX 2' NkNk, 
kk' 

+ 2 a(k)(wka_k + e*ata~k)' (Al) 
k 

NkNk, = (Nk - nk)(Nk, - nk,) 

+ (nk,Nk + nkNk,) - nknk, , (A2) 

where the nk are c-number parameters to be deter­
mined. Then 

HE = Ho + HI, 

Ho = 27T(N - 1)pIX - 27TO-1IX 2' nknk, 
kk' 

+ 2 w(k)Nk + 2 a(k)(eaka_k + e*a~a~k)' 
k k 

HI = 27TO-1IX 2' (Nk - nk)(Nk, - nk,), (A3) 
kk' 

where 

w(k) = tk2 - ft + 47TO-I IX 2' nk' 
k' 

= tk2 - ft + 47TplX - 47TO-1IXnk. (A4) 

Then HE may be replaced by Ho in computing thermo­
dynamic quasi averages (3) with a fractional error 
which vanishes in the thermodynamic limit, provided 

16 It is perhaps not superfluous to mention that it is not sufficient 
either, since an ideal Bose gas in three dimensions has po > 0 
(hence p, > 0) for T < T" yet it is not superfluid at any tempera­
ture. 

17 L. Landau, J. Phys. (USSR) 5,71 (1941), Sec. 4. 

that the nk are taken to be1s 

_ Tr (Nke-PHO ) 
nk - H' Tr e-P 0 

(AS) 

Ho can be diagonalized by a Bogoliubov trans­
formation: 

U-1HoU = Eo + 2 w(k)Nk, 

where 

k 

Eo = 27T(N - 1)pIX - 27TO-1IX 2' nknk, 
kk' 

- t L [w(k) - w(k)], 
k 

w(x) = [w2(k) - 4JeJ2 a2(k)]i, 

U-1akU = (1 - JCPkJ 2)-i(ak - cpka~k)' 
U-la~U = (U-1akU)t, 

w(k) - w(k) 
CPk = 2ea(k) . 

(A6) 

(A7) 

The thermal averages of Nk and aka-k are easily com­
puted19 and found to be 

(N ) = n = Tr (Nke-
pHo

) 
k k Tr e-pHo 

= w(k) - w(k) + w(k) 1 (A8) 
2w(k) w(k) ePw(k) - 1 

- - e*a(k)[1 + 2 ] (A9) 
- w(k) ePw(k) - 1 . 

In view of (A4) , Eq. (A8) is really a transcendental 
equation for nk , which is to be solved simultaneously 
with the equation 

O-12 nk = p, 
k 

(A10) 

which determines ft. It can be shown that in one and 
two dimensions, the solution is such that no Bose 
condensation, either SBC or GBC, occurs at any 
nonzero temperature. 20 On the other hand, a straight­
forward extension of the previous analysis7 shows that 
in three dimensions, if e is small enough and IX < 0, 
the system will exhibit GBC at all temperatures 
T < To, where To reduces in the limit e -+ 0 to the 
condensation temperature of the ideal Bose gas. Thus 
for T < To in three dimensions, nk becomes very large 

18 G. Wentzel, Phys. Rev. 120, 1572 (1960). 
19 In view of (A6), these are most easily computed with the aid of 

the identity Tr (Oe-PHO) = Tr (U-10Ue-PU-1HoU). 
20 This is true in spite of the fact that the plane-wave Hartree-Fock 

Hamiltonian cannot be expressed in the form (I). 
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in a very small neighborhood ofk = 0, corresponding 
to the fact that (3Wk becomes very small in that 
neighborhood. 7 Then it follows from (A6) that w(k) 
differs infinitesimally from 2 lei a(k) in this neighbor­
hood. 2! Thus by (AS) and (A9) one finds, upon 
replacing epw(k) by the first two terms of its power­
series expansion, 

nk RoJ 2 lei a(k)KT/w2(k), 

(aka-k) RoJ -2e*a(k)KT/w2(k), (All) 

for T < Te and k -+ 0. More explicit results can be 
obtained by solving (A4) for nk after the substitutions 
IX = -IIXI, w(k) RoJ 21el a(k) [the latter following 
from w(k) RoJ 0]. This gives 

nk = Hk~ - k2)Q/47T IIXI, T < Tc , k < k" (AI2) 

where 

21 We assume that a(k) ~ O. 

JOURNAL OF MATHEMATICAL PHYSICS 

Then, by (All), 

(aka-k) = -le-iS(k~ - k2)Q/47T IIXI, 
T < Te , k < ks> (A14) 

where e = lei ei{}. Equations (5) and (6) then give 

wherell 

Pc = Pc = jp, T < Te , 

Pc = Pc = 0, T> Tc, (AI5) 

(l - j)p = 2.612(KT/27T)!, T < Te, (AI6) 

KTe = 27T(p/2.612)i, 
and 

lim ks = [15(27T)'ip IIXI/Q]~, T < Te. (AI7) 
.~o 

The infinite susceptibility of (aka_k) to the sym­
metry-breaking perturbation V. is clear in this model; 
with e = ° a grand canonical ensemble calculation 
gives (aka_k) = 0; on the other hand, if (aka-k) is 
interpreted as the quasiaverage (3), it is not zero and 
in fact gets large like (Nk ) as k -+ 0, for arbitrarily 
small but nonzero e and T < Te. 
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The perturbation theory of Bogoliubov and Mitropolsky for systems having a single rapid phase is 
generalized to systems having several rapid phases. It is shown that one can avoid the classic problem of 
small divisors to all orders in the perturbation theory. The method has the advantage of providing a single 
approach to many problems conventionally treated by a variety of specialized techniques. 

1. INTRODUCTION 

The techniques of perturbation theory for non­
linear systems, initiated by Poincare three quarters 
of a century ago, have been extended and developed 
by many workers. One such technique, the method 
of averaging, was introduced by Kryl~)V and Bogoliu­
bov thirty years ago.! The essential feature of this 
method is the separation of a given motion into a 
secular motion plus a rapidly fluctuating motion of 
small amplitude; the given motion is then expressed 
in terms of the solution of a system of differential 
equations which describe the secular motion alone. 

* Supported in part by the National Science Foundation. 
t Present address: E. G. and G. Inc., Arlington, Va. 
1 N. N. Krylov and N. N. Bogoliubov, Introduction to Non-Linear 

Mechanics (Academy of Sciences of the Ukranian S.S.R., Kiev, 
1937), trans. by S. Lefschetz in Annals of Mathematics Studies, No. 
11 (Princeton University Press, Princeton, N.J., 1947). 

A wide variety of physical problems may be handled 
by this method, e.g., Case in a recent publication has 
shown how the method can be applied to time­
dependent perturbation theory in quantum mechanics. 2 

Bogoliubov and Mitropolsky have presented a 
form of the method of averaging, called the method 
of rapidly rotating phase, which is especially conven­
ient for systems in which a single variable, called the 
phase, has a rapid secular motion.3 Our purpose in 
this paper is to extend this method to systems with 

2 K. M. Case. Supp!. Progr. Theoret. Phys. (Kyoto) 37, 1 (1966). 
See also R. Y. Y. Lee, "On a New Perturbation Method" Thesis, 
The University of Michigan, Ann Arbor, 1964. 

3 N. N. Bogoliubov and D. N. Zubarev, Ukrain. Mat. Zh. 7, 5 
(1955); N. N. Bogoliubov and Y. A. Mitropolsky, Asymptotic 
Methods in the Theory of Non-Linear Oscillations (Hindustan 
Publishing Co., Delhi, India, 1961), Chaps. 5 and 6. See also N. 
Minorsky, Nonlinear Oscillations (D. van Nostrand Co., Princeton, 
N.J., 1962), and M. Kruskal, J. Math. Phys. 3, 806 (1962). 
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several rapid phases and to succinctly describe how 
the method works, first in the nondegenerate case, and 
then in the more interesting degenerate case. In a 
following paper one of us (T. P. C.) will use the 
method to discuss the perturbation by a weak, trans­
verse, spatially periodic magnetic field of the motion 
of a charged particle gyrating in a uniform magnetic 
field. 4 

2. NONDEGENERATE PERTURBATION THEORY 

We consider the following set of coupled differential 
equations5 : 

Xi = EAi(X,~), i = 1,2,'· . ,r, (2.1 a) 

'ljJi = wlx) + EBix,~), j = 1,2,·" ,s, (2.lb) 

where E is a small parameter, x = (Xl' •.. , Xr ), 

~ = ("PI' ... , "P8)' and the A;'s and B/s are periodic 
functions of each of the 1/'k'S with period 217. The dot 
represents differentiation with respect to time. 

When E = 0, the x;'s will be constants and the "P/s 
will be linear functions of time. When E is small but 
finite, the x;'s will experience a slow secular growth 
on which is superimposed small-amplitude rapid 
fluctuations. Similarly, the "P/s will experience a 
rapid secular growth on which is superimposed small­
amplitude rapid fluctuations. Our aim is to separate 
this secular motion from the rapid fluctuating motion. 
To do this we seek a solution in the form 

<XJ 

Xi = Yi + l EnF;n)(y, cp), i = 1,2, ... ,r, (2.2a) 
n=l 

00 

"Pj = ¢j + l EnGjn)(y, cp), j = 1,2, ... ,S, (2.2b) 
n=l 

where the Fjn)'s and G;n)'s are periodic functions of 
each of the ¢k'S with period 217. We further require 
that the new variables y, and ¢i satisfy the following 
differential equations: 

<XJ 

Yi = l Ena;n)(y), i = 1,2, ... ,r, (2.3a) 
n=l 

1>i = w/y) + i Enb~n)(y), j = 1,2, ... ,S, (2.3b) 
n=l 

where the right-hand sides of Eq. (2.3) are required 
to be independent of the ¢k'S. The idea here is that the 
Yi and ¢i exhibit only secular motion, since they are 
solutions of a system of differential equations which 
are independent of the rapidly increasing (or de­
creasing) phases ¢i' The rapid fluctuations of the 
Xi and "Pj about the y, and ¢j are given by the terms 
in the series in (2.2). We must now show that we can 

4 T. P. Coffey. J. Math. Phys. 10, 1362 (1969). 
5 The generalization to the general case where the right-hand 

sides of (2.1) are power series in £ is straightforward. 

construct the function F(n), G(n), atn ), and b(n) so that 
t J t 1 

(2.2) is indeed a solution of the set of differential 
equations (2.1). 

If we insert Eq. (2.2) in Eq. (2.1) and then use Eq. 
(2.3) we find, upon equating equal powers of E, 

a;l)(y) \~Wk aF;~Z: cp) = A;(y, cp), (2.4a) 

b~l)(y) + iWk oGj1)(y, cp) 
k=l O¢k 

= Bj(y, cp) + ~J~l)(y, cp) a(~lY), (2.4b) 
/=1 uYI 

from the first power of E, and 

s OF(2) s oA r oA 
a;2) + l Wk _i_ = l G~l) -' + l F?) -' 

k=l O¢k k=l O¢k /=1 0Yl 
r a F(l) S ::IF(l) _ "a(I) _i _ _ "b(l) _u_ 
"-I::l "-k , 

/=1 UYI k=l a¢k 

(2.5a) 

1 r r 02 r ::l 

= - l l F:1)F~) --.!:!L + l F;2) ~ 
2 [=lm=l 0YlOYm [=1 0Yl 

+ i Gk1) aBi + iF?) aBj 

k=l O¢k [=1 0Yl 
r ::lG(l) S ::lG(l) 

-l a:1
) ~ -lb~l) _Uo-' (2.5b) 

/=1 UYl k=l ¢k 

from the second power of E, and so on. We thus 
obtain a sequence of equations for the determination 
of the unknown functions. 

Each of these equations is of the general form 

a(y) +J1Wk(Y) aF~~kcp) = A(y, cp), (2.6) 

where a(y) and F(y, cp) are to be determined and 
A(y, cp) is a periodic function of the ¢k which is 
known in terms of the solutions of the previous 
equations. Note that the dependence upon y is trivial, 
the Yi behaving as parameters in this equation, so we 
may suppress this dependence for the moment and 
write the equation in the form 

k~Wk O~~~) = A(cp) - a. (2.7) 

This equation, viewed as an equation for determining 
F(cp) , is a first order, linear, inhomogeneous partial 
differential equation with constant coefficients. Solu­
tions of such an equation exist only if the inhomo­
geneous term is orthogonal to all solutions of the 
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homogeneous equation: 

iWk aF(cp) = O. 
k~l a4>k 

(2.8) 

But the solutions of this equation are all of the form 

F( <p) = exp {ikt Pk4>k}' (2.9) 

where, because F( cp) must be periodic in each of the 
4>k' the h must be integers and, because (2.9) must 
be a solution of (2.8), these integers must satisfy the 
identity 

(2.10) 

[n the nondegenerate case we assume there are no 
sets of integers satisfying this identity except for the 
trivial set in which all the h are zero, i.e., F(cp) is a 
constant. If there is a nontrivial set of integers satis­
fying (2.10) we say there is a degeneracy; we discuss 
this case in Sec. 4. 

We see, therefore, that in the nondegenerate case a 
must be chosen so there is no constant term on the 
right-hand side of (2.7); F( cp) is then the solution of 
the resulting differential equation. To exhibit this 
solution more explicitly, we return to Eq. (2.6) where 
the y dependence is indicated. The given function 
A(y, cp), since it is periodic in the 4>k' must be expres­
sible in the form 

A(y, cp) = ! Ap(y)eiP'c!>, (2.11) 
P 

where the sum is over all sets of integers p = 

(Pl,P2"" ,Ps) and 
s 

p. cp == !Pk4>k' (2.12) 
k~l 

The function a(y) must be chosen to cancel the terms 
corresponding to p = 0, in which all the h are zero: 

a(y) = Ao(Y) 

= (2~)"flTd4>lflTd4>2" ·f"d4>sA(Y, cp). 

The solution of (2.6) is then 

F(y, <p) = -i I' Ap(Y) eiP'c!> + fey), 
p p·w 

(2.13) 

(2.14) 

where the prime indicates that the term p = 0 is 
absent from the sum and 

s 

p. w == !Pkwiy). (2.15) 
k~l 

The functionf(y) in (2.14) is arbitrary; the solution of 

an inhomogeneous, linear, partial differential equa­
tion is determined only up to an arbitrary solution of 
the homogeneous equation. We usually choose fey) 
to be zero. 

Thus, we see how the two functions a(y), given by 
(2.13), and F(y, cp), given by (2.14), are determined 
from the single equation (2.6). Since each of the equa­
tions in the sequence for the determination of the 
functions F;n)(y, cp), G;n)(y, <p), a~n)(y), and b}n)(y) is 
of the form (2.6), we may, in the nondegenerate case, 
successively solve to determine these functions. To 
be more explicit, we first note that the given functions 
A;(x,~) and Bi(X,~) in (2.1) are periodic in each of 
the "Pk and so may be expanded in the form 

A;(x,~) = ! Ai.p{x)eiP.IjI, (2.16a) 
P 

Blx,~) = ! Bj.p(x)eiP.IjI. 
p 

Then from (2.4a) we find 

alU(y) = Ai.O(y) 
and 

Using this solution in (2.4b) we then find 

b~l)(y) = Bj.o(y) 
and 

(2.16b) 

(2.17) 

(2.18) 

(2.19) 

[ 
iawlY) A ()] 

= -i I Bi.P(Y) _ i 1~1 aYI l.p y eiP'c!> 
~ p. w (p. W)2 , (2.20) 

and so on. The expressions become increasingly 
cumbersome, but we can, in principle, solve to obtain 
explicit expressions for the Fin), G}n), a~n), and b}n) so 
(2.2) is a solution of the system of equations (2.1) to 
any desired order in E. 

3. THE VAN DER POL EQUATION 

As a simple example illustrating the working of the 
general method for the nondegenerate case, we con­
sider the van der Pol equation 

Z + E(Z2 - l)i + z = O. (3.1) 

We cast this equation into the standard form (2.1) by 
introducing variables x and "P through the substitution: 

z = xi cos "P, 

i = -xi sin "P, (3.2) 
that is, 

x = Z2 + i 2, 
"P = -arctan i/z. (3.3) 
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Forming the time derivative of both sides of this last 
pair of equations and using (3.1) and (3.2) on the 
right-hand sides, we find 

x = 2€X(1 - x cos2 1p) sinz 1p 

= €X(1 - ix - cos 21p + ix cos 41p) (3.4a) 

V; = 1 + E(1 - X cos2 1p) sin 1p cos 1p 

= 1 + d(l - ix) sin 21p - i-x sin 41p]. (3.4b) 

These equations are in the standard form (2.1) for 
applying the metliod of rapidly rotating phase, with 
E a small parameter. 

According to our general method, we seek a solu· 
tion in the form 

x = y + EF(l)(y, 4» + E2F(2)(y, 4» + .. " (3.5a) 

1p = 4> + EG(1)(y, 4» + EZG(2)(y, 4» + .. " (3.5b) 

where 
j; = Ea(1)(y) + EZa(Z)(y) + ... , 
1> = 1 + Eb(l)(y) + EZb(Z)(y) + .... 

(3.6a) 

(3.6b) 

Inserting (3.5) in (3.4), using (3.6), and equating 
powers of E, we get the following sequence of equa­
tions. 

of(1) 
a(l) + -- = y(l - b - cos 24> + b cos 44», 

04> 
(3.7a) 

oG(1) 
b(1) + -- = (1 - b) sin 24> - ty sin 44>, (3.7b) 

04> 

from the first power of E, and 

OF(2) 
a(Z) .+. -- = (1 - ly - cos 24> + ty cos 44»F(l) 

04> 
+ (2y sin 24> - i sin 44»G(1) 

:3F(1) :3F(I) 
_ all) _U_. _ b(1) _U_ (3.8a) 

oy 04> ' 
oG(Z) 

bIZ) + a;;; = -(t sin 24> + i- sin 44»F(I) 

+ [(1 - ly) cos 24> - ty cos 44>]G(1) 
:3G(1) :3G(l) 

_ btl) _u _ _ a(1) _u_ (3.8b) 
04> oy , 

from the second power of E, and so on. 
We solve this sequence of equations as indicated in 

the previous section. From (3.7a) we find 

a(1)(y) = y(1 - b), (3.9a) 

F(1)(y, 4» = y( -1 sin 24> + llsY sin 44», (3.9b) 

while from (3. 7b) we find 

b(1)(y) = 0, (3.9c) 

G(l)(y) = -HI - ty) cos 24> + 3
l2Y cos 44>. (3.9d) 

From (3.8a), using the solutions (3.9), we find 

a(2)(y) = 0, (3.10a) 
F(2)(y, 4» 

= y2f:3\(y - 5) cos 24> - -h cos 44> + [/sY cos 64», 

(3.10b) 
while from (3.8b) we find 

b(2)( ) = _ ! + 3y _ Hi 
y 8 16 256' 

(3.10c) 

G(Z)(y, 4» 

y(1 + y) . 2A. 16 - 4y + 3i . 4A. 
= - sm 't' - sm 't' 

128 512 

+ y(3 - 2y) sin 64> _ L sin 84>. (3.l0d) 
384 2048 

These expressions, when inserted in (3.5) and (3.6), 
give the complete reduction of the problem through 
second order in E. 

The method of rapidly rotating phase does not in 
general lead to an explicit solution of the original 
set of differential equations. Rather, it is a method 
for separating the secular motion from the rapid 
periodic fluctuations and reducing the problem to that 
of solving the differential equations for the secular 
motion alone. The solution of these equations, i.e., 
in the general case the equations (2.3), may be a very 
difficult problem, but in the case of the van der Pol 
equation it is quite simple. Using (3.9a) and (3.10a), 
the differential equation (3.6a) becomes 

j; = EJ(1 - b) (3.11) 

through second order in E. The solution is 

4y(0) 
yet) = yeO) + [4 _ y(O)]e-<t (3.12) 

Here we see the well-known feature of the van der Pol 
equation: for long times the amplitude approaches a 
constant independent of the initial amplitude. In­
serting this solution in (3.6b) we can integrate to find 

4>(t) = 4>(0) + (l - ~:) t 
+ ~ 10 yeO) + [4 - y(O)]e-<t 

16 g 4 

llE 1 - e-<t 
+ 64 leO) yeO) + [4 _ y(O)]e-<t (3.13) 
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Here we see there is a shift in the frequency of the 
rapid phase together with a slow secular shift of the 
phase. 

This discussion of the van der Pol equation is only 
intended to be illustrative of the method. We refer, 
for example,to a recent paper by Struble and Fletcher, 
who give a much more thorough discussion of the van 
der Pol equation using a somewhat different method.6 

4. DEGENERATE PERTURBATION THEORY 

In the degenerate case we must consider what 
changes must be made when there is a nontrivial set 
of integers satisfying (2.10). More generally, we must 
consider the situation when 

Ip' wi < O(e). (4.1) 

That is, the case when the factors in the denomina­
tors of our solutions, e.g., (2.13) or (2.16) or (2.18), 
are small of order e. When this occurs the successive 
terms in the series (2.2) are no longer small if e is 
small; they no longer represent small amplitude 
fluctuations of the given motion about the mean 
motion. This so-called problem of small divisors is, 
of course, closely related to the degeneracy problem 
for which the divisors are zero. 

The solution of this problem is already indicated by 
our discussion of Eq. (2.6) in the nondegenerate case. 
There we saw that the function a(y) has to be chosen 
to cancel the terms in A(y, <1» which correspond to 
solutions of the homogeneous equation (2.8). In the 
nondegenerate case, the only such term was the con­
stant term, but in the degenerate or near degenerate 
case we must cancel all the terms corresponding to 
sets of integers satisfying (4.1). That is, we generalize 
to allow a(y, <1» to depend upon those combinations 
of the cPj which give rise to small divisors and then 
choose a(y, <1» to cancel those terms in A(y, <1». 

Our procedure is formally similar to the nondegen­
erate case. We seek a solution of (2.1) in the form 

(f) 

Xi = Yi + LenF~n)(y, <1», i = 1,2,"', r, (4.2a) 
n=l 

(f) 

'ljJj = cPj + LenG~n)(y, <1», j = 1,2,'" ,s, (4.2b) 
n~l 

where the F~n)(y, <1» and G~n)(y, <1» are periodic func­
tions of each of the CPk' We further require that 

(f) 

Yi = Lena;n)(y, <1», i = 1,2,"', r, (4.3a) 
n=l 

(f) 

¢j = wiY) + Lenb~n)(y, <1», j = 1,2,"', s. 
n~l 

(4.3b) 

Inserting (4.2) in (2.1) and using (4.3) we find, 
upon equating powers of e, 

and so on. The sequence of equations we obtain 
differs from that in the nondegenerate case only in 
that the a~n)(y, <1» and b~n)(y, <1» depend upon <I> as 
well as y. The formal solution of these equations is 
straightforward. Using again the expansions (2.16), 
from (4.4) we obtain: 

a~l)(y, <1» = L Ai.vCy)eip.cI>, (4.6) 
Ip,wl <0«) 

where the sum is over all sets of integers fulfilling (4.1), 
and 

F (l)( "") = _' '" Ai.p(Y) iP'cI> , y, 't' I L. e, 
Ip'wl > 0«) p • w 

(4.7) 

where the sum is over all sets of integers not contained 
in the sum in (4.6). Continuing, from (4.5) we obtain 

b;l)(y, <1» = L Bj.p(y)eiP'cI> (4.8) 
Ip·wl<O(E) 

and 

It should be clear that in this manner we can 
successively solve the equations for the determination 
of the Fin)(y, <1», G;n)(y, <1», ainley, <1», andb~n)(y, <1» 
to obtain explicit expressions in which small divisors 
do not occur. Of course, the equations (4.3) for the 
determination of the secular motion are more com­
plicated than the corresponding equations in the 
nondegenerate case; they explicitly involve certain 
combinations of the CPk' However, these equations 
still describe the slowly varying secular motion, 
since those combinations of the CPk which do appear 
are themselves slowly varying. Thus, if the combina­
tion (p. <1» appears in (4.3), then 

(p. 4»~ (p. w) < O(e), (4.10) 
• R. A. Struble and J. E. Fletcher, J. Math. Phys. 2, 880 (1961). 

See also N. Minorsky, Ref. 2, pp. 219-224 and pp. 329-338. i.e., this combination is slowly varying in exactly the 
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same sense that the h are slowly varying. The basic 
idea of the expansion (4.2), or of (2.2), is the separa­
tion of the secular l,~ otion from the rapidly fluctuating 
motion, and this separation is preserved in the degen­
erate case. 

There is, however, a serious difficulty in our 
general formulation of the degenerate perturbation 
problem. This is the question of deciding which 
combinations of the 4>k are to be included in the secular 
motion. For any particular set of W k , we can always 
find a set of integers h such that (p. w) is as close 
as we plf'ase to any real number. That is, the values 
of (p . w) are dense in the whole range 

-00 < p. w < 00. (4.11) 

This means that we cannot, in general, make a sharp 
separation between the terms for which Ip, wi < O( E), 
which we put into the secular motion, and the re­
maining terms, which we put into the fluctuating 
motion. We can do so only if the coefficients Ai,p(Y) 
and Bj,p(Y) vanish sufficiently rapidly for large values 
of Ipi == (pi + p~ + ... + p;)~. The point here is that, 
for the most general functions A;(x, <1» and Bj(x, <1» 
in Eq. (2,1), it is not possible to sharply separate the 
secular motion from the periodic fluctuations; when 
these functions are such as to allow a sharp separation, 
the method we have outlined will work. 

5. CONCLUSION 

The method of rapidly rotating phase which we 
have presented here is applicable to a wide range of 
physical problems. On the one hand, it can be shown 
to be equivalent to classical perturbation theory of 
Hamiltonian systems, at least in the nondegenerate 
case,7 On the other hand, Ra yleigh-Schr6dinger 
perturbation theory in quantum mechanics is also a 
special case. In both cases the treatment of degeneracy 

7 For a proof see T. P. Coffey, "Analytical Methods in the Theory 
of Non-Linear Oscillations," thesis, The University of Michigan, 
Ann Arbor, 1966. 

or near-degeneracy is generally simplest by the method 
of rapidly rotating phase. Thus, the advantages of the 
method are its generality and its simplicity, 

Of course, not all perturbation problems can be 
cast into the form of a set of coupled differential 
equations in the standard form (2.1) appropriate 
for the method, In general, we can say that the method 
is suited for the discussion of small perturbations of 
periodic or multiple-periodic motions, but we cannot 
precisely characterize such problems. 

As we remarked earlier, an aspect of the method 
which may cause difficulty in applications is that the 
Eqs. (2.3) or (4.2), which describe the slow secular 
motion, may not be appreciably easier to solve than 
the original equations. (Here we are speaking of the 
finite versions of (2.3) or (4.2) which are obtained by 
truncating the series on the right.) The point is that the 
method is designed to separate the secular motion 
from the fluctuating motion; it gives no help in the 
discussion of the equations for the secular motion. 
This is a characteristic feature of all averaging methods. 

We close with a few remarks about convergence. 
It should be clear that the method of rapidly rotating 
phase is asymptotic in the sense that the approximate 
solution is intended to be valid for long times, i.e., 
for times of order c 1

, the characteristic time of the 
secular motion. What can be proved is a typical 
asymptotic convergence theorem: With suitable re­
strictions on the perturbing functions, the approximate 
solutions obtained by solving the differential Eqs. 
(2.3) or (4.2), truncated at a finite order in E, and 
inserting the resulting solution in (2.2) or (4.1), also 
truncated, differ from the exact solution by an error 
which is small but which grows in time like exp {CEt}, 
with C a constant. 8 This is a rather weak theorem, but 
we have not been able to improve it in the general case. 
The question of the convergence of the infinite series 
in Eqs. (2.2), (2.3), (4.2), and (4.3) is still open. 

8 For a proof, see Ref. 7. 
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The phase-integral approximation of the Green's function in momentum space is investigated for a 
particle of negative energy (bound state) which moves in a spherically symmetric potential. If this po­
tential has a Coulomb-like singularity at the origin, it is shown that any two mo~enta can be connected by 
an infinity of classical trajectories with a fixed energy. The summation of the usual phase and amplitude 
factors over these trajectories is the approximate Green's function. If there is orbital precession, there are 
not only poles along the negative energy axis, but also weaker singularities which are not examined in 
detail. The poles are found at the energies which are given by the semiclassical quantum conditions: 
angular momentum = (l + !)h and action integral for the radial motion = (n + !)21Th, where I and n 
are integers ~ O. The residues at these poles give the approximate bound-state wavefunctions asa product 
of the asymptotic formula for Legendre polynomials with the asymptotic solution oftheradial Schrodinger 
equation. It is conjectured that the occurrence of poles in the approximate Green's function is a direct 
consequence of the periodic character of the classical motion. 

INTRODUCTION 

The present work continues to pursue an idea 
which was first discussed in an earlier paperl (to be 
referred henceforth as I). The phase-integral approxi­
mation, commonly known as WKB method, was 
applied to Schrodinger's equation in order to find 
the approximate Green's function for single electrons 
in an atomic potential. Attention was focused on 
momentum space (rather than coordinate space) 
because there was good reason to believe that such a 
procedure would improve the approximation for 
bound states. This hope was completely vindicated in 
the case of the hydrogen atom where not only the 
correct bound-state energies, but even the correct 
bound-state wavefunctions were obtained as the 
residues at the poles of the approximate Green's 
function in momentum space. 

The formalism in I can be used to discuss the 
phase-integral approximation for the Green's function 
in any spherically symmetric potential. The corre­
sponding calculations will be carried out and discussed 
in the present paper. The emphasis will be again on 
momentum space, because classical mechanics in 
momentum space forms a much more convincing 
basis for an approximation to quantum mechanics in 
the case of negative energies. The reason is simply that 
any two momenta p' and p" can be connected by an 
infinity of classical trajectories with fixed negative 
energy E, provided the potential V has singularities of 
the Coulomb type, i.e., V"-J Iql-l for small q. The 
phase-integral approximation F(p"p' E) for the Green's 
function F(p"p' E) does not have any of the obvious 
limitations which beset the phase-integral approxi­
mation G(q"q' E) of the Green's function G(q"q' E) in 
coordinate space. 

1 M. C. Gutzwiller, J. Math. Phys. 8, 1979 (1967). 

The singularities of F(p"p' E) will be examined in 
order to find the approximate eigenvalues and eigen­
states of the particle in the potential V(q). It was 
found in I that F(p ''p , E) has only poles along the 
negative E axis in the case of the pure Coulomb 
potential. It will turn out, however, that F(p"p' E) has 
not only poles, in general, but other singularities of a 
weaker kind like branch cuts. The poles of F will be 
determined in this paper. They are given exactly by the 
ordinary quantum conditions: angular momentum 
M = (I + l)n and action integral for the radial 
motion :f Pr dr = (n + l)27Tn with integers I and n ~ o. 
The corresponding approximate eigenfunctions are 
the asymptotic expression for the Legendre poly­
nomials and the asymptotic solution of the radial 
Schrodinger equation. These results hold equally well 
in momentum and in coordinate space. We find, 
therefore, the well-known formulas for the WKB 
method in a completely different manner without the 
need to make certain additional assumptions which 
are usually necessary for the separation of variables. 

Nevertheless, it is only fair to make the following 
remarks. The spherical symmetry of the potential 
V(q) has been used not only to solve the equations of 
motion in classical mechanics, but also to make use of 
the periodicity in the angular and radial motion. 
Indeed, it seems at this point that the phase-integral 
approximation for the Green's function has poles only 
if the classical motions are periodic in some sense. 
If the periodic character of the classical orbits is 
complete as in the Coulomb potential where all orbits 
are closed, one has only poles. In the more general 
case where orbital precession occurs, there are weaker 
singularities besides the poles. When the classical 
trajectories have no periodicity at all, the poles will 
presumably disappear from the approximate Green's 

1004 
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function and only weaker singularities remain along 
the negative E axis. The understanding and the calcu­
lation of these weak singularities presents, obviously, 
a challenge which is not met in this paper. It would 
appear that the gelleralization of the WKB method to 
nonseparable potentials is found by tackling this 
difficult problem. 

The results of this paper do not seem to throw any 
light in that direction. This is particularly regrettable 
because the approximate wavefunctions from the 
poles of F cover only a limited domain in momentum 
space exactly as the approximate wavefunctions in 
coordinate space cover only the classical domain and 
have stlOng singularities at its boundary. The original 
motive for going into momentum space seems thereby 
lost. Actually, the capability of F(p"p' E) to be different 
from zero for any pair of momenta p' and p" is hidden 
in the weak singularities. They have to be investigated 
if one tries to go beyond the ordinary WKB method 
even in the case where the separation of variables is 
feasible as for a spherically symmetric potential. 

The present paper has been arranged as follows. 
The notations and results of I are recalled in Sec. 1. 
The possibility of connecting any two momenta by an 
infinity of trajectories at a given negative energy is 
discussed in Sec. 2. The principal argument is purely 
geometric because the trajectories in momentum can be 
put into a one-to-one correspondence with the geo­
desics on a surface in Euclidean space which is 
topologically equivalent to a sphere. A complete 
enumeration of all the trajectories from p' to p" is 
accomplished in Sec. 3. The number of "conjugate 
times" between p' and p" is also determined because 
it fixes the extra phase losses which occur every time 
the trajectory touches a focal line. 

The sum over all classical trajectories can then be 
written formally in Sec. 4 with the help of the repre­
sentation that was established in the preceding section. 
This summation is transformed with the help of 
Poisson's formula in Sec. 5. The result is particularly 
simple if we consider only the discontinuity of 
F(p"p' E) across the negative E axis. One of the new 
variables of summation is immediately recognized as 
the discreet angular momentum (l + l)ll. The other 
variable corresponds to the radial quantum number n. 
The poles of F(p"p'E) are finally obtained in Sec. 6 
and are found from the ordinary quantum conditions. 
The residues are simply the products of the corre­
sponding approximate wavefunctions for p' and p", 
including the correct angular dependence. 

1. THE BASIC FORMULAS AND NOTATIONS 

The semiclassical approximation F(pl/p' E) will be 
constructed for the quantum-mechanical propagator 

F(p"p' E) of a particle which starts out with a momen­
tum p' and ends up with a momentum p" while 
propagating with energy E. The classical Hamiltonian 
B(pq) is given and we can, therefore, calculate the 
classical trajectories in momentum space. Along a 
particular trajectory which goes from p' to p" at the 
energy E = B(pq) we can calculate the virial 

T(p"p'E) = - (P"q dp. 
Jp' 

(1) 

The approximate propagator F(p"p' E) is given by 
summing over all classical trajectories from p' to p" 
with energy E, namely, 

F(p"p'E) = __ 1_ ~ (IDTI)! 
21T /i2 

classical paths 

X exp [i f -Phases]. (2) 

DT is the following 4 by 4 determinant 

a2T a2T --
op'op" op'oE 

(3) D T = 
o2T o2T 
-- -
aEop" OE2 

The "phases" in the formula (2) are related to the 
number and multiplicity of conjugate times along the 
particular trajectory in the following manner. Suppose 
that the particle starts at time t = ° with momentum 
p' and coordinate q'. Consider the trajectories of the 
same energy which start simultaneously with momen­
tum p', but whose initial coordinate lies in a element 
of 2-dimensional surface dO.' around q'. At any later 
time t > 0, the momenta of these trajectories lie in a 
surface element dO. of momentum space around the 
momentum p of the particle. In general, dO. will again 
be two-dimensional; but at certain special times, 
called "conjugate times," the dimension of dO. will be 
reduced by I or 2; these are the simply or doubly 
conjugate times. The trajectory of the particle is then 
tangent to a focal surface or focal line. The "phases" 
are given by 1T/2 multiplied by the number of con­
jugate times along the trajectory from p' to p", each 
counted with the proper multiplicity. 

The physical significance of these extra phases in 
(2) is the following. Each focal surface or focal line 
represents a boundary for those classical trajectories 
which start with momentum p' and energy E. The 
particle is allowed, however, to "tunnel" beyond this 
boundary. The net effect of this quantum-mechanical 
penetration into the classically inaccessible region is a 
loss of phase. It is as if the particle had been able to 
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penetrate by an eighth of a wavelength before being 
reflected back into the classically accessible region by 
an infinitely hard wall. 

The Hamiltonian is assumed to be the sum of 
kinetic and potential energy 

H(pq) = p2/2m + V(q). (4) 

In this paper, V(q) is assumed to be spherically sym­
metric. Moreover, V(q) is assumed to be a mono­
tonically increasing function of r = Iql, so that one 
can invert the relation between V and r. The inverse 
function will be written as r( V). Each classical 
trajectory lies in the plane which is defined by the 
momenta p' and p". Also, each classical trajectory is 
characterized by its angular momentum M in addition 
to its energy E. The coordinates in the plane of the 
trajectory are chosen such that M ~ 0 for the shortest 
trajectory. 

The equations of motion can readily be integrated in 
polar coordinates. Thus, let p = Ipl and 'Yj be the polar 
angle of p in the orbital plane, with 'Yj = 0 for p'. The 
projection a of q alongp is the conjugate variable for 
p and the angular momentum M is the conjugate 
variable for 'Yj. The new Hamiltonian in the orbital 
plane is given by 

H = L + V ([a2 + M2]!) , (5) 
2m p2 

which is to be considered as a function of p, a, and M. 
The equations of motion 

da = +H dp = -H 
dt P' dt a 

(6) 

can be greatly simplified if the time I is eliminated, and 
if p (or a) is used as parameter after eliminating a (or 
p) with the help of energy conservation H(paM) = E. 
The resulting integrals, however, have singularities 
whenever p (or a) reach their extreme values com­
patible with the fixed energy E and angular momentum 
M. These singularities are harmless and can always be 
circumvented by going from p (or a) as parameter of 
integration to its conjugate variable a (or p). 

The quantities of interest to the propagator (2) can 
now be written as 

it" 

T(p"p'E) = aHa dt + M('Yj" - 'Yj'), 
t' 

(7) 

Lower indices always mean partial differentiation, 
whereas primes or double primes indicate that the 
quantity is to be evaluated at the beginning or at the 
end of the trajectory, respectively. The integral in (9) 
can be transformed with the help of the identity 

I
t" Hn It" (Hn ) H"n H In (~)dt= ~ dt-~+~ (10) 

t' H(f a t' Hp p H;H; H;H~' 

which is valid for n = 0, 1, 2 and serves to avoid the 
singularities in the integrand of (9). 

The conjugate times for I' are determined by either 
one of two conditions which are sometimes satisfied 
simultaneously and then yield a doubly counting 
conjugate time. One condition requires the vanishing 
of sin 'Yj, whereas the other condition requires the 
vanishing of the integral in (9) or, equivalently, the 
vanishing of a'Yj/aM taken at constant p' and p". 
The occurrence of conjugate times coincides with the 
vanishing of (9). Since the -1 power of (9) enters into 
the amplitude of F(p'p' E), the phases in (2) can be 
interpreted as follows. Each time DT changes sign as 
one follows the particle along its trajectory, the -1 
power of DT implies a factor e- irr

/ 2• 

2. THE CLASSICAL TRAJECTORIES IN 
MOMENTUM SPACE 

The classical trajectories in coordinate space from 
q' to q" at the energy E can be obtained from the 
variational principle 

due to Jacobi (cf. Ref. 2), The variation is to be 
taken over all rectifiable curves from q' to q". The 
first factor in the integrand of (11) is the absolute 
value of the momentum of a particle at q with total 
energy E. The stationary value of the integral gives 
the action S pdq along the particular trajectory from 
q' to q". 

Since we are interested mostly in the trajectories in 
momentum space, it is natural to ask for a generali­
zation of (11) to momentum space. For spherically 
symmetric potentials one finds in analogy to (11) the 
variational principle 

bJP"r(E - .I!..) 'Idpl = o. 
P' 2m 

(12) 

i
t" 

'Yj" - 'Yj' = 'Yj = HM dt, 
t' 

(8) The stationary value of the integral equals the classical 
virial T(p'p' E). The proofs of either (11) or (12) are 

_1_ = p' p" sin 'Yj . H'H" {t"[H _ (Hk) ] dt (9) 
D M a (f Jt' M1I1 • T H(f (f 

2 D. Laugwitz, Differential and Riemannian Geometry (Academic 
Press Inc .• New York, 1965), p. 172. 
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straightforward and can be omitted. The simplicity of 
(11) comes from having p parallel to dq along the 
trajectory, whereas (12) is guaranteed if q is parallel 
to dp along the trajectory, i.e., if the potential is 
spherically symmetric. 

The variational principles have a simple geometric 
interpretation. In (11) we consider the inside of the 
sphere V(q) ~ E as endowed with the Riemannian 
metric 2m[E - V(q)] dq2. The trajectories are then 
identical with the geodesics in this Riemannian space. 
Similarly, we endow the momentum space with the 
metric [r(E - p2j2m»)2 dp2, so that the trajectories 
can equally well be considered as the geodesics of that 
second space. If the potential V(q) has an infinity at 
q = 0, the point q = 0 has to be removed from the 
sphere V(q) ~ E. There is no such difficulty in 
momentum space since r = 0 is only reached for 
Ipl = 00. 

The trajectories in momentum space can be further 
investigated and understood if an additional assump­
tion is made. V(q) is from now on assumed to have an 
atomiclike singularity for small r, i.e., 

V(q) R:< -Zoe2jr, for small r. (13) 

Since the potential is spherically symmetric, nothing is 
lost by considering the particular plane through the 
origin and the two end points in either coordinate 
space or momentum space. The crucial question arises 
whether either one of these 2-dimensional subspaces 
with their Riemannian metrics can be mapped iso­
metrically onto a surface in 3-dimensional Euclidean 
space. If so, we would gain much better insight into 
the geodesics between the two given end points. 

This kind of isometric mapping can be accomplished 
for the momentum space in the following manner. 
Let the vector p be given by (p cos cp, p sin cp) with 
o ~ p < + 00 and 0 ~ cp < 21T. There is a one-to-one 
relationship between p and r which is given by 

p2/2m + VCr) = E (14) 

for a fixed value of E < O. Since our mind is used to 
thinking in coordinate space rather than momentum 
space, r is preferable as a parameter when it comes to 
intuitive understanding. Therefore, we shall use r 
rather than p to define the isometric surface for 
momentum space. 

Let us consider a cylindrical coordinate system 
(R, cp, z) in a Euclidean space. The isometric surface is 
described by giving Rand z as functions of r only, and 
identifying cp with the polar angle in momentum space. 
Thus the isometric surface has rotational symmetry 
around the z axis, and the circles of constant z corre­
spond to the circles of constant p (or constant r) in 

FIG. I. The Kepler orbits in momentum space through a given 
initial momentum p' and with energy E. There is exactly one 
trajectory connecting any given pair p' and p". 

momentum space. The Riemannian metric in momen­
tum space has to agree with the natural metric of the 
surface (R(r) cos cp, R(r) sin cp, z(r» in Euclidean 
space, i.e., 

r2(dp2 + p2 dcp2) = dR2 + R2 dcp2 + dz2. (I 5) 

With the help of (14) we find immediately that 

R = r{2m[E - VCr)]}!, 

(~;r = 2m (d~;) - E)- (16) 

As a particular example, let us consider the Cou­
lomb potential VCr) = -Zoe2jr. The second equation 
(16) gives z = (2m IE!)!r if we chose z(O) = O. The 
first equation (16) then yields R = (-Z2 + 2az)! with 
a = [mZ~e4j2 lEI]!. The isometric surface for mo­
mentum space turns out to be a sphere of radius a in 
the case of a Coulomb potential. The mapping from 
momentum space onto this sphere is a simple stereo­
graphic projection, so that circles are mapped into 
circles. In particular, the great circles of the isometric 
surface are mapped into those circles in momentum 
space which intersect the circle p = (2m IE!)! in 
diametrically opposite points as shown in Fig. 1. 
Thus we find again the result of I about the shape of 
the Kepler orbits in momentum space. 3 

The second equation (16) requires that the derivative 
of r V(r) be larger than E. Such an inequality can be 
proved in the stronger form d(r V)/dr ~ 0 if we make 
more detailed, but physically reasonable, assumptions 

3 The circular shape of the Kepler orbits in momentum space is, 
of course, a classical result. It seems, however, that only very few 
books.on classical mechanics mention this important fact. Among 
them IS A. Sommerfeld, Lectures on Theoretical Physics, Vol. 1: 
Mechanics (Academic Press Inc., New York, 1952). A recent dis­
cussion of Kepler orbits in momentum space and many relevant 
references can be found in a series of papers by A. Norcliffe and 
I. C. Percival, J. Phys. B, Ser. 2, 1, 774, 784 (I 968). 
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about V. If we let Z(r) be the number of elementary 
charges inside the sphere of radius r around the 
nucleus, the electrostatic potential V(r) is given by 

J
oo dr [Z(r) Joo dZ dr] VCr) = _e2 Z(r) 2 = _e2 

- + --. 
r r r r dr r 

(17) 

Z(r) is assumed to be a nonincreasing function of r. 
Its limit for r ->- 0 is Zo. The decrease of Z(r) from Zo 
with increasing r describes the screening of the nuclear 
charge Zo by the electron cloud. We find from (17) 
that 

d(rV) = -e2Joo dZ dr ~ 0, (18) 
dr r dr r 

where the integral is a nonincreasing function of r. 
Thus, d(r V)/dr reaches its maximum at r = 0 where it 
is given by the integral -e2 S:'(dZ/dr) dr/r. We shall 
assume that this integral converges or, equivalently, 
that the screening charge density (47Tr2)-1 dZ/dr goes 
to infinity less fast than ,-2 as r approaches zero. 

Thus we arrive at the inequality 

2m lEI ~ (dZ)2 ~ 2m lEI _ 2me2 (00 dZ dr, (19) 
dr Jo dr r 

and z(r) is, therefore, a monotonically increasing 
function of r with a bounded slope no less than 
(2m IE/)!. The profile of the isometric surface, i.e., 
the plot of R versus z, is essentially given by the plot 
of R versus r; in particular, the maxima and minima 
of R can be obtained from the latter plot. Also, the 
shape of the profile at its two ends, r = 0 and r = 
ro = r(E), is well represented by the behavior of R(r) 
which goes to zero as (r)l and (ro - r)l. The rl 
dependence for small r is a direct consequence of (l3). 

An instructive example of a typical profile is given 
by the potential for a nucleus of charge Zo which is 
screened by an infinitely thin shell of electronic charge 
Zo - 1 at a distance r = b from the nucleus: 

VCr) = -e2 [Zo/r - (Zo - 1)/b], for 0 < r < b, 

= -e2/r, for b < r. (20) 

Since the potential is Coulombic in each region, we get 
two spheres, of radii Rin for the inner region and 

FIG. 2. Cross sec­
tion through the iso­
metric surface of a 
hypothetical Li atom 
where the nuclear 
charge 3e is screened 
by a thin shell of 
electronic charge - 2e 
at a distance h. 

FIG. 3. A one-parameter family of 
curves on a sphere between given end 
points whose least upper bound for the 
lengths is realized by a geodesic of 
index I, i.e., not a shortest connection. 

Rout for the outer region. They join at a radius R 

which is given according to (16) and (20) with r = b. 
The values of z cover a range Zin for the inner region 
and Zout for the outer region. For small energies, i.e., 
lEI < e2/2b, and a nuclear charge Zo ~ 2, one finds 
that Zin > Rin and Zout > Rout. The resulting profile 
is shown in Fig. 2 for a hypothetical Li atom where 
Zo = 3 and E = -e2/12b. The discontinuous deriv­
ative dR/dz in this profile at r = b is obviously due to 
the concentrated screening charge. If the screening 
charge were smeared out over a shell of nonvanishing 
thickness, the derivative dR/dz would be continuous. 
But even with such a discontinuous profile the geo­
desics are still well defined. The presence of a screening 
charge is seen to introduce a region of negative 
curvature into the isometric surface and we have to 
reckon with such negative curvature in typical atomic 
potentials. 

The variational principle (12) is, therefore, identical 
to finding the geodesics on a surface in 3-dimensional 
Euclidean space which is topologically equivalent to 
a sphere. We can immediately conclude that there are 
an infinity of classical trajectories connecting any two 
given momenta p' and p" at a fixed energy E. These 
trajectories can be distinguished by the signature (i.e., 
number of negative eigenvalues) of the second varia­
tion, also called the index. The existence of a trajectory 
of index 0 is intuitively obvious, whereas the existence 
of a trajectory of higher index can be inferred from 
Morse's theory.4 For example, if we consider all 
families of paths between two given endpoints of the 
type depicted in Fig. 3, the least upper bound for the 
lengths of the paths in all these families is realized by 
a geodesic of index 1. By considering appropriate 
families of paths depending on 2 and more parameters, 
we find geodesics of index 2 and more. 

The topological arguments of Morse show the 
existence of at least one trajectory of each index 
~ O. It is clear, however, that an isometric surface of 
the type given in Fig. 2 may give more than one trajec­
tory of index 0, namely, when the two end points lie 
near the "waist-line," as shown in Fig. 4. Also, if we 
apply the Morse argument as shown in Fig. 3 to end 

4 J. Milnor, Morse Theory (Princeton University Press, Princeton, 
N.J., 1963). 
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R 

FIG. 4. Geodesics of arbitrary 
length, but of index 0, i.e., 
shorter than any neigh boring 
curve, and of index I, on an 
isometric surface which is typical 
for effective atomic potentials. 

points near the waistline of the isometric surface, the 
existence of at least two trajectories of index 1 be­
comes apparent. The screening charge is, therefore, 
shown to give more trajectories of given index 
between given end points than the simple Coulomb 
potential. 

The procedure which gave an isometric surface of 
rotational symmetry for momentum space can be 
applied equally well to coordinate space. The first 
formula (16) remains the same, but the second for­
mula (16) has a different right-hand side. If one takes 
for VCr) the Coulomb potential, the new expression 
on the right-hand side is found to become negative 
for values of r in the neighborhood of r = ro = r(E). 
Our construction fails, therefore, to give an imbedding 
of the whole Riemannian space 0 < r < ro into the 
3-dimensional Euclidean space. 

It seems likely that no other construction would 
succeed, even if we abandon the requirement of a 
rotationally symmetric imbedding. Indeed, if we had 
any imbedding for the whole space, it would be 
intuitively compelIing that any two end points can be 
connected by a trajectory which has the index O. Since 
we know the shape of all these trajectories in coordi­
nate space, however, we can check immediately 
whether such a shortest, physically acceptable tra­
jectory does exist. We have given in Fig. 5 a sketch of 
all Kepler orbits with the same major axis (same 
energy) through a given initial point. These orbits fill 
an ellipse with the origin r = 0 and the initial point 
as foci, and which touches the limiting circle, = ro. 
The points outside this ellipse cannot be reached by 
any Kepler orbit. We expect, therefore, that the 
approximate Green's function in coordinate space is 
more complicated than in momentum space for 
energies E < O. 

3. THE TRAJECTORIES BETWEEN TWO GIVEN 
MOMENTA 

The representation of the classical trajectories as 
geodesics on a surface in 3-dimensional Euclidean 

space gives a vivid picture of the situation and ties our 
problem to some important results of modern mathe­
matics. In order to perform explicit calculations it 
seems more convenient, however, to revert back to 
a more conventional presentation. In any case we 
think that it can only be of help to our understanding 
if the same situation can be viewed in more than one 
way. 

The new representation involves a Cartesian space 
whose three mutually orthogonal axes will be labeled 
by an angular momentum M, an angle 'YJ which varies 
from - 00 to + 00, and a radius r which varies from 0 
to '0 = r(E). The angular momentum M is the one 
associated with a particular trajectory. The angle r; is 
the polar angle of the momentum p (or the coordinate 
q) for the particular trajectory in momentum space (or 
coordinate space), and we shaH think of it as varying 
monotonicaHy (either increasing or decreasing) if we 
keep going along the same trajectory. The radius r 
gives the distance Iql from the nucleus along the 
trajectory or, equivalently, r gives the total momentum 
p = Ipl with the help of Eq. (14). 

The equations of motion result from the Hamilton­
ian (5) if we remember that r = (a2 + M2/p2)!. In 
addition to dM/dt = 0, we get the following equations: 

dr; M dV M dV 
-=HM =--= -, 
dt rp2 dr 2mr(E - V) dr 

m dr = !(a da _ M2 dp) 
dt 'r dt p3 dt 

= ap = ±[2m(E _ V) _ M 2jr2]!, (21) 
mr 

where we have used (14) to eliminate p. The double 

FIG. 5. The Kepler orbits in coordinate space through a given 
initial position q' and with energy E. Only positions qN inside the 
elliptical region can be connected with q' by a trajectory. 
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sign in the last equation is fixed by the sign of (1. 

Since (1 is the projection of the vector q onto the direc­
tion of p, the double sign is determined by the sign of 
the scalar productpq. Every time r reaches a maximum 
or a minimum as t varies monotonically the sign of 
pq changes. After having chosen a particular sign for 
pq at t = 0, there is no ambiguity left. 

In order to investigate the set of trajectories which 
go from p' to p", we imagine that all those solutions of 
(21) which go through r = r' and 'Yj = Oat t = ° are 
appropriately plotted in the (M, 'Yj, r) space. Because 
of the ambiguity in the sign of pq at t = 0, each plane 
M = const carries two trajectories. The trajectories in 
two planes M = const, whose angular momenta are 
equal but of opposite sign, are identical except that 
the direction of motion with increasing time is opposite. 
We can, therefore, restrict our attention to the 
trajectories with M ~ 0, i.e., the trajectories with 
counterclockwise motion. 

The time can be eliminated between Eqs. (21) and 
the angle 'Yj can be expressed as an integral over r: 

=JT dr (±) dV/dr M ,. (22) 
'Yj T' 2(E - V) [2mr2(E - V) - M2]2 

The double sign takes care of the changing sign of pq 
as r goes through the extremal values' compatible 
with M and E. These are given by the condition 
2mr2(E - V) = M2, and r varies between two solu­
tions of this equation in a range for which 

2mr2(E - V) > M2 

and which contains the initial r'. 
Since r[2m(E - V)]~ = R(r) has, in general, a 

local minimum M at P in the region of electrostatic 
screening, there are various cases to be distinguished 
accordingly as R(r') ~ M, where we will assume that 
we have only one such local minimum. Since R(r) 
vanishes at r = ° and r = r 0' the equation R(r) = M 
has two more solutions, PI and P2 , besides P, where 
PI < P < '2' If IMI < M, the variable r in (22) can 
vary between two limits r 1 and r 2 with rl < '1 < '2 < 
r2 • If IMI > M, we have either PI < r' < P or 
P < r' < '2' In the first case r varies between two 
limits rl and r 2 such that PI < r 1 < r' < r2 < " 
whereas in the second case the limits r1 and r2 are 
restricted by P < r1 < r' < r2 < '2' Thus, the tra­
jectory goes through the whole electrostatic field if 
IMI < M. But if IMI > M, the trajectory is either 
restricted to the inside of the screening charge (if 
r1 < r' < r) or to the outside (if r < r' < r2). 

As r goes from r 1 to r2 and back to r1, the angle 'Yj 
increases by an angle 2y, which is given by the integral 

y =JT'dr dV/dr M . (23) 
T, 2(E - V) [2mr2(E - V) - M2]! 

The electrostatic screening has the effect of making y 
larger than 7T, the value which is obtained for the pure 
Coulomb potential. This so-called precession of the 
orbits depends very much on the type of trajectory, 
whether it goes through the whole electrostatic field 
or only through the region inside or outside the 
screening charge. I~ anyone of these cases there is 
a strong dependence on the angular momentum 
M. Two limiting cases are of particular interest and 
will be discussed in detail, the case of very small M 
and the case of IMI close to M. 

For IMI « M, Eqs. (21) tell us that d'Yj/dt is small, 
whereas dr/dt remains bounded away from zero as 
long as r does not approach r = ° or r = ro. The 
corresponding geodesic on the isometric surface of 
the previous section gets closer to the meridian as 
M is smaller. It is intuitively clear that as M goes to 
zero, the geodesic approaches the "south pole" for 
small r and the "north pole" for r close to ro. The 
angle y goes to 7T as M vanishes so that there is no 
precession in that limit. This result will be derived 
directly from Eqs. (21) in Appendix A. The necessity 
of the assumption (13) will become evident once 
more. 

If IMI is very close to M, the derivative d'Yj/dr given 
by (22) becomes very large as r gets close to r. The 
corresponding geodesic keeps winding around the 
"waist" of the isometric surface while gaining little 
height z, as shown in Fig. 5. This occurs in both 
cases IMI 5 M. Obviously, the gain 2y during one 
period can become arbitrarily large. The precession as 
a function of M in the neighborhood of M will be 
discussed in Appendix B. If we expand 

R(r) = r[2m(E - V)]i = M + (fJo/2)(r - r)2 + ... , 
the leading contribution to y for each passage near r 
becomes 

2y ~ [ dV /dr ] (M)~IOg 1 fJop
2 

I. (24) 
- 2(E - V) r~f fJo 2(M - M) 

If IMI < M, the trajectory passes the radius r twice in 
each period so that it will have twice the contribution 
(24). If I MI > M, the trajectory passes near the radius 
, only once in each period so that it will have just the 
contribution (24). If fJo becomes very large as in a 
potential with a strongly localized screening charge, 
the contribution (24) to y becomes small again if we 
keep the difference 1M - MI fixed. A potential like 
(20) shows, therefore, no infinitely large precession, 
as one expects from an isometric surface of the type 
shown in Fig. 2. The occurrence of an infinitely large 
precession is easily understood with the help of the 
isometric surface, although an estimate like (24) still 
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requires integrating the equations of motion. The 
trajectories in coordinate space do not allow this 
kind of geometric insight. 

The approximate Green's function F(p"p' E) depends 
on the absolute values p' = IP'I and p" = Ip"l, or r' 
and r" according to (14), as well as on the spherical 
distance ~ between p' and p". The angle ~ is defined to 
lie between 0 and 1T, whereas the angle 'Y} = 'Y}" - 'Y}' 
can be anywhere from - 00 to + 00. A solution of the 
Eqs. (21) is an acceptable trajectory from p' to p" if 
'Y} = ~ mod 21T. For 'Y} > 0 we may call the trajectory 
direct, and for 'Y} < 0 indirect, because the two main 
examples of each case are 'Y} = ~ and 'Y} = - (21T - O. 
The direct trajectories have M> 0, whereas the 
indirect ones have M < O. Finally, it should be 
remembered that the approximate Green's function 
P carries the particle forward in time as it goes from 
p' and p", and that the virial T(p''p' E) in (2) is, there­
fore, positive for the direct as well as for the indirect 
trajectory. This is borne out by the formula (7) to­
gether with the above description of the relevant 
trajectories. 

The solutions of the equation 'Y} = ~ mod 21T can be 
obtained as follows. We consider again the trajectories 
through r = r' and 'Y} = 0 in the (M, 'Y), r) space. 
Their intersections with the plane r = r" form a set of 
curves which is shown in Figs. 6 and 7 for two typical 
situations. The intersections of these 'Y}-vs-M plots 
with the set of horizontal lines 'Y} = ~ mod 21T give the 
values of M for a trajectory from p' to p". 

Since Figs. 6 and 7 are fairly complicated, it may be 
useful to discuss their origin. In order to accomplish 
this, the trajectories through r = r' and 'Y} = 0 can be 
projected onto the plane M = O. Figure 8 shows the 
situation schematically when R(r') < M. We have 
assumed that the precession y increases with in­
creasing IMI which is, indeed, natural as long as 
IMI remains below M. Figure 6 can be obtained from 
Fig. 8 if we follow along a line r = r" and note the 
angular momentum M of the trajectory which goes 
through a particular value of the angle 'Y}. M is a 
monotonically increasing function of the direction 
cosine for the particular trajectory at 'Y} = O. The 
range of M in Fig. 6 is determined by the smaller 
among R(r') and R(r"). If we had no precession, the 
triangular regions in Fig. 8, which are bounded by the 
lines 'Y} = multiple of 1T and two envelopes, would 
reduce to points. Also, the branches of the 'Y}-vs-M 
plot in Fig. 6 would stay horizontal, instead of turning 
away from the Maxis. 

Figures 9 and 10 should be superimposed on each 
other, but they are separated to keep the confusion of 
the trajectories from becoming total. In both Figs. 9 
and 10 we have R(r') > M, but in Fig. 9 only the 

FIG. 6. The angle 'YJ between 
initial and final momentum, p' 
and p", is plotted as a function 
of the angular momentum M 
for the trajectory from p' to p". 
The energy E is given and the 
absolute values of p' and p" are 
fixed so that M never reaches the 
critical value M. For M < 0, 
these curves have to be inverted 
through the origin. 

FIG. 7. Same as 4 
Fig. 6, but the ab­
solute values of p' 
and p" are now fixed 
so that M can exceed 
the critical value M. 
Also, there is an inter­
val for large M with 
no precession at all. 

I I 
I I 
I I 
I 
I 

I I 
I I 
I I 

I 
I 
I 

I I 
M M 

M 

FIG. 8. Schematic plot of the trajectories through a given initial 
momentum {2m[E - V(r')]}~, assumed to be so small that none of 
the trajectories can have an angular momentum as large as M. 
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trajectories with IMI < M, and in Fig. 10 only 
trajectories with IMI > M, are plotted. The infinite 
precession for IMI = M produces the envelopes which 
touch the horizontal lines r = , and r = '2 if , < 
r' < '2 as in Figs. 9 and 10. Again we can follow a 
line r = r" and notice the angular momentum M 
associated with a particular angle 'f}, in order to 
construct the 'f}-vs-M plot. If R(r") < M, nothing new 
is obtained as compared with Fig. 6. If'1 < r" < , 
whereas, < r' < '2' the range of IMI in the 'f}-vs-M 
plot is still limited to M because the trajectories 
with IMI > M are either limited to '1 < r < , or to 
, < r < '2. Therefore, only the case , < r" < '2 
produces a 'f}-vs-M plot like Fig. 7 which is quite 
different from Fig. 6. The infinite peaks at M = M 
are actually less dramatic than might appear from 
Fig. 7 since they have only the logarithmic infinity 
which is indicated by formula (24). We have assumed 
that the precession y decreases with increasing IMI > 
M, which is reasonable since the trajectory stays 
outside most of the screening charge. In Fig. 10 we 
even assumed no precession at all for IMllarger than 
some critical value Mo such that if R(r) > M o, the 
potential VCr) is again purely Coulombic. The various 
branches in Fig. 7 all come down again into the range 
of'f} from which they originated at M = o. 

If we were interested in the approximate Green's 
function G(q"q'E) in coordinate space, we could con­
struct similar pictures, with some significant dif­
ferences, however. Most notable would be that the 
trajectories in Figs. 8, 9, and 10 would not cover 
the whole strip between r = 0 and r = r 0' and that the 
branches in Figs. 6 and 7 would not form one con­
tinuous curve, but would be disconnected. 

FIG. 9. Same as Fig. 8, but now r'{2m[E - V(r')]}t> if, and r' 
lies between rand r •. Only the trajectories with M < Ai are plotted 
to avoid confusion. 

r,t-:----,----....,--r---,----r--~-

r,I----+---+------1 

o ." 211" 411" 511" 611" 

FIG. 10. Same as Fig. 9, but only the trajectories with M> M 
are plotted. There is a family of trajectories without orbital preces­
sion, i.e., with periodicity 21T. 

4. THE SUMMATION OVER ALL THE 
POSSmLE TRAJECTORIES 

On the basis of the preceding discussion we can now 
make the complete enumeration of all the trajectories 
from p' to p" which is required in formula (2) for 
P(p"p' E). To be definite we shall assume that p" < p' 
or, equivalently, r' < r". In the opposite case we can 
use the symmetry relation 

P(p'p"E) = P(P''p'E), (25) 

which is a direct consequence of the formula (2). The 
amplitude factor (9) can be written as 

_1_ = p' pI! sin 'f} (dV [2mr2(E _ V) _ M2]~}' 
DT Mr'r" dr 

with the help of(5) and (14). The derivative (O'f}/oM)p'P' 
can be obtained directly from Fig. 6 or Fig. 7. It will 
be shown in Appendix C that this expression remains 
finite throughout the trajectory, except near M where 
(o'f}/oM)p'p" ~ (M - M)-1 as can be recognized 
from (24). 

In addition to y as given by (23), we shall use the 
angles 

i r'd dV/dr M 
IX = r1 r 2(E _ V) [2mr2(E _ V) _ M2]! ' 

i
r• dV/dr M 

fJ = rOO dr 2(E _ V) [2mr2(E _ V) _ M2]!' (27) 

which can be considered as a function of r' and M 
-(respectively, r" and M), always at a fixed energy E. 
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Similarly, we have the virials corresponding to IX, {J, 
and I' given by 

again to be considered as functions of r' and M 
(r" and M, respectively) and in the case of () as func­
tion of M only. In case of ambiguity all radii r 1 < 
r' < r" < r2 are assumed to be larger than the 
screening radius f. 

For any particular trajectory from pi to p" we can 
. immediately determine two integers A and 11 as follows. 
We write 1} = 2A7T + " where 0 ~ ~ < 7T, to obtain 
A and 1} = 2vy + b, where 0 ~ b < 1', to obtain 11. 
There are four different types of trajectories accord­
ingly as b is made up of the angles IX, {J, and y. In terms 
of the spherical distance ~ between pi and p", we find 
that 

(i) 

(ii) 

(iii) 

(iv) 

(211 + 1)1' - IX - {J = 2A7T + ~, 
(211 + 1)1' - IX + {J = 2h + ~, 
(211 + 1)1' + IX - {J = 2h + ~, 
(211 + 1)1' + IX + {J = 2A7T + ~. 

(29) 

Since IX, (J, 1', and A have the same sign as M, positive 
for direct and negative for indirect trajectories, where­
as 0 ~ ~ ~ 7T, the integer 11 is always ~ O. The virial 
along the four types of trajectories is given by 

T(P"p'E) = (211 + l)() ± (J ± T, (30) 

with the same signs in front of (J and T as in front of IX 

and {J in (29). The four types can easily be recognized 
on sketches like Figs. 8, 9, and 10. 

The four types of trajectories (29) are associated with 
the various branches of Figs. 6 and 7 in the following 
manner. Because of the absence of orbital precession 
for M = 0, the behavior of the 1} versus M is partic­
ularly simple at M = 0 and can serve to characterize 
each particular branch. Two such branches come 
together at each multiple of 7T for M = 0 correspond­
ing to type (i) and (iv) at even multiples of 7T, and to 
type (ii) and (iii) for odd multiples. This fact results 
from Appendix A where the angles IX, {J, and I' are 
shown to go to the values ±7T/2, ±7T/2, and ±7T in the 
limit M ~ 0, with the upper sign for M > 0 and the 
lower sign for M < o. Furthermore, it is evident from 
Figs. 8, 9, and 10 that the type (iii) meets the type (ii) 
from above (below) for M > 0 (M < 0), as indicated 
in Figs. 6 and 7, although it does not always have to 
be that way. Similarly, the type (i) meets the type (iv) 
from above (below). As we follow any branch (type) 

from M = 0 out to the largest value of M which is 
compatible with r' and r", type (i) meets with the 
nearest type (ii) and type (iii) with the nearest type 
(iv). Therefore, if one starts with the lowest (highest) 
branch for M > 0 (M < 0) which is of type (i), the 
next higher (lower) branches in Figs. 6 and 7 come in 
the order (ii), (iii), (iv), (i), (ii), etc. Even across the 
peaks at M = M in Fig. 7, this identification of the 
branches is easily accomplished, and we shall use it 
from now on whenever it seems convenient. 

The identification of the branches in Figs. 6 and 7 
is important because it helps in finding the number of 
conjugate times between pi and p" for each trajectory . 
The contribution from the angular motion, i.e., the 
number of times the angle 1} goes through a multiple 
of 7T, is given by 2.1. for the direct trajectories and 
2 1.1.1 + 1 for the indirect trajectories. Again consulting 
Figs. 8, 9, and 10, the rules for the contribution of the 
radial motion become evident. A conjugate time for 
the radial motion along any trajectory is located 
wherever the trajectory touches one of the various 
envelopes. For small M that number equals 211 for 
type (i), 211 + 1 for types (ii) and (iii), and 211 + 2 
for type (iv) , provided (a1}/aM)p'p' > 0 at M = O. 
The last condition may not hold, particularly for the 
types (ii) and (iv) if there is little precession or if 11 
is small. In that case, the numbers 211 + 1 and 211 + 2 
have to be reduced by 1. This initial number of con­
jugate times due to the radial motion changes only 
when going from M = 0 to the maximum value of M 
along any branch in Figs. 6 and 7, if the slope 
(a1}/aM)p'p' changes sign. 

Let us assume that a particular branch, whatever its 
type, starts with (a1}/aM)p'p' > 0 at M = O. If we 
move away from the 1) axis by increasing M for M > 0 
or by decreasing M for M < 0, one conjugate time is 
lost when the slope (a1}/aM)p'p' becomes negative. 
This conjugate time is regained as soon as (a1}laM)p'p' 
becomes positive upon moving further away from the 
1) axis. It will be lost again if (a1}laM)p'p' becomes 
negative once more, and so on, until M reaches the 
extremal value which is compatible with r' and r". 
There the slopes in Figs. 6 and 7 are positive for the 
branches of types (i) and (iii), negative for the 
branches of types (ii) and (iv), so that the number of 
conjugate times does not change as we go from a 
branch of type (i) to one of type (ii), or from types 
(iii) to (iv) at the extreme value of M. Finally, if the 
slope (a1}/aM)p'p' < 0 at M = 0, we may think of it 
as having already changed from positive to negative 
and, therefore, having caused the loss of a conjugate 
time. In this manner, the index of a particular trajec­
tory, i.e., the total number of conjugate times between 
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pi and p", can be obtained if we know the type of 
trajectory, the sign of the slope (o'YJ/oM)p'p", as well 
as the integers A and Y. 

In order to evaluate the formula (2) for F(p'p' E) 
we have first to find the solutions of the Eqs. (29); 
i.e., given r', r", ~, and E, we have to find all the triples 
(A, Y, M) which satisfy one of the four equations (29). 
For each triple we can evaluate T(p"p'E) according to 
(30), the phases according to the above rules, and 
(o'Y}/oM)p'p" = (2y + l)y ± a: ± (3, where the dot 
indicates the partial derivative with respect to M, 
to be inserted into (26). In this manner we obtain the 
formula 

F(p"p'£) 

x {~~ [2mr2(£ - V) - M2]tr 

X I (2y + 1~ ± a: ± (3lr
t 

.{(2Y + 1)8 =t= a =t= T (+ 1 "'[" 1 "'[" 1) 
X exp I - Y "2 T 4 T 4 7T 

Ii 

- (A + t)7T sgn M 

- 7!. sgn [(2y + l)y =f ci =t= (3] + 7!.}. (31) 
4 2 

5. THE ORIGIN OF THE QUANTUM NUMBERS 

The last expression (31) for the approximate Green's 
function in momentum space has to be investigated in 
order to find its singularities. This can be accomplished 
most directly by examining Eqs. (29) in the limit of 
very large y so as to find the conditions for E and M 
which make the terms in (31) all add up in phase. 
Since we would like to find also the behavior of 
F(p"p'E) "between" the singularities, a more circui­
tous, although formally more elegant, route seems 
preferable. 

The first step is to rewrite (31) so as to get rid of 
the annoying limitation y ~ O. If we keep the ex­
pression (31) as it stands, but add toit all the terms 
that arise from allowing Y < 0, we find the following: 
Each term with y < 0 can be interpreted as (-1) 
times the complex conjugate of a term with y ~ O. In 
this correspondence a term with Y < 0 which belongs 
to the angular momentum M and the type (i), (ii), 

(iii), or (iv), is associated with the term y+ = 
-2(Y + 1) ~ 0 of angular momentum M+ = -M 
and of type (iv), (iii), (ii), or (i). Indeed, Eqs. (29) 
can be written as (2y + l)y =t= rx =t= (1 = 2A7T + ~ in 
abbreviated form, and become 

(2Y+ + l)y+ ± rx+ ± (1+ = 2h + ~ 

after replacing (2y + 1) with - (2Y+ + 1) and M with 
-M+, etc. Similarly, the phase of (31), i.e., the inside 
of the braces in exp i{ }, can be rewritten in terms 
of y+, M+, etc. as 

_ (2Y+ + 1)8+ ± a+ ± T+ + (y+ + 1 ± 1 ± 1)7T 
Ii 2 4 4 

+ 7T(A + 1) sgn M+ 

+ ~ sgn [(2y+ + 1)y+ ± cit + tf-] - 7!. + 7T. 
4 2 

Therefore, if we formally let (2y + 1) < 0 in (31), we 
get terms with (2Y+ + 1) > 0 whose phases have the 
wrong sign plus an extra 7T. Formula (31) can then be 
used in the form 

1 00 (iv) 

2 1m F(p" pi £) = - I I I I ... (32) 
27T1i2 y~-oo M;:: 0 (i) ;. 

to give the discontinuity of F(p"p' E) across the E axis. 
The next step replaces the summation over A in (32) 

by a summation over an integer I that wiH turn out to 
be the angular quantum number. To this end we shaH 
first change the meaning of A and make it a continuous 
variable which is a function of M for any fixed Y 

and given type (i), (ii), (iii), or (iv) in accordance 
with Eqs. (29). Then we shaH replace any integration 
over A by an integration over M extending through the 
range which is compatible with r', r", and E. Thus we 
write the following sequence of equations in somewhat 
symbolic form: 

t = fd\~}(A -A) 

= J... fdM 1(2y + l)y =t= a: =t= (31 
27T 

+00 

X L exp{-il[(2y+1)y=t= rx =t=(1-'lsgnM}, 
l=-oo 

(33) 

with 27TA to be replaced by (2y + l)y =t= rx =t= (1 - ~ 
wherever it occurs in (31) and (33). 

The sgn M has been inserted into (33) for conven­
ience. The new exponential in (32) becomes, after 
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inserting (33), 

exp i{(2V + 1)OIi TaT T - (v + t TiT t)7T 

- (l + m(2y + l)y T a. T (3] sgn M 

+ [(1 + t)' - ~J sgn M 

- - sgn [(2y + l)y T oc T P] + - . 7T . 7T} 
4 2 

The quantities (), a, T, y sgn M, a. sgn M, (3 sgn M, 
y, OC, yare even functions of M, so that only the term 
[(l + t)' - 7T/4] sgn M changes its sign with M. The 
summation over Min (32) can be carried out and gives 
the , dependence 

cos [(1 + t)' - 7T/4] (34) 
2 (sin ,)k ' 

if we include the , dependence of the amplitude, 
of (31). 

For I ~ 0, this function of , is actually the first 
term in the asymptotic expansion of the Legendre 
polynomial Pl(cos () for large I. According to Whit­
taker and Watson,S we have for the normalized 
Legendre polynomial 

C14~ l)t Plcos 0 

r(l + 1) cos [(1 + t)' - 7T/4] (35) 
""' r(l + t) . (1 + t)i 7T(sin Oi 

The first factor goes to 1 in the limit 1 = 00, so that 
(34) corresponds to 27T times the normalized Legendre 
polynomial for large 1 > 0. The functions (34) for 
1 < 0, unfortunately, have no such interpretation. 
Since the functions (34) with I ~ ° are presumably a 
complete, although not an orthogonal, system in the 
interval ° < , < 7T, the functions (34) with I < ° are 
not independent. 

The summation over y can be carried out by writing 

1m F(p"p'E) 

= ~ L cos [(1 + t)' - 7T/4]5 dM £l L 
(27T1i)2 l (sin O! M>O (i) v 

X { pip" [dV (2mr2(E _ V) _ M2)i] I 
Mr'r" dr 

1 

X [~: (2mr2(E - V) - M2)!JT" 
x 1(2y + l)y T OC T Pl i 

• E. T. Whittaker and G. N. Watson, A Course of Modern Analysis' 
(Cambridge University Press, Cambridge, England, 1927), 4th ed., 
p.316. 

X exp i{(2V + 1)[~ - ~ - (l + t)yJ 

- ~ sgn [(2y + l)y T oc T P] 
4 

T [~ - ~ - (1 ~ t)a. ] T [~ - ~ - (1 + t)(3 J}. 
(36) 

The sum over y is evaluated with the help of Poisson's 
formula6 

L <l>(y) = Lfdx<l>(X)e-2nlTiX, (37) 
v n 

where both summations go from - 00 to + 00 and so 
does the integration over x. The integral is treated in 
the context of the theory of generalized functions. 

With the abbreviation 

~ = (21 + l)y + (2n + 1)7T - 2()/1i, (38) 

the integral to be evaluated is given by 

f+C1JdX 1(2x + l)y + Ji l exp i{[(2X + 1)y + J] ~. 
-oc 2y 

- ~ sgn [(2x + l)y + J] + ~~ + n7T} 

= (27TIYI)tl~I-!exp i(n7T + ~~) 
X{-l, for y~>o, 

0, for y~ < 0, 
(39) 

where b stands for T a. T p. The sum from (i) to (iv) 
is trivial at this point and we get the final expression 

X cos - - (1 + .l)a. + - - -[
a oc~ 7TJ 
Ii 2 2y 4 

{[ dV( M2)t] "}-! x p dr 2m(E - V) - -;:; 

X cos - - (1 + .l)R + - --
[

T P~ 7TJ 
Ii 2 I-' 2y 4' 

y~ > 0. (40) 

• M. J. Lighthill, Introduction to Fourier Analysis and Generalized 
Functions (Cambridge University Press, Cambridge, England, 1958), 
p.69. 
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The second line depends only on r', and the third line 
only on r", as can be checked with the help of (27) 
and (28). The summation over n is limited to the 
region where y6. > O. 

If we are interested in F(p"p' E) itself, not only its 
imaginary part, all the steps in the preceding deriva­
tion remain the same except that the integral (39) goes 
now only from 2x + 1 = 0 to 00, exactly as the sum 
over v in (37) goes only from 0 to 00. The integer n 

still takes on all values from - 00 to + 00. The 
expression (40) remains the same with the exception of 
the factor (27T Iyl M)! . 6.-i , which is replaced by a 
much more complicated function of y, J, and 6.. 

Since we are interested in the discontinuity of 
F(p"p' E) across the real E axis, it is convenient to 
rewrite (4) so as to give it the appearance of being just 
such a discontinuity. Accordingly, we should try to 
introduce complex values of the energy E. It is 
obvious, however, that this would be difficult to 
achieve because the potential V is not necessarily an 
analytic function of r, and most of our reasoning 
depends on writing expressions like r(E - p2j2m), etc. 
Therefore, we take another approach where the integer 
n appearing in (38) can take on arbitrary complex 
values although n is restricted to integer values in (40). 
The quantity 6. becomes complex, and we can write 
each term in the summation over I and n as the dis­
continuity across the real axis of an integral with a 
factor 

(27TM)! (6.)-!. d f (27T Iyl M)! --- - mstea 0 3 

Iyl y 16.1~ 

The function (6.jY)-! is defined in the whole complex 
Ny plane with the exception of the positive real axis. 
(6.jY)-! is defined to be positive just above the positive 
6.jY axis and negative below. 

6. THE SINGULARITIES OF THE APPROXIMATE 
GREEN'S FUNCTION 

The eigenstates for the bound electron can be 
obtained from the poles of the Green's function along 
the negative real E axis. We shall use this approach 
to determine the approximate eigenfunctions from the 
singularities of the approximate Green's function. If 
one examines the expression (40) for the discontinuity 
of F(p''p' E) across the negative real E axis, he finds 
Dirac c5 functions of the energy [corresponding to the 
poles of F(p''p' E) in the complex E plane]. But besides 
these strong singularities there seem to be weaker ones, 
corresponding to branch-cuts in the complex E plane, 
which have no counterpart in the exact Green's 
function, nor are they easily calculated and inter-

preted. We shall, therefore, determine only the strong 
singularities in this work. 

Before discussing the general case, we shall dispose 
of the special circumstance where there is no orbital 
precession in some closed domain of energy E and 
angular momentum M. This may happen if the 
potential is purely Coulombic in some domain of the 
radius r as for example in the case (20). The formula 
(40) breaks down in that domain of E and M, because 
y = O. If we go back to (39), however, we find 
immediately that the right-hand side becomes a Dirac 
15 function of 6., so that we can concentrate (40) on 
6. = O. Also the terms li6.j2Y and /16.j2Y disappear 
from the arguments of the cosines in (40). The summa­
tion over I and n can be performed subject to 6. = 0 as 
given by (38). This leads to another Dirac 15 function 
which relates the angle ~ with IX, fl, y (assumed to 
equal 7T). Thus, the integration over M becomes 
trivial, and we are left with the same result as in I, 
restricted to the closed domain of E and M where 
y = O. 

It should be noted that y = 0 implies that the action 
() does not depend on M, so that the quantum con­
dition 6. = 0, or 2() = 27T1i times an integer> 0, fixes 
only the energy. This fact follows from the general 
formula 

(aT) = M 
ar; p'p" ' 

(41) 

where the action T along a particular trajectory is 
written as a function of p', p", and r;. If this formula is 
rewritten in terms of T and r; which are now considered 
to be function of p', p", and M, one finds that 

(aT) = M(~) aM p'p" aM p'p'; 
(42) 

This last relation can also be checked directly with the 
help of (30) and the integrals (23), (27), and (28). As 
a special case we find that My = d() jdM, so that y = 0 
implies d()jdM = O. 

If we exclude the case where y vanishes identically 
in a closed domain of E and M, the integrand in (40) 
can still present difficulties in the neighborhood of 
special values of M. Whenever the integral over M 
seems to diverge, we shall treat it with the help of the 
theory of generalized functions. In this manner we can 
eliminate two critical values of M as sources of 
singularities in (40). A first critical value £1 arises 
where y = 0 because y occurs in the argument of the 
cosines in (40). If 6. ¥= 0 and y ¥= 0 at £1 , we can use 
fJ. = (M - £1)-1 as variable of integration in the 
neighborhood of £1. The resulting integrand diverges 
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with a -t power of fl and gives, therefore, a finite 
result. 

A second critical value Mo arises where ~ = 0 
because of the -t power of I~I in the integrand of 
(40). If we assume that d~/dM ¥= 0 at M o, we can 
conclude also that y ¥= 0 and M ¥= (l + i)11 because 
of the relation 

- = 2y 1+- --d~ .( 1 M) 
dM 2 11' 

(43) 

which again follows from (42). Actually the change of 
the arguments in the cosines of (40) comes out equally 
simple: 

- - - (I + l.)a + - = - ~ d [a Ii~J ( Ii ). 
dM 11 2 2y 2y' 

d [7 {J~J ( (J). 
dM t, - (I + i)~ + 2y = 2y~' (44) 

i.e., the phase of the cosines in (40) is actually station­
ary at the critical value Mo where ~ = O. Again, the 
integral around Mo diverges with a fractional power, 
and leads to no singularity. This remains true even 
when the two critical values if and Mo coincide, i.e., 
if simultaneously y = 0 and ~ = 0, because the 
divergence remains fractional. 

If ~ = 0 coincides with M = (l + i)l1, then the 
expansion of ~ in powers of M - (/ + i)11 starts with 
a quadratic term. If simultaneously y ¥= 0 for M = 

(l + t)l1, the arguments in the cosines of (40) remain 
well behaved. The divergence of the integrand goes 
as the - 3 power of M - (I + t)11 and one ends up 
with a singularity. This singularity is a Dirac b 
function of ~ and is hard to recognize directly from 
(40). In discussing this singularity it seemed, therefore, 
more convenient to consider the expression (40) as 
the discontinuity across the real n axis of the complex­
valued function which was defined at the end of the 
preceding section. If the integrals (40) are calculated in 
this form, one obtains a pole in the complex n plane 
rather than a b function along the real n axis. 

If ~ is expanded around M = (l + t)l1, one finds 
that 

2wz yz 2 
~ = (2n + 1)17 - h -Ii [M - (1 + t)l1] + .... 

(45) 

The subscript / indicates that M has been replaced by 
(l + t)l1. The quantity w is defined by 

w = () - yM 

=J,r2

dr dVjdr [2mr\E _ V) - M2]!; (46) 
rl 2(E - V) 

if we transform the variable of integration to P as 

given by (14), w becomes simply S a dp between the 
limits PI and P2. Since a, as defined in (5), is the 
projection of q along p, the quantity w is the action 
integral for the radial motion. Indeed, by a partial 
integration the expression (46) can be written in the 
more familiar form S dr[2m(E - V) - M2jr2]! from 
r I to r2 • The condition ~ = 0 for the singularity 
becomes, therefore, 

2 rr 2

dr[2m(E - V) - M2/r2]~- = (n + t)21711 (47) 
Jrl 

in addition to M = (l + t)l1. Equation (47) is, of 
course, the well-known quantum condition for the 
radial motion. Usually, it is obtained by treating the 
radial motion as a I-dimensional problem after 
Schrodinger's equation has been separated into angu­
lar and radial coordinates. This leads to the replace­
ment of M2 by /(l + 1)112 rather than by (l + t)2112, as 
in the present derivation, and consequently to erro­
neous results even for the simple hydrogen atom. 

The evaluation of the integral (40) in the neighbor­
hood of ~ = 0 is fairly tricky. As shown in Appendix 
D, the result can be written as 

ifdM (217~\1i(~)-~ = sgn y [(21 + 1)17]!112 , (48) 
Iyl y W z - (n + t)1711 

which multiplies the second and third line of (40) with 
M everywhere replaced by (l + t)l1. Formula (48) 
represents the leading term of the singularity which is 
given by (47). 

If the last formula is inserted into (40), we get the 
following approximation: 

F(p"p'E) 

"-' i (21 + l)! cos [(I + i)' - 17/4] 

z=o 17f (sin D! 

X '2 2( -1 t sgn y 
n W l - (n + !)1711 

{[ dV( M
2)!J'}-! (W' ) X P dr 2m(E - V) - ~ cos h - ~ 

X {[p ~~ (2m(E - V) - ~2trr!cos (~' -~) 
(49) 

with w' and w" integrals like (46) taken from r I to 
r' and from r" to r2. The factor between the two 
summation signs is the asymptotic formula for 

as is evident from (35). In polar coordinates (p, (J, "1') 
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for p we have 

214~ 1 Pz(cos ') = m~IYzm(O"cpll)YI~(O'CP')' (50) 

where Y1m((Jcp) are the normalized spherical harmonics 
(cf. Ref. 7). The , dependence in (49) represents, 
therefore, the sum over the 2/ + 1 eigenstates of the 
total angular momentum (/ + t)li. 

The sum over n for a given value of / has also a 
simple interpretation. It constitutes the phase-integral 
approximation for the Green's function of the 1-
dimensional Hamiltonian (5) with M fixed to the 
value (l + t)li. The conjugate variables are p and (], 
and the action is defined by S (] dp. These are different 
from the Hamiltonian and the action corresponding to 
the usual radial variables Pr and r. But the two treat­
ments are similar in that neither p nor Pr cover the 
full range from 0 to 00 because of the centrifugal 
potential which prevents the particle from getting into 
the center r = 0 and increasing its kinetic energy 
indefinitely. The assumption (l3) is crucial at this 
point since the centrifugal potential is able to over­
whelm the attractive potential V(q). 

The radial dependence at the main singularities of 
F(p"p'E), as given by (49), corresponds exactly to the 
results of the ordinary WKB method. The present 
treatment does not go beyond the usual one, although 
the discussion of momentum space is new, and there 
are fewer ad hoc assumptions. The apparent advan­
tage of momentum space for the phase-integral approx­
imation can only be exploited if a way is found to 
understand not only the b-function singularities of 
F(p''p' E) but also its branch-cuts. 
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APPENDIX A 

The absence of orbital precession for small angular 
momentum can be shown most directly if we break up 
the integral (23) for y into three parts: from r1 to r' as 
in oc offormula (27), from r' to r", and from rlf to r2 as 
in p. The intermediate points r' and rlf are arbitrary 
and independent of M. Since the integral of (27) is 
well behaved, except near r1 and r2 , the integral from 
r' to rlf vanishes as M goes to zero. 

In order to discuss the integrals oc and p, we intro­
duce the variables $1 near rl and $2 near r 2 through the 

, Reference 6, p. 328. 

common formula 

cos $ = Mjr[2m(E - V)]t, (AI) 

with the understanding that $1 = 0 for r = r1 , ;2 = 0 
for r = r2, and 0 < $ < 7Tj2 in both cases. Since 

d$ = dr M 
r [2mr2(E - V) - M2l~ 

dVjdr M dr 

2(E - V) [2mr2(E - V) - M2]t ' 
(A2) 

we can write the formulas 

~ = (arc cos M t) 
r[2m(E - V)] r" 

+ (r. dr M 
Jr" r [2mr2(E - V) - M2]t ' 

(A3) 

whose integrands are sufficiently well behaved even in 
the limit M = O. In the case of oc, the assumption (l3) 
has been used in order to show that the integrand is 
regular. 

As M approaches zero, while r' and rlf remain fixed, 
the arguments of the arc cos become small. Therefore, 
we can write the expansion 

arc cos x 

= 7Tj2 - arc sin x = 7Tj2 - x - x 3j6 + ... , (A4) 

with x = Mjr[2m(E - V)]t for r = r' and r = r". 
Thus, we get 

oc and p approach 7T/2 as M vanishes, independently of 
r' and rlf, and y approaches 7T. 

APPENDIX B 

If M is close to M, we shall compute 'f} according to 
(22) under the assumption that r' is close enough to 
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; so as to guarantee the expansion 2mr2(E - V) = 
M[M + IAr - i')2 + ... ] throughout the interval from 
r' to r. Also, we assume that all the factors in the inte­
grand of (22) can be replaced by their value at ;, 
except the root in the denominator. Thus, we find for 

M < Mthat 

[ 
dV /dr J (I" Ir) 

'Y) ~ ± 2(E - V) r r' + i 

Mdr 
x !' {2M[M - M + ft(r - ;)2]} 

[ 
dV/dr J (M)~l ftU - r')(r - i') 

~ ± - og , 
- 2(E - V) r 2ft M - M 

(Bl) 

if we keep only the leading terms as M approaches 
M. If M > M, we find, similarly, for {3 in (27) that 

{3 ~ ± [2(~ ~~)l 

Ir, M dr 

x r N {2M[M _ M + ft(r _ i')2]}~' (B2) 

where the upper limit of integration r 2 is given by the 
condition ft(r2 - ;)2 = M - M. The leading term 
turns out to be 

{3 ~ ± [ d V /dr J (M)\Og (ft(i - r~./)~. (B3) 
2(E - V) f 2ft M - M 

In both (Bl) and (B3), the distances; - r', r - ;, 
and ; - rtf can be replaced by any characteristic 
radius such as f to give the formula (24). 

APPENDIX C 

The equivalence of the formulas (9) and (26) can be 
demonstrated as follows. First, we find from (5) that 

M dV (M2)~ HM = - - with r = a2 + - . (Cl) 
p2r dr p2 

By differentiating with respect to M and a we get 

1 dV M2 d2V M2 dV 
H,lLlt = -2- -d + 42 -d 2 - 4"3-

d 
' 

pr r pr r pr r 
(C2) 

(::t = -;-;2 -~2r-~ - -;-;3 -~V-r - -;-a-:r -~-~ . (C3) 

We can combine these two expressions into 

[HMM - (~~)J dt 

(C4) 

where a in the last step is considered as a function of 
E, M, and p, which follows from (5). The formula (22) 
can also be written as f M dp/ p2a if we remember that 
pdp = m(dV/dr) dr according to (14). Since this 
change of variables does not involve M, the formulas 
(9) and (26) become, indeed, equivalent after H; and 
H; have been expressed in terms of r' and rtf. 

Since a is the projection of q along p, it vanishes 
when p reaches its extremal values because p is 
perpendicular to the radius vector q. As is apparent 
from (C4), the integrals (9) and (26) do not converge 
when a vanishes. The troublesome term comes from 
the integral over (Hir/H"),,, and can be eliminated 
with the help of formula (10). This requires the calcu­
lation of (H1'tr/Hp)P' which proceeds exactly as the 
calculation (C3), but turns out to be more complicated. 
The important feature is, however, that a does not 
occur in any denominator anymore. The integral on 
the right-hand side of (10) is, therefore, as well be­
haved as the integral over H~ltilt. The singular parts in 
(9) and (26) are isolated in the last two terms of (10). 
More specifically, since both HM and Hp are well 
behaved near the extremal values of p, the singularities 
in (9) and (26) arise from H~ and H; in the denomina­
tors of (10). If p" is assumed to approach an extremal 
value of p, but not p', formula (9) shows that 1/ DT 
approaches the finite value 

1 ' " . ___ p P SIll 'Y) (H" )2H'/H". (C5) 
DT M M" p 

Also, (o'Y)/oM)p'p" has the leading term (H~)2/H;H", 
which depends only on the end point p", but not ;n 
the preceding trajectory. 

APPENDIX D 

In view of (45) we can write 

~ = (2n + 1)7T - 2wz/li _ .! [M _ (I + .1.)1i]2 + ... 
y y Ii 2 , 

(Dl) 

where n is assumed to have a small imaginary part E. 

Since we assume 2wdli to be close to (2n + 1)7T, the 
ratio ~/y is always negative when M is sufficiently far 
away from (l + !)Ii. With our conventions about the 
discontinuity of (~/y)-! along the real positive ~/y 
axis, the integrand in (48) is always positive (after 
including the factor i) when M is not close to (l + t)li. 

If Re [(2n + 1)7T1i - 2wzl/y < 0, the integral be­
comes 

J dM{2Wl - (2~ + l)7T1i + [M - (l + t)Ii]Zr! 

Y ! t 
x Ii (~;~) x (r.f.). (D2) 
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The "regular factors" (d.) represent all the remaining 
terms which appear in (40) and have no singular 
behavior at M = (l + i)li. The -t power has been 
written so as to make it obviously positive, as it has 
to be in this case, even when M is close to (I + i)li. 
Since the main variation comes from the -~ power in 
(D2), the leading term is obtained if the "regular 
factors" including (217M)!!IYI are replaced by their 
values at M = (t + !)Ii. The integration over M is 
trivial and gives the expression on the right of (48) 
times the "regulat factors" at M = (l + t)li. 

If Re [(2n + 1)171i - 2wl]/y > 0, we get two inte­
grals, one where t1!y has a negative real part and one 
where the real part of t1!y is positive. The integrand of 
(48) is positive in the former region, as in the preceding 
case, but it is purely imaginary in the latter region. In 
conformity with the definition of the -t power, we 
get 

f dM ([M - (l + t)Ii]2 + 2Wl - (2; + l)17liri 

x . x (d.) + i sgn :. 1i!(217M)! ( ) 

Iyl y 

x f dM(C2n + l);1i - 2Wl + [M - (I + t)Ii]2r
i 

1i!(217M)! 
x ly.1 X (r.f.), (D3) 

where first integral goes over [M - (l + t)Ii]2 > 
[(2n + 1)171i - 2wl]!y, and the second over 

[M - (l + i)Ii]2 < [(2n + 1)171i - 2wl]!y, 

in the limit of very small E. 

Each integral is really divergent at the limits of 
integration, and we have to perform the formal 
integration by parts which is used in the theory of 
generalized functions so as to arrive at a finite result.6 

Thus, we introduce the new variable 

M - (l + .l)1i 
fl = 2 - 1, (D4) 

{[(2n + 1)171i - 2wl]!y}! 

and the first integral becomes 

2lii sgn Y [f 2 dfl .!!.-(217M)! x (d.») 
(2n + 1)171i - 2Wl fl! dfl (2 + fl)! 

..... ~ (217M)! x (d.)] 
//J, (2 + f-l)! ,(05) 

where the factor 2 takes into account the double 
range of integration, for M > (I + t)1i and for 
M <(I + t)li. The part which is integrated out has 
to be evaluated at some upper limit of fl » 1 and does 
not contribute to any singular behavior near M = 
(l + i)1i. If we take the derivative with respect to f-l 
in the first part of (D5), we get a contribution from 
the derivative of (217M)! x r.f. and one from the 
derivative of (2 + f-l)-i. In the former contribution a 
factor {[(2n + 1)171i - 2Wl]Y}! appears as soon as we 
revert to Mas variable of integration , thereby lowering 
the singular behavior near M = (l + t)li. Therefore, 
only the derivative of (2 + f-l)-! is of interest and we 
are finally led to the expression 

After the elementary integral is evaluated, we find 
again the formula (48) times the "regular factors" at 
M = (l + t)li. 

The second integral in (D3) is treated exactly the 
same way, but the integrated part [corresponding to 
the sec?n~ term in (05)] cannot be thrown away be­
cause It IS to be evaluated at fl = I, not fl» I. 
Therefore, it contributes to the main singularity at 
M = (l + t)li. After taking the derivative with re­
spect to fl [corresponding to the first term (05)] and 
keeping only the leading term, it turns out that the 
two parts cancel each other exactly. Only the first 
integral in (03) contributes to the leading singularity. 
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The dynamics of systems described in Hartree-Fock approximation is studied near a stationary point 
of the free energy. It is shown that the second-order free-energy functional is a constant for the linearized 
self-consistent equation of motion. This leads to the stability criterion derived by Mermin. A simple 
collision model is constructed and is shown to satisfy the H theorem. It exhibits the effect of critical slowing 
down. The formalism is shown to be applicable to superconductors. 

1. INTRODUCTION 

The stability properties of many-particle systems 
described in Hartree-Fock approximation! have been 
studied by Thouless. 2 The relation between thermo­
dynamic and dynamic stability in the finite tempera­
ture case has been investigated by Mermin.3 It is the 
purpose of this paper to extend their work in several 
directions. Our first objective is to study the linearized 
self-consistent equation of motion from a formal 
point of view. It is shown that the second-order 
free-energy functional is a constant of the motion. 
This leads to the stability criterion already derived by 
Mermin. Also, a more general class of constants of the 
motion may be found. 

The self-consistent equation of motion for the 
single-particle-density matrix derived in the thermal 
Hartree-Fock approximation is formally time-revers­
ible. One may hope that corrections to the approxi­
mation lead to a collision term in the equation of 
motion. A simple collision model is constructed which 
satisfies an H theorem, i.e., it leads to a monotonic 
decrease in free energy. Moreover, it is shown that the 
model implies critical slowing down near a critical 
point. 

Although the self-consistent field approximation 
often is a very good approximation away from the 
critical point, it usually breaks down in its immediate 
neighborhood. Only in the case of superconductors is 
the approximation valid up to very close to the critical 
point.4 For this reason it seems worthwhile to show 

* On leave of absence from the Institute for Theoretical Physics, 
Rijksuniversiteit, Utrecht, The Netherlands. 

1 For a general introduction see J. G. Valatin, Lectures in Theoret­
ical Physics, Boulder, 1961 (Interscience Publishers, Inc., New York, 
1962), Vol. IV, p. 1; D. J. Thouless, The Quantum Mechanics of 
Many-Body Systems (Academic Press Inc., New York, 1961); D. 
Pines and P. Nozieres, The Theory of Quantum Liquids (W. A. 
Benjamin, Inc., New York, 1966), Vol. I. 

• D. J. Thouless, NucI. Phys. 21, 225 (1960); Nucl. Phys. 22, 78 
(1961). 

• N. D. Mermin, Ann. Phys. (N.Y.) 21, 99 (1963). 
• L. P. Kadanoff et al., Rev. Mod. Phys. 39, 395 (1967). 

that the formalism may be extended to incorporate 
the pairing effects present in superconductors. 

2. THERMAL HARTREE-FOCK APPROXIMATION 

According to a general statistical-mechanical defi­
nition, a many-particle system with Hamiltonian Je 
in contact with a heat bath at temperature T in a state 
described by the statistical operator ;J' has a free 
energy6 

:F = Sp;J'Je + kBTSp;J' In ;J'. (2.1) 

The free energy takes its minimum value :Feq = 
-kBT In Z in the equilibrium state characterized by 
the canonical distribution ;J'eq = exp (-{JJe)jZ, where 
Z = Sp exp ( - (JJe) is the partition function and 
{J = IjkB T. We shall consider a system of fermions 
with Hamiltonian (in obvious notation) 

Je = Z Kijctc j + t I V(ij I kl)ctcjckc l • (2.2) 

The two-particle interaction V may be taken to have 
the symmetry properties 

V(ij I kl) = - V(ji I kl) = V(ji Ilk) = V(kll ij)*. 
(2.3) 

In Hartree-Fock approximation, one considers states 
given by statistical operators of the form 

;J' = exp [-I QijctCj]jSp exp [-I QijctCj ], (2.4) 

where Q is an Hermitian matrix. For these states the 
reduced density matrix p defined by Pij = Sp;J'cjci is 
related to Q by 

P = [exp Q + 1]-1. (2.5) 

The free energy (2.1) for these states becomes a 
functional of p given by 

:F(p) = B(p) - TS(p), 

B(p) = Tr pK + t Tr pW, (2.6) 

S(p) = -kB[Tr p In p + Tr (1 - p) In (1 - p)], 

5 See, e.g., J. M. Blatt, Theory of Superconductivity (Academic 
Press Inc., New York, 1964). 

1021 
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where the trace involves a sum over single-particle 
states and where W is determined self-consistently by 
P according to 

W;l = 2 L V(ij I kl)Pkj' (2.7) 
jk 

Writing P = Po + PI, one may expand the free-
energy functional in terms of PI, so that :1' (p) = 
:1'0 + :1'1 + :1'2 + ... , and ask for Po for which the 
free energy is stationary, i.e., for which the first 
variation:1'1 vanishes identically. From (2.6) it follows 
that the first-order energy b1 is given by Tr PIHO' 
where Ho = K + Wo is determined self-consistently 
from Po by (2.7). The first-order entropy 81 is given by 

81 = -kB Tr pdln Po - In (1 - Po)], (2.8) 

Hence the free energy is stationary for Po, satisfying 

Po = [exp ({3Ho) + 1]-1. (2.9) 

This is a Fermi-distribution of quasiparticles (for 
convenience, the chemical potential has been included 
in K, so there is no restriction from the total number 
of particles). 

The second-order free-energy functional :1'2 deter­
mines the thermodynamic stability of the state Po. 
At this point, it is convenient to introduce a Hilbert 
space ~ with kets la) given by matrices a of the same 
dimensionality as P and with a scalar product defined 
by 

(a I b) = Tr a+b. (2.10) 

In this notation, the matrix W given by (2.7) defines a 
linear operator U on ~ by 

(2.11) 

U is Hermitian in the scalar product (2.10) on account 
of the symmetry properties (2.3). The second-order 
energy functional is given by 

(2.12) 

The calculation of the second-order entropy functional 
from (2.6) is complicated by the fact that the matrices 
Po and PI in general do not commute. First variation 
of the identity [T(P), p] = 0 yields 

(2.13) 

so that in the representation where To and Po are 
diagonal 

(2.14) 

Moreover, expanding T as To + Tl + T2 + ... , one 
may show that Tr POT2 = -l Tr PIIJ!I' Hence one 
obtains 

(2.15) 

where the linear operator G is defined by its action in 
the representation where Po and Ho are diagonal as 

E· - E· 

(G la»ij = - ~ _ f: aij, (2.16) 

where Ei are the eigenvalues of Ho and 

Ii = [exp ((3Ei) + 1]-1, 

the eigenvalues of Po. A more formal definition of G 
not bound to a particular representation is obtained 
as follows. Corresponding to any Hermitian, positive­
definite, and bounded matrix p = exp I, define the 
linear operator <P(p) by 

<P(p) I a) = I f e(l-sHaesl dS)' (2.17) 

It is easily shown that <P(p) is Hermitian and positive­
definite. In terms of its inverse, the operator G may be 
written 

(2.18) 

G is also Hermitian and positive-definite. From (2.12) 
and (2.15), it follows that the second-order free­
energy functional :1'2 is given by 

:1'2 = l (Pll F Ipl), 

where F = U + G is a Hermitian operator. 

3. DYNAMICS IN HARTREE-FOCK 
APPROXIMATION 

(2.19) 

In Hartree-Fock approximation, P satisfies the non­
linear equation of motion 

iii ~: = [H, p], (3.1) 

where H = K + W depends self-consistently on p. 
From (2.9) it follows that a stationary point of the 
free energy Po is a time-independent solution of this 
equation. Linearizing about Po, one obtains for PI the 
linear equation 

In the notation of the previous section, this may be 
written 

(3.3) 

where S is a linear streaming operator. Defining the 
Hermitian operator C by 

Cia) = I [a, Po», (3.4) 

one obtains from (2.11), (2.16), and (3.2) that the 



                                                                                                                                    

THERMAL HAR TREE-FOCK APPROXIMATION 1023 

streaming operator is given by 

S = C(G + U) = CF. (3.5) 

C and G commute, but C and U do not, so that S is a 
non-Hermitian operator. 

From the fundamental relation (3.5), one may 
derive some useful properties of the linearized motion. 
In particular, we shall be interested in the constants 
of the motion. We ask for operators A with expecta­
tion values (PII A IPI) which are independent of time. 
From (3.3) it follows that the necessary and sufficient 
condition for this to be valid for all PI is S+ A = AS, 
or, using the fact that C and F are both Hermitian, 

FCA = ACF. (3.6) 

An obvious solution of this equation is An = Fsn, 
when n is a positive integer or, by linear combination 
A = Frp(S), where rp(z) is an arbitrary function of z, 
analytic at z = 0. The most important of this class of 
constants is F itself. Evidently, the second-order 
free-energy functional :F2 is constant in time. As an 
immediate consequence, one may derive a stability 
criterion. Suppose one has found an eigenmode 
Ip",) for which Sip,,,} = nw Ip",), with a corresponding 
solution of (3.3). From the fact that (PI(t)1 FlpI(t») 
does not depend on time, it follows that 

(p",1 F Ipro) = ° if w =;i: w*. (3.7) 

Hence, for unstable modes, :F2 vanishes identically. 
Consequently, the stationary state Po is dynamically 
stable if F is positive-definite. This is a sufficient but 
not a necessary condition for dynamic stability, as is 
evident from the fact that Po is also dynamically stable 
if F is negative-definite. 

Further constants of the motion may exist. Suppose 
there is an Hermitian matrix q which commutes with 
Ho. Hence it follows that 

S+ Iq) = FC Iq) = FI[q, Po]) = 0, (3.8) 

which implies 

S+ Iq)(ql = Iq)(ql s, (3.9) 

so that Q = Iq)(ql is a constant of the motion. More 
generally, suppose q does not commute with H o, but 
corresponds to a broken symmetry, i.e., q is the gener­
ator of a transformation which leaves the equilibrium 
free energy invariant, 

Po;. = eiMpoe-iM = Po + iA[q, Po] + ... , 
:F{po;.) = :F(po). (3.10) 

To second order in A, this implies, since Po is a 

stationary point, 

([q, Po]1 FI[q, Po]) = 0. (3.11 ) 

If the equilibrium is stable but indifferent against the 
symmetry operation, the free-energy operator F is 
positive-semidefinite, and from (3.11) one may infer 
that (3.8) holds. Hence again Q = Iq)(ql is a constant 
of the motion. From (3.1 I) it also follows that 

S I[q, Po]) = 0. (3.12) 

Hence I [q, PoD is a (collective) eigenmode of zero 
frequency (Goldstone's theorem6). 

4. RELAXATION TOWARDS EQUILIBRIUM 

The nonlinear self-consistent equation of motion 
(3.1) does not describe the approach to equilibrium of 
the system. It is easily shown from the commutator 
nature of the right-hand side that both the energy 
6(p) and the entropy S(p) are constants of the motion. 
One may hope that corrections to the Hartree-Fock 
approximation lead to a collision term expressed 
solely in terms of p. Thus we formally write 

op = 1. [H p] _ Rp 
at in' , 

(4.1) 

where the relaxation operator R is a nonlinear oper­
ator acting on P which one expects to be such that an 
H theorem is valid ensuring a monotonic decrease of 
free energy, 

o:F b:F at = - Tr bp (Rp) ~ 0, (4.2) 

with equality only if 

o:F 
- == H + kBT[ln p - In (1 - p)] = 0, (4.3) 
op 

i.e., at a stationary point Po. 
In the neighborhood of Po, the equation of motion 

(4.1) may be linearized to 

:t IPI) = -(R' + is/n) IPI) = -M IPI), (4.4) 

where R' is the Frechet derivative of R at Po. We de­
fine an On sager operator L by 

M = LF = (B + iCfn)F. (4.5) 

If the relaxation mechanism is such that R' = BF 
satisfies a detailed balance relation expressed by 

B+ = B, (4.6) 

and if furthermore B is positive-definite, one may 

• J. Goldstone, Nuovo Cimento 19, 154 (1961); H. Stern, Phys. 
Rev. 147,94 (1966). 
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derive an H theorem for the linear regime obtains 

R' IPi) = ~ I(PI + po{fexp [(1 - s)f3Ho]f3HI 

(4.7) x exp (sf3Ho) dsko). (4.15) 

where the equality sign obtains only for F IpI) = 0. 
We restrict ourselves to stable equilibrium Po; hence 
F is positive-semidefinite and 

IPI) = ° and IPI) = ;AI[q, Po]). (4.8) 

The latter case corresponds to a broken symmetry; 
in this case the parameter A is determined by the 
initial conditions. 

The actual construction of the relaxation operator 
R requires a detailed kinetic theory. We shall here be 
content with a single relaxation-time model and show 
that this model has the desired properties. A natural 
choice is 

1 
Rp = - [p - Ploe], 

'T 

(4.9) 

where 'T is a relaxation time and Ploe is defined by 

Ploe = [exp (f3H) + 1]-1, (4.10) 

where H is determined by P according to (2.7) and 
therefore contains the local self-consistent field rather 
than its equilibrium value. By comparison with (2.9), 
it follows that (4.10) is of the form of the equilibrium 
density matrix, but is not self-consistent. 

This collision model satisfies the H theorem (4.2). 
In order to prove the inequality, it suffices to show that 

Tr (In P - In Ploe)(P - Ploe) ~ 0, (4.11) 

with equality only for P = Ploe' This monotonicity 
property is proved by writing 

Ploe = exp a, 
peA) = exp (a + Ah), P = pel), (4.12) 

and defining the function f(A) by 

f(A.) = ).-1 Tr (In peA) - In Ploe)(p(A) - Ploe) 

= Tr h(eaHb 
- ea). (4.13) 

Differentiating with respect to A, one obtains 

dffd)' = (hi cI>(p().» Ih), (4.14) 

where we have used the notation (2.17). Since dffdA ~ ° andf(O) = 0, it follows thatf(1) ~ 0, which proves 
(4.11). 

In the linear regime, the Htheorem (4.7) is satisfied. 
Linearizing (4.9) about a stationary point Po, one 

Hence, 

(4.16) 

where I is the unit operator and we have used (2.12) 
and (2.19). Writing R' = BF, we obtain 

B = lG-I . (4.17) 
'T 

Since G-I is Hermitian and positive-definite, the 
operator B in this model has the desired properties 
derived previously. 

It is of interest to note that this model exhibits the 
effect of critical slowing down. The relative free­
energy decrease is bounded by 

_ a In .12 < 2f3 (PII F2 IPI) 
at - 'T (PII F IPI) , 

(4.18) 

where we have employed (4.7), (4.17), and (2.19). 
Near the critical point, the free-energy minimum 
becomes very shallow and hence the right-hand side of 
(4.18) becomes very small for a class of density 
matrices. Hence the corresponding transport processes 
become very slow near the critical point. 7 

5. EXTENSION TO SUPERCONDUCTORS 

The formalism of the previous sections may be 
extended to incorporate the pairing effects present in 
superconductors. For simplicity, we describe the 
electrons by the Gor'kov Hamiltonians and omit the 
Coulomb interaction. The class of Hartree-Fock 
statistical operators defined in (2.4) must now be 
generalized to include pairs of operators cic j and cTc; 
in the exponent. If the one-electron Hamiltonian is 
independent of spin, one may use the reduced density 
matrix (in. r-representation), 

where 1p+, 1p are the electron-field operators and the 
pointed brackets indicate average over the statistical 
operator related to P by (2.5). The reduced density 
matrix (5.1) satisfies a self-consistent equation of 

7 M. Fixman, in Advances in Chemical Physics, I. Prigogine, Ed. 
(Interscience Publishers, Inc., New York, 1963), Vol. VI; K. 
Kawasaki, Phys. Rev. 150, 291 (1966). 

8 See, e.g., P. G. de Gennes, Superconductivity of Metals and Alloys 
(W. A. Benjamin, Inc., New York, 1966). 
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motion of the form (3.1) with H given by 

H(r, r') = (Jelr, r') 0 ) 
o -Je:(r, r') 

+ (Ut(r, t) A(r, t) )o(r _ r'), (5.2) 
A*(r, t) -Ut(r, t) 

where Jee(r, r') is the one-electron Hamiltonian, in­
cluding the chemical potential. UaCr, t) are the self­
consistent Hartree-Fock potentials (a = i,!) and 
Li(r, t) is the pair potential, 

Uu(r, t) = - V('IjJ+(r, a)tp(r, a», 

A(r, t) = - V('IjJ(r!)tp(rj» , (5.3) 

where V is the strength of the Gor'kov interaction. 
If one introduces the Hermitian matrices Di(X) defined 
by 

Do(x; r, r') = (~ ~)o(X - r)O(r - r'), 

D(x; r, r') = cro(x - r)o(r - r'), (5.4) 

where cr = (a." au' a z) are the Pauli spin matrices, one 
may write H in the form H = K + W, where K is the 
first matrix in (5.2), and Wis the second matrix, which 
may also be written 

W = tv t 1JJ dxD;(x) Tr (p - O)D;(x). (5.5) 

The sign operators 1Ji are defined by 

1Jo=+I, 1J.,=1Jy=1Jz=-I, (5.6) 

and the matrix 0 by 

OCr, r') = (~ ~)o(r - r'). (5.7) 

In (5.5), the difference of p and 0 has to be formed 
before taking the trace in order to avoid divergencies. 
The free energy is again a functional :F(p) given by 
(2.6), with p replaced by p - 0 in the expression for 
E(p). 

One may again define a Hilbert space. The energy 
operator U defined by (2.11) in this case is given by 

U = tv t 1JJ dx I D;(x»(D;(x) I , (5.8) 

which is obviously Hermitian in the scalar product 

(2.10). From (2.12) and (5.8), one obtains the second­
order energy functional 

E2 = - : J dx[IAI(x, tW + Uh(X, t)UII(X, t)]. (5.9) 

The second-order entropy functional 82 may be cal­
culated explicitly from (2.15) and (2.16) in a repre­
sentation where Ho is diagonal. In the spatially 
homogeneous case, it is convenient to first trans­
form to a plane-wave representation and to define 

p(k, k') = ~ J exp (-ik· r)p(r, r') exp (ik' • r') dr dr', 

(5.10) 

where 'lJ is the system volume and each element 
p(k, k') is itself a 2 x 2 matrix. Below the transition 
temperature, the system condenses into a super­
conducting state Po characterized by a spatially homo­
geneous order parameter Ao , which may be chosen real 
and is to be determined self-consistently. In this 
representation, Ho is given by 

H (k k') = ($(k) Ao)o I (5.11) 
o , Ao -~(k) k,k' 

where ~(k) = /i 2k 2/2m - /1-, with m the electron mass 
and /1- the chemical potential. Finally, one may 
diagonalize Ho(k, k) by a 2 x 2 transformation and 
calculate 82 , According to the theory of Sec. 3, the 
second-order free energy E2 - TS2 is a constant of the 
linearized motion. 

The undetermined phase of the equilibrium order 
parameter implies a broken symmetry. We have 
chosen Ao real and hence the matrix q which generates 
the transformation leaving the equilibrium free energy 
invariant is given by 

(5.12) 

From Sec. 3 it follows that 1m S Al (x, t) dx is the 
corresponding constant of the motion. 
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The next-nearest-neighbor two-dimensional Ising model is cast into a form which resembles a one­
dimension~1 in~e:acting m~~y-fermion srstem. An appro:,imat~on, which has p:eviously been shown to be 
successful m glvmg the cntlcal properties of the two-dimensIOnal ferroelectnc problem, is used. From 
the approximate expression obtained, the critical indices are found to be C( = C(' = 0, f3 = t, which 
agrees with the results obtained from series expansions and plausible physical arguments. The critical 
temperature obtained agrees to within 6 % of the series expansion results. 

I. INTRODUCTION 

For many years now, it has been known that the 
algebraic and combinatorial methods used to solve 
exactly the two-dimensional square-lattice Ising model 
break down when one tries to extend them to three­
dimensional or nonplanar-type lattices. Not only do 
the techniques fail for these more complicated lattices, 
but they have not been useful in obtaining approximate 
or perturbation solutions. Recently, the combina­
torial or Pfaffian method has been recast into a form 
which resembles a one-dimensional many-fermion 
system. l It is found that the expressions obtained for 
lattice problems which are soluble by the Pfaffian 
technique resemble a noninteracting fermion system 
and hence can be evaluated exactly, whereas the 
lattice problems that have not been solved resemble 
interacting fermion systems. Although these latter 
expressions cannot be treated exactly, the similarity 
to many-fermion problems enables one to use the 
techniques of quantum many-fermion theory to gener­
ate approximate solutions. 

One problem that has already been considered in 
this formalism is the two-dimensional ferroelectric 
and anti ferroelectric problem,2 where it was shown 
that the first-order or free-fermion approximation 
reproduced correctly most of the critical properties of 
this model. In this paper, we examine an unsolved 
model, the two-dimensional next-nearest-neighbor 
Ising model and look at the critical properties as given 
by the first-order approximation. It is found that the 
results agree very well with the series-expansion results 
of Dalton and Wood.3 

In Sec. II, the partition function for the next­
nearest-neighbor Ising model is written as the vacuum­
to-vacuum expectation value of a time-ordered product 
of exponentials of Fermi operators. This expression 

1 C. A. Hurst, J. Math. Phys. 7, 305 (1966); R. W. Gibberd and 
C. A. Hurst, ibid. 8, 1427 (1967). 

2 R. W. Gibberd, Phys. Rev. 171, 563 (1968). 
3~. yr. Dalton and D. W. Wood, report of work prior to 

publIcatIOn. 

is called the S matrix and cannot be evaluated exactly 
because of the quartic terms of Fermi operators that 
appear. However, the S matrix may be written as a 
perturbation series about this term, and in Sec. III the 
critical indices and critical temperature are calculated 
from the first-order approximation to the S matrix. 
Since the critical point Tc is determined by the 
temperature at which the partition function has a 
singularity, and since the critical indices are deter­
mined by the nature of the singularity, in making this 
approximation we are assuming that the analytic 
structure of the exact S matrix is directly related to the 
analytic structure of the approximate S matrix. This 
assumption is the basis of many calculations in quan­
tum field theory, where, for example, in the case of 
strongly interacting particles, the perturbation method 
is inapplicable because the perturbation series cannot 
necessarily be expected to converge. However, despite 
this, many people4 consider that the singularity 
structure of some of the first few perturbation terms 
may contain useful information about the analytical 
properties of the complete S matrix. This indeed 
appears to be the case for the model considered here, 
since we obtain ex = ex' = 0, {3 = 1 from the first ap­
proximation. These are the results 0 btained by series ex­
pansions' and are also expected from the conjecture 
that the critical indices should not be affected by 
the minor details of the interaction, and hence should 
be the same as the simple square lattice. Thus, we can 
assume that further approximations to the S matrix 
will not change the critical indices. In the conclusion in 
Sec. IV, we indicate what this approximation means 
in terms of counting closed polygons on the lattice. 

II. THE PARTITION FUNCTION 

In this section the partition function of the next­
nearest-neighbor Ising lattice is cast into the field­
theoretic formalism. In this lattice the jth spin interacts 

4 See, fo: example, R. J. Eden, P. V. Landshoff, D. I. Olive, and 
J. C. Polkmghorne, The Analytic S-Matrix (Cambridge University 
Press, London, 1966). 

1026 
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FIG. 1. Each spin interacts with eight 
neighbors with interaction strengths 
J, and J •. 

with its eight nearest neighbors as shown in Fig. 1. 
The horizontal and vertical interaction strength IS 

denoted by J1 , and the diagonal interaction as J2 • 

Following the combinatorial approach of Kac and 
Ward,5 the partition function Z can be written as 

Z = 2 g(r, s)xry" 
r.B 

where x = tanh {3J1 , Y = tanh (3J2 , and g(r, s) is the 
number of closed polygons that can be constructed 
from r horizontal and vertical bonds and s diagonal 
bonds on the lattice. Green and Hurst6 have shown that 
the counting of closed polygons on a planar lattice is 
equivalent to the vacuum-to-vacuum expectation value 
of a product of Fermi operators. However, the above 
lattice is not planar because the diagonal bonds cross 
each other at a nonlattice point, and to overcome this 
it is first necessary to introduce an extra lattice point as 
shown in Fig. 2. 

o o 

x 

o o 

x 

o o 

x 

x 

o 

o 

o 

FIG. 2. The new lattice points 
are designated by x. 

Now assigning fermion creation and annihilation 
operators according to the creation and annihilation of 
bonds on the lattice, where the particular ordering 
of the operators chosen is shown in Fig. 3, we can 
write the partition function as 

N 

Z = (01 II (I + all possible products of operators 
j~l corresponding to all possible vertices at 

the original jth lattice point) 

x (1 + a~*a~_m+1 + a;*a~_m 
+ a~*a~*ai-m+1a~_m) 10), (1) 

where 10) is the vacuum state defined by aj 10) = o. 
The terms in the second bracket of the above 

• M. Kac and J. C. Ward, Phys. Rev. 88, 1332 (1952). 
• H. S. Green and C. A. Hurst, Order-Disorder Phenomena 

(lnterscience Publishers, Inc., New York, 1964). 

FIG. 3. The bonds and their associated Fermi operators for the 
original and extra lattice points. 

expression represent the allowed vertices at the in­
serted lattice points, and correspond to those shown 
in Fig. 4. The other possible vertices at this lattice 
point are not included, since they would produce 
graphs which were not on the original lattice. Using 
the Fermi anticommutation rules, we can write Eq. 
(1) in the following form: 

Z = (01 T exp [j~IHo(j) + H1(j)] 10), (2) 

where T is the usual time-ordering operator which 
orders the operators associated with site j from j = 1 
to j = N. It can be shown that for this model 

Ho(j) = ya~*(xa~* + ya~* + xa}* 

+ a; + a;-m + a~_1 + a}_l) 

+ xa~*(ya;* + xa}* + a~ 
+ a;_m + a~_1 + a}_I) 

+ ya~*(xa}* + a~ + a~_m + a~_1 + a}_I) 

+ xa}*(a~ + a;_m + a;_1 + a}_I) 

+ a~(a~_m + a;_1 + a}-I) 

+ a;_m(a~_1 + a!-l) 

+ 5 1 + 5* 3 + 6* 4 aj_1a j_1 a j a j_m a j a j- m+1 

X/~· 
FIG. 4. The allowed vertices at the inserted lattice point. 
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and 
H ( .) - 2 6* 5* 4 3 (3) 

1 J - a j a j aj-m+1a j-m' 

Equation (2) is an exact expression for the partition 
function, but it is also intractable because of the 
presence of the quartic term H1(j). 

III. AN APPROXIMATE SOLUTION 

Although the expression in Eq. (2) is not easily 
evaluated exactly, it is very amenable to the approxi­
mations used in quantum field theory. In particular, 
first- and higher-order Green's-function techniques 
have been developed? which allow one to make many 
different approximations. In this section we are going 
to make the simplest approximation possible, which, 
however, gives surprisingly good results. The approxi­
mation is to neglect completely the H 1(j) term in Eq. 
(2) and to evaluate Zl' which is given by 

Zl = (01 T exp [~lHO(j)J 10). (4) 

This expression can be evaluated using the tech­
niques given in Ref. I, where the calculation is 
straightforward though tedious. However, Greens has 
already done an equivalent calculation of Eq. (4) 
using the Pfaffian technique and so we here only 
present the results: 

1 log zi = ~ {2lT (2lT de dcfo log D(e, cfo), 
N (2?T) Jo Jo 

where 

D(e, cfo) = (1 + x2)2(1 + l)2 + 16x2y(1 - l) 

+ 2x(1 - x2)[4l - (1 - l)2] 

X (cos e + cos cfo) - 2y(1 - x2)(1 - l) 

x [cos (e + cfo) + cos (e - cfo)]. (5) 

The derivatives of this expression have been eval­
uated by Green and Hurst6 in terms of the complete 
elliptic integrals of the first and third kinds. Using 
these results, the average energy E, which is defined by 

- 1 0 
E = - N 0(3 log z, 

can be written as 

for T close to Tc. Thus the average energy per spin is 
continuous at the critical point, and the specific heat 
has a logarithmic divergence at T = Tc' 

The magnetization can also be calculated for this 
approximation, and the equivalent calculation has been 
done by Green.s Using Green's Eq. (76), it can be 
seen that as T - Tc , the magnetization goes to zero 
such that (3 = t. 

7 R. W. Gibberd, Can. J. Phys. 47, 809 (1969). 
8 H. S. Green, Z. Phys. 171, 129 (1963). 

TABLE I. Values of J,/kTc for different values of CI. = J2/J1 : 

(a) results from this paper; (b) results of Dalton and Wood; (c) 
results of Fan and Wu. 

o 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

(a) 

0.4407 
0.3879 
0.3484 
0.3174 
0.2922 
0.2711 
0.2532 
0.2377 
0.2242 
0.2123 
0.2016 
0.1834 
0.1684 
0.1557 
0.1449 
0.1356 

(b) 

0.4407 
0.3870 
0.3451 
0.3118 
0.2849 
0.2625 
0.2436 
0.2274 
0.2134 
0.2010 
0.1902 

(c) 

0.4407 
0.3864 
0.3444 
0.3109 
0.2834 
0.2605 
0.2411 
0.2244 
0.2099 
0.1972 
0.1859 
0.1669 
0.1514 
0.1386 
0.1278 
0.1185 

To obtain the critical temperature we use the 
following equations, which Hurst9 has shown will 
determine the position of the singularity in log Z: 

D(e, cfo) = 0, (6) 

oD(e, cfo) = ~ D(e cfo) = O. (7) 
oe ocfo ' 

Taking the solutions of Eq. (7) as e, cfo equal to 
either 0 or ?T, then Eq. (6) becomes 

I - 2x - 2y - x2 - y2 - 4xy + 2xy2 

+ 2x2y + X2y2 = 0 
or 

1 + 2x - 2y - x2 - y2 + 4xy - 2xy2 

+ 2x2y + x2y2 = O. 

These equations were solved numerically for dif­
ferent values of a, where a = J2/J1 , and the results are 
shown in Table I and Fig. 5, where the critical 
temperature divided by the critical temperature of the 
square lattice is plotted against a. In a recent preprint 
Fan and Wu10 have used a transformation due to Lieb, 
where the next-nearest-neighbor lattice is transformed 
onto a square lattice. Using techniques similar to those 
described here, they make an equivalent approxima­
tion and obtain the approximate critical temperatures 
shown. It is surprising to see how good both approxi­
mations are, and we conjecture that Fan and Wu's 
result is an upper bound and ours a lower bound to the 
exact result. We also note that for a = 0 and in the 
limit a - ± 00, the approximation presented here 
gives the exact critical temperature, whereas the 
approximation of Fan and Wu is exact for a = 0, but 

• C. A. Hurst, J. Chern. Phys. 38, 2558 (1963). 
10 C. Fan and F. Y. Wu, report of work prior to publication. 
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4-0,..-------------------, 

FIG. 5. Plot of values for critical temperature against different 
values for 0(. (See Table I.) 

is too high in the case ~ = 00. However, our approxi­
mation does not give any exact results for the anti­
ferromagnetic region. 

IV. CONCLUSION 

It can be shown that the first-order approximation 
which we have considered here counts all the closed 
polygons that can be drawn on the lattice, but those 
which contain an odd number of vertices of the 
crossed type shown in Fig. 4 are counted with a 
negative weight. It appears from the results obtained 
in this paper that the analytical behavior of the 
partition function is not greatly affected by the in­
correct counting of some of these graphs. As already 

JOURNAL OF MATHEMATICAL PHYSICS 

mentioned, there are, in other fields of physics, 
precedents for assuming that the partial summations 
of graphs will contain the correct analytical behavior. 
However, one would like to have a criterion which 
would indicate when the neglected terms do not 
contribute. 

In conclusion, we mention that a similar S-matrix 
expression can be derived for the three-dimensional 
Ising models. However, the simple approximation of 
neglecting the perturbing Hamiltonian HI does not 
give such realistic results as the two-dimensional 
problems. This probably relates to the perturbing 
Hamiltonian containing in three dimensions a much 
larger number of quartic terms than in the two­
dimensional cases. Thus, a more sophisticated approx­
imation is required. 

Note Added in Proof: The author has recently shown 
that such first-order approximations as considered 
here give rigorous lower (or upper) bounds to the 
critical temperature when based on a high- (or low-) 
temperature expansion. Hence the conjecture men­
tioned in Sec. III is correct. 
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The Brans-Dicke gravitational scalar field is geometrized in the spirit of the Rainich-Misner-Wheeler 
geometrization of electromagnetism. Geometric equations are derived which imply that the Brans-Dicke 
field is present and an explicit expression is given for this field in terms of geometrical quantities. 

The general theory of relativity geometrizes the 
gravitational field in the sense that the properties of 
the gravitational interaction are described in terms of 
the geometry of space-time rather than as an inde­
pendent field. The appeal of this approach led to 
attempts to geometrize other fields, notably electro-

• Work supported in part by the National Science Foundation. 

magnetism. However, the fact that the charge-to-mass 
ratio of particles varies in nature meant that charged 
particles do not follow geodesics, and one can there­
fore distinguish electromagnetic effects from geo­
metrical effects. The program of geometrodynamicsi 

1 J. A. Wheeler, Geometrodynamics (Academic Press Inc., New 
York,1962). 
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takes the point of view that what we call charge is only 
a gross feature ascribed to some geometry, in the same 
manner as we ascribe a mass to the Schwarz schild 
solution, even though there may be no real source 
present. Thus geometrodynamics restricts our con­
siderations to source-free regions of space-time. The 
geometrization of source-free electromagnetism was 
first carried out by Rainich2 and was later elaborated 
by Misner and Wheeler. 3 The important feature of 
their approach to geometrization is that the field 
considered,' e.g., electromagnetism, leaves such a 
characteristic imprint on the geometry that one can 
determine what field is present from a knowledge of 
the geometry. Geometric equations are found which 
guarantee that only electromagnetism is present and 
one finds a prescription for extracting the field from 
the metric. The program has been extended to other 
fields, e.g., the massless scalar field4 and neutrino 
field. 5 

The program of geometrodynamics rests on the 
foundations of general relativity. Recently, however, 
observations of the solar oblateness by Dicke and 
Goldenberg6 have cast doubt as to the validity of 
general relativity. An alternate theory of gravitation, 
the Brans-Dicke7 or scalar-tensor t/leory, can be 
made to agree with the consequences of the solar 
oblate ness measurement by a suitable choice of 
coupling constant. This theory is no longer purely 
geometric, however, since it requires the introduction 
of a real scalar field cp in addition to the metric.s In 
this paper we show that this Brans-Dicke scalar field 
can be geometrized in the spirit of geometrodynamics. 

In a source-free region, in standard units, the 
Brans-Dicke equations can be derived from the 
requirement that the variations of the action 

A = f[CPR + w(cp;/lcp;/ljcp)](_g)i d4x (1) 

with respect to cp and with respect to g/lV vanish. This 
leads to the field equation for cp (where we have 
defined'¥ = -In cp, which is real since cp is positive): 

'P';1 - t'¥;;.'P·;;' + (2W)-lR = 0 (2) 

and the gravitational field equations 

R/lv = '¥;/l;V - (1 + w)'¥;/l'¥;V + tg/l.('F;1 - ,¥;;.,¥;;.) 

(3) 
2 G. Y. Rainich, Trans. Am. Math. Soc. 27, 106 (1925). 
3 C. W. Misner and J. A. Wheeler, Ann. Phys. (N.Y.) 2,525 (1957). 
• D. R. Brill, Nuovo Cimento Suppl. 2, I (1964). 
5 R. Penney, J. Math. Phys. 6, 1309 (1965). 
6 R. H. Dicke and H. M. Goldenberg, Phys. Rev. Letters 18, 313 

(1967). 
7 C. Brans and R. H. Dicke, Phys. Rev. 124,925 (1961). 
• The theory retains the postulate that particles follow geodesics, 

so one cannot observe q; directly from the equations of motion. 
However, one can perform a Cavendish experiment to measure G 
and thus q;. 

whose trace is 

R = 3'¥;1 - (w + 3)'¥;;.'¥;;'. (4) 

The identity (R/lv - tg/lvR}V = 0 leads, from (3), 
to the requirement that'¥ satisfy the equation 

(w + t),F;/l['¥:i - ,¥;).\jJ';;'] = O. (5) 

Thus for w :;f -i, the quantity in the brackets in (5) 
must vanish, and then the field equation for '¥, Eq. 
(2), can be derived from (4) and (5). For w = -i, the 
field equation for '¥, Eq. (2), is identical to the trace 
of the gravitational field equations (4). Therefore, in 
any case, the field equation for '¥, Eq. (2), can be 
derived from the gravitational field equations (3) and 
we need consider only the geometric form of Eq. (3). 

Assuming that the field equations (3) are satisfied, it 
is possible to solve explicitly for '¥;/l in terms of geo­
metrical quantities. To this end we compute C;'/lva R/lv;a' 
using R/lv from (3), where CafJY~ is the Weyl conformal 
tensor defined by 

CafJyli = Ra{Jyli + ga[yRIi]{J + gfJ[IiRy]a - tga[yg~]{JR, 

(6) 

where [lXtJ] = HlXtJ - tJlX). Making use of the sym­
metry and trace properties of (6) we then have that 

C;'/lvaR - 1 C;'/lvaR" nr + (1 + )C;'/lvaR nr 
ILv;a - "2 Ilva I ;O' W JlVT ;a-

(7) 

We now express the Riemann tensor in (7) in terms of 
the conformal tensor and Ricci tensor using (6). This 
allows us to make use of the identity 

C/la{JYC = 1.0/lC ca{Jy~ vafJy 4 v afJy~ (8) 

to write Eq. (7) in the form 

C;'/lva R = l_'l?;;'C ca{Jy~ + (w + i!)C;'/lva R 'F /lv;a 8 afJyli 2 /lV ;a . 
(9) 

If w = -i, the last term in (9) vanishes and, dividing 
by CafJyIiCa{Jyli, we find an explicit expression for '¥;/l 
in terms of geometrical quantities. 

The last term of (9) may be reduced by observing 
that, in the coefficient of (w + i), we may assume 
that w :;f -i. In this case Eq. (5), together with (3) 
and (4), gives 

R/lv = 'l";/l;V - (1 + w )'¥;/l'l";v, (10) 

'¥;1 = '¥;;.'¥;;' = -R/w. (11) 

Computing R/l[v;a] from (10) yields 

R"/lvalf';" = 2R/l[v;a] - 2(1 + w)R/l[vlf';a] , (12) 

where we have used 'J?;/l;[a;fJ] = tR"/lafJ'¥;" and also 
have used (10) to eliminate terms involving second 
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derivatives of '£1'. Multiplying (12) by gl'V gives, after tions to be satisfied are, from Eq. (3), 
rearrangement, 

Rl'v = tclXll;v + IXv;p) - (1 + W)IXI'IXV + tgpV(IX~' - IXplXl'), 
u 1 (1 + w) 

Ra'¥._ = - - R.N + '¥.N ' ," 2w'~ w ,~ 
(13) (17) 

which can also be found by multiplying (10) by'¥;V 
and using (11) to eliminate '¥;A'¥;A. Equations (12) 
and (13) allow us to reduce the expression in the last 
term of (9) to a form where '¥;A only appears with a 
free index, which then allows us to explicitly solve for 
,¥;A. 

From (6), we can write 

CAl'vaR '£I' = RAI'VaR '£I' + ,¥;A[1.R2 - lR RaP] I'V ;a I'V ;a 6 2 ap 

+ R;wa\}J';a - jRR).a'¥;a' (14) 

Equation (12) can be used to eliminate the RAI'Va'¥;a 
and Eq. (13) can be used to eliminate all terms in 
R/la'¥;a' The result of this is that 

CA/lvaR '£I' = (w + .:l.)\}J';A 
IlV ;0:: 2 

x [W2 + ~:J) + t R2 _ Rl'vRlll] 

+ WV[R ;). _ RA. ]_ (W + 2)RAR;1' 
I'V /l,V 2w /l 

_ (W2 +;7; + 2)R;).R. (15) 

Substituting (15) into (9), we find that '¥;A = IX)., 
where IXA is defined to be the geometrical quantity 

+ (W + 2)R R;I' + 2RIlvR }/{IC ca/irb 2w AI' /I[A;V) 8 apyJ 

+ (w + ~)[W2 + ~~ + t R2 - Rl'vWVJ}. (16) 

We can now state the geometrical equations which 
imply that the Brans-Dicke field is present in terms of 
the geometrical quantity IXI" The geometrical equa-

where IXp is defined in (16) and satisfies 

IX[/I;v) = O. (18) 

Then '£I' is obtained in the same manner as the com­
plexion of the electromagnetic field3 

'£I' = f IX/l dxp
• (19) 

Since cP = -In 'P', we have that the Brans-Dicke 
field cP is obtained from the geometrical vector IXp as 

cp(x) = CPo exp ( - f'lXl' dX p
) , (20) 

where CPo is the value of cp at some initial point. It is 
clear that one could not hope to obtain the value of 
CPo, since the field equations (2) and (3) are invariant 
under a constant change of scale of cpo Also one should 
note that in the case that the denominator of (16) 
vanishes, IXI' is not defined. Therefore, we restrict 
ourselves to regions where the denominator is non­
zero, the analog of excluding null fields by Misner 
and Wheeler.3 

Although the observations seem to imply a value of 
W R::! 6, the case w = -t is of some interest in a 
different context. If we relax the Brans-Dicke assump­
tion that particles follow geodesics, then in a source­
free region the equations for w = -t are just the 
geometric equations of the conformal scalar field. 9 

In this case a conformal transformation of the form 
g/lV -- gpv/cp, with cp given by (20), reduces the field 
equations in the transformed space to Rpv = O. Thus, 
our geometrical equations for w = -! are the con­
ditions that a geometry be conformally related to 
a geometry which is a solution of the source-free 
equations of general relativity. From (16) we see that 
this information can be extracted if Capybca/iyb :;r!: O. 

• P. C. Peters, Phys. Letters 20, 641 (1966). 
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T~e N-fermion density operator!>. =! 0/)(0/1 is decomposed into the densities of clusters of correlating 
fermlOns. The m-body cluster densItIes y(m) are "orthogonal" to the one-body "Fock-Dirac"-type densi­
ties PI, .i.e., Tr, (pIYi~), .. . ,m) = O. The reduced-correlation-density matrices obtained differ from the 
conventIOnal reduced-density-matrices and are particularly convenient for the treatment of fermion­
fermion correlations. 

INTRODUCTION 

In finite many-fermion problems, it is convenient 
to treat an independent-particle model, orbital wave­
function (w.f.) part, and the remaining fermion­
fermion correlations part separately. In the particular 
case of the finite many-electron problem, electron 
correlation in atoms and molecules, most traditional 
methods have worked with the total wavefunction 
without separating the orbital and correlation parts. 
In the customary configuration-interaction (C.I.) 
method, if one started with the Hartree-Fock self­
consistent field (SCF) wave function , added con­
figurations introduced some of the correlations, but 
here too, as in other methods, the N-fermion system 
was studied as a whole, with the result that difficulty 
of the problem rapidly increased with N. Different 
types of correlations involving fewer electrons were 
not calculated and studied separately as subsystems 
and with respect to their relative importance in building 
up the total correlation. 

The density matrix (density operator) in the form 
I'¥)('¥I does not exhibit the orbital (model) theory 
versus the (orthogonal) correlation subspaces separ­
ated. The reduced density matrices too, which have 
been studied by several authors, do not contain the 
model versus the correlation effects separately, nor 
are the different types of correlation effects separated 
from one another. 

. Overvthe past few years, an approach developed by 
Smanoglul and co-workers for correlation in N­
electron systems has been applied in various atomic 
and molecular structure problems. Here, after sepa­
rating the orbital theory and the correlation parts of 
the total wavefunction (and of the N-electron Hilbert 
space) into mutually orthogonal parts, the correlation 
part is successively decomposed into subspaces in-

1 (a) O. SinanogJu, Proc. Roy. Soc. (London) A260, 379 (1961); 
(b) J. Chern. Phys. 36, 706 (1962); (c) O. SinanogJu and D. F. Tuan, 
ibid. 41, 2677 (1964); (d) O. Sinanoglu and V. McKoy, ibid. 41, 
2689 (1964); (e) O. Sinanog1u, Advan. Chern. Phys. 6, 315 (1964). 

volving one, two, three, ... electron-correlations at 
a time. Methods for examining or evaluating these 
different correlation parts separately are given. It is 
shown, for example, that in closed-shell systems, the 
N-electron problem reduces to good approximation 
into N(N - 1)/2 "heliumlike" two-electron prob­
lemS.la,b,e In excited states, nonclosed shells, addi­
tional correlation effects arise and have recently been 
evaluated.2 The latter were used to obtain such atomic 
properties as electron affinities, negative-ion excitation 
energies, and oscillator strengths. 

It was notedlb,e previously that the closed-form 
methods used in the above approach could be useful 
also for finite nuclei, but they were not applied in that 
context. 

For some purposes, it is convenient to have formu­
lations directly in terms of the density (matrix) 
operator. For example, in molecular orbital (MO) 
theory, one deals with electron populations in different 
atomic orbitals which in linear combination yield the 
LCAO MO's. A density (matrix) operator formulation 
is compact and general in such cases, making trans­
formations from one basis set to another particularly 
easy. 

The present paper gives a new type of reduced­
density (matrices) operators suitable for N-fermion 
correlation problems. The exact N-body-density 
(matrix) operator of an N-fermion system is decom­
posed into successive 1, 2, 3, ... ,n, ... N-fermion­
correlation densities. The forms of the exact density 
and energy and their relation to the correlation func­
tions of the previous theory are obtained. The m­
fermion-correlation density operators have simple 
properties under the unitary transformations which 
transform one type of atomic or molecular orbitals 
into another (e.g., MO's into localized, chemical­
bond-like orbitals in molecules). 

2 O. Sinanoglu and i. cJksUz, Phys. Rev. Letters 21, 507 (1968). 
See also H. J. Silverstone and O. Sinanoglu, J. Chern. Phys. 44 
1899,3608 {1966). ' 
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FORM OF THE EXACT WAVEFUNCTION 

For a single determinantal state, 

cPo = AN(l23 ... i' .. N), 

where i = i(xl ) are the N occupied spin orbitals, Xi 

space, spin (and isotopic spin) variables, and AN 
the antisymmetrizer, it has been shown previously 
that the exact wavefunction o/(XI' X2, ... ,XN) of 
an N-fermion system can be written in the formle 

0/ = cPo + X, 

(cPo I X) = 0, (0/ I 0/) > 1, (cPo I cPo) = 1, 
N N 

0/ = cPo + 2 {];} + 2 {O;j} 
i=l i>i=l 

N 

+ 2 {O;jk} + ... + {0{23' "N}' (1) 

where, e.g., 

{Oijk} = --~ AN Uijk . , 1 {123' .. N A, } 
(3!):2 ijk 

The O's are closed-form "cluster" functions with the 
properties 

O!lXi , Xj) = - O!lx j, Xi), 

O!jk(X;, Xj' Xk) = - O;jk(X j, Xu xk), (2) 

and so on, and 

<]; I k) = 0, 

(0;; I k) = 0, (3) 

(O;ik I k) = 0, 

where k = 1, 2, 3, ... ,N are the occupied spin­
orbitals in the "model" or "orbital theory" wave­
function (w.f.) cPo. Note that, e.g., 

(0;; I k) == J 0;;* (Xi' xi)k(xi) dxi • 

In N-electron systems, a very convenient cPo is the 
Hartree-Fock (H. F.) one. In finite nuclei, cPo may be 
based on some "generalized H.F." method. For the 
formal development that will follow, however, cPo 
needs to be only some AN(l23 ... N), with N ortho­
normal spin orbitals based on any orbital theory. If 
cPo is some type of a H.F. w.f., the X may then be 
defined as the fermion-fermion correlation wavefunc­
tion. The above form, Eqs. (1-3), has turned out very 
convenient in the treatment of electron correlation in 
atoms and molecules. 3 The successive terms in Eq. (1) 
correspond to correlation between successively larger 
number of electrons in the H.F. (or cPo) "sea." 

The form of the 0/ above is derived most directly by 
successively Schmidt-orthogonalizing the 0/ to the 

• See Refs. 1 and 2. Other references can be found through Refs. 
1 and 2. 

products of N, N - 1, N - 2, ... , 1 H.F. spin-orbit­
als at a time (the "method of successive partial 
orthogonalizations").4 The same derivation that gives 
Eq. (1) gives also the important and rigorous "orbital 
orthogonality" condition of the cluster functions, 
i.e., Eqs. (3). 

We now derive the form of the exact N-body density 
of an N-fermion system in terms of correlation density 
clusters by a generalization of the method of "suc­
cessive partial orthogonalizations." 4 The density 
operators obtained differ from the various types of 
reduced-density matrices that have been used pre­
viously by other authors.5 •6 We shall give the der­
ivation for single determinantal states only. 

THE DENSITY OPERATORS 

Suppose that f and g are wavefunctions of n fer­
mions, 1, 2, ... , n. Then, for the nth-order density 
matrix If)(gl of those w.f.'s, we define the traces of 
fermions, 1, 2, ... , m, by 

Trl ,2, . . ,m(lf) (gj) 

== Tr;t m+1,m+2,·· .,nClf) (gj) 

== J dXIJ dX2 .. J dXm 

x (Xl' X2 , ... , Xm If) (gl Xl' X2 , ... , Xm) 

== (g 1f)1,2, ... ,m == (g If);tm+1,m+2, ",n (4) 

and thus obtain an (n - m)th-order reduced-density 
matrix. The symbol "Tr" without subindices will be 
used to stand for the trace over all the fermions in the 
density matrix. Thus, 

Tr (If)(gj) == Trl ,2,. ',n (If)(gj) = (g If) 
which is just a number. We also have the relations 

Trl ,2,··,m (2If)(gl) = 2 Trl ,2,···,m Clf)(gj), 
f.g fog 

Tr (I.') If)(gj) = (gl I.') If) == (g I (I.')f)), 
Tr (If)(gl I.')t) = (gl I.')t If) == <Cl.')g) I f), 

(5) 

(6) 

where I.') can be any linear operator and I.')t its adjoint. 

4 O. Sinanoglu, Rev. Mod. Phys. 35, 517 (1963). Discussed also in 
Ref. I (e). 

5 (a) K. Husimi, Proc. Phys.-Math. Soc. Japan 22, 264 (1940); 
(b) P.-O. Lowdin, Phys. Rev. 97,1474 (1955); Advan. Chern. Phys. 
2,207 (1959); (c) R. McWeeny, Rev. Mod. Phys. 32, 335 (1960); (d) 
D. ter Haar, Rept. Progr. Phys. 24,304 (1961); (e) B. C. Carlson and 
J. M. Keller, Phys. Rev. 121, 659 (1961); (f) S. Cho, Science Rept. 
Gunma University (Japan) 9, No.5 (1961); 11, No.3 (1962); (g) 
A. J. Coleman, Can. Math. Bull. 4, 209 (1961); Rev. Mod. Phys. 
35, 668 (1963); (h) T. Ando, ibid. 35, 690 (1963); (i) F. Weinhold 
and E. B. Wilson, Jr., J. Chern. Phys. 46, 2752; 47, 2298 (1967); 
(j) A. J. Coleman and R. M. Erdahl, Eds., Reduced Density Matrices 
with Applications to PhYSical and Chemical Systems (Queen's 
University, Kingston, Ontario, Canada, 1968). 

6 A. Primas, in Modern Quantum Chemistry-Istanbul Lectures 
O. Sinanoglu, Ed. (Academic Press Inc., New York, 1965). 
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Let us introduce the density matrices D and Do, 
respectively corresponding to the w.f.'s 0/ and 4>0' as 
follows: 

D == 10/)(0/1, Do == 14>0)(4)01. (7) 

By the constraints in Eq. (1), 

Tr (Do) = Tr (DoDo) = Tr (DoD) = 1, (8) 

but Tr (D) ¥: 1 when N;;:: 2. We then define the 
mth-order density matrices p(m) by 

pt~~ .. ',m == m!(~) TCn,2, .. ,m(Do)· (9) 

Substitution of 

14>0) = AN 1123 ... k ... N) (10) 

with the orthonormality conditions 

(k II) = 15k ,!, for any k, I in the set 

{I, 2,'" ,N}, (11) 
into Do of Eq. (9) gives 

(m) 
Pl,2, . ',m 

N 

= m! I Am Ikl k2 ••• km>(kl k2 '" kml A~) 
k m ' • 'k2kl~1 

N 

= I Am Ikl k2 " . km)(kl k2 .. • kml A~ 
kbk2,"' ·,k m =l 

= A m (P1P2 ... Pm)A~, 
where N 

P == p(l) = I Ik)(kl· 
k~l 

In this derivation, it should be noted that 

Am == L bpP, 
PES m 

(12) 

(13) 

(14) 

where bp = + 1 or -1, respectively, for the even or 
odd permutations P. If 4>0 is H.F., then p(rn) is the 
mth-order Fock-Dirac density matrix, otherwise an 
analog of it for other "model" orbitals. The term 
"Fock-Dirac density" is used below in this more 
general sense. We have 

Tr(p(m» = m!(~). (15) 

It can be easily shown that 

1 (N) 1 ( t Do = - P = -AN P1P2'" PN)AN· 
N! N! 

(16) 

ANALYSIS OF THE DENSITY (MATRIX) OPERA­
TOR BY THE METHOD OF "SUCCESSIVE 

PARTIAL ORTHOGONALIZATIONS" 

Suppose that D x ' a portion of D, is "orthogonal" 
to Do in a sense that 

(17) 

The way of finding such a portion D x is similar to the 
Schmidt prthogonalization method. This orthogonal­
ity condition is satisfied if 

Dx = D - Do Tr (DoD) = D - Do 

= l4>o)(xl + Ix)(4)ol + Ix)(xl. (18) 

Thus, Dx is the whole portion left over in D after Do 
is taken out and, therefore, may be called the "total 
correlation density (matrix)" of the N-fermion system. 

We next find Dx" a- portion of Dx ' "orthogonal" 
to products of (N - 1) p's in the sense 

Tr *N (P1P2 ... PN-1Dx') = O. (19) 

Suppose that this condition is satisfied if 

(20) 
where 

D/l) == [(~) /1! N!]AN(P1P2' .. PN-1YN(1»A~, 
(21) 

YN(1) = C' Tr *N (P1P2 ... PN-1Dx)' (22) 

Requiring that y(l) has the same permutation sym­
metry as p(IJ, we can easily show that 

Tr *N fP1P2' .. PN_1D/1)] = [Ill! (~) ]YW. (23) 

Thus, substituting Eq. (20) into Eq. (19) and com­
bining Eqs. (22) and (23), we see that the condition 
(19) is satisfied if 

C' = 1!(~). (24) 

Then, Eq. (20) can be written as 

x A.v(P1P2· , . PN_l[Tr *N (P1P2 ... pl\1-1Dx)]A"~. 
(25) 

We continue with Dx'" a portion of D " "orthog-, x 
onal" to products of (N - 2) p's in the sense 

Tr *N-l,N (P1P2 ... PN-2Dl,") = O. (26) 

Suppose that this condition is satisfied if 

(27) 
where 

Dy(2) = [(~) /2! N!}tN(P1P2'" Pl\-2Y~~~l,N)A1, 
(28) 

Y"~~1.N = C" Tr #N-1.N (P1P2 ... PN-2Dx')' (29) 
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Requiring that y(2) has the same permutation sym­
metry as p(2), we can show that 

Tr *N-I,N (PIPZ" . PN-2 DP» = [1/2! (~) ]Y~~I'N' 
(30) 

Thus, substituting Eq. (27) into Eq. (26) and com­
bining Eqs. (29) and (30), we see that the condition 
(26) is satisfied if 

e" = 2! (~). (31) 

Then, Eq. (27) can be written as 

Dx" = Dl.' - [( ~'r/ Nl]AN(PIP2' .. PN-2 

X [Tr *N-I,N (PIP2 ... PN-2Dx,)])A1. (32) 

Note that Dl.' was already found in Eq. (25). 
Similarly, in general, we can show that D~m), 

[where (m) as a superscript to this term indicates m 
primes] a portion of D~m-l), 

D~m) = D~m-l) - Dy(m) (33) 

is "orthogonal" to products of (N - m) p's in the 
sense 

if 

Dy(m) = [(:) / m! Nl] 
A~ ( A(m» ,tJ 

X ;;r.N PIP2' .. PN-mYN-m+1 .. ··,N ;Jf;,N' (35) 

D/m) is to be compared with 

D __ I_A (pp "'P p(m) )At . 
0- m! N! N I 2 N-m N-m+1,"',N N, 

and 
A(m) 
YN-m+1 .. ··,N 

= m! (:) Tr *N-m+1 ... ',N (PIP2 ... PN_mD~m-I» 
(36) 

to be compared with 

(m) 
PN-m+I,"',N 

= m! (:) Tr *N-m+l .. · ·,N (PIP2 ... PN-mDO). 

We then have 

D~m) = D~m-l) - [(:Y/N!}tN(PIP2' .. PN-m 

X [Tr *N-m+1 .... ,N (PIP2 ... PN_mD~m-1))])A1. 
(37) 

When the above "successive orthogonalizations" ter-

minate, we obtain the finite cluster expansion of the 
density operators. Thus, 

N 

D - Do = Dx = I Dy(n), (38) 
n~l 

with D/n) given by Eq. (35). 
Also 

N 

D~m) = ~ Din), 1:::;; m :::;; N - 1, D(N) - 0 x - . 
n2'm+1 

SOME PROPERTIES OF THE CLUSTER 
DENSITIES 

(39) 

From Eqs. (35) and (39) we see that D~m) contains 
all y(n)'s of n ~ m + 1, but does not contain any 
y(n)'s of n :::;; m. Therefore, the "orthogonality" con­
dition (34) for m = N - 1, i.e., 

Trl (pID~N-l» = 0, 

implies that Trl [PID/n)] = 0 or 

Trl (plYl~~ .. ',N) = o. (40) 

The "orthogonality" condition for m = N - 2, i.e., 

implies that 
T ( D(N-2» - 0 r l ,2 PIP2 x -, 

Trl,2 [PIP2Dy(n)] + Tr1,2 [PIP2 Dy(N - 1)] = 0, 

which, by the above result (40), reduces to 

Trl,2 [PIP2D/N - 1)] = 0, 

which further reduces to 

or 
Tr2 (P2Y~~:-:~~,N) = 0 

Trl (pdi~:-:~~,N-I) = o. 
By similar procedures, we get, in general, 

(41) 

Trl (Plyt~~ .. . ,m) = O. (42) 

This "orthogonality" is similar to the orbital orthog­
onality, previously discussed by one of us.la,e It 
represents the "exclusion effect," I and here it is again 
designated by the caret C") on the top of y. It is 
natural to call y(m) the "m-fermion correlation 
density" in D. 

To find the expressions of y(m)'s in terms of the 
correlation functions O"s introduced previously,1e,4 
we first review the following relations: 

1
0 ) = (N!)!/ 12 .. · N \ (m-l)\ ~ = 0' 

k Ik 2" ·k., - m! \k
l
k

2
'" km X /' jk - k' 

(43) 

I{O' }) = _1_ A \ 12··· N 0' \ 
k Ik 2" 'k m - (m !)! N k

1
k

2
'" k

m 
kIk.·· 'km /' 

(44) 
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and 
N 

X(m) = X(m-l) - L {O~lk2" 'kJ, (45) 
km>" . >k2>kl=1 

where each O~lk2 ". k
m 

has the same permutation sym­
metryas Am{k1k2'" km).Each O;lk2" 'km replaces only 
Am(klk2' .. km) in the w.f. AN(12 ... N), and does 
not replace, for instance, Am(k~k2 ... km) if k~ = kl . 
The Am is the m-fermion antisymmetrizer. 

Noting these relations and Eq. (18), we can easily 
derive the following expression for 9(1) from Eq. (36): 

N 

9(1) = L(lk)(Jkl + IJk)(kl + Ih)(Jkl). (46) 
k=1 

Substitution of this result into Eq. (21) or (35) gives 
N 

Dy(!) = L(I 4>O)({]k} I + I {]k})(4)ol + l{]k})({]k}l), 
k=1 

(47) 
and then, by Eq. (20) or (33), 

Dx' = l4>o)(x'l + Ix')(4)ol + Ix')(x'i 
N 

+ L(I{Jk})(x'l + IX')({]k}1) 
k=1 

+ L (l{Jk})({j;} I + 1{j;})({h}l)· (48) 
l>k=1 

Using this result in Eq. (36) for the case m = 2, we 
obtain 

N 

9(2) = 2! L [(A2Ikl)(O~11 + IO~I) 
l>k=1 

X (kll A~ + I O~l)( O~zl) + (1 !)-t(A2 Ikj;) 
X (O~zI + I O~I)(kj;1 A~ + A2IJkl) 

x (O~zl + I O~z)(hll A~) + (1 !)-I(A2 IkJz) 

x (hll At + A2Ihl)(kj;1 Ah]. (49) 

In the same manner, similar expressions for the other 
9(m)'s of higher orders can be found. These expressions 
clearly show the structures of 9(m) in terms of the 
functions O~l'" k n (n ~ m). The Dim) represents a 
density matrix corresponding to the 

N 

L {O~l·"kJ. 
k m >" '>k l =1 

However, it should be noted that Dy(m) in general con­
tains some extra terms whose component wave­
functions do not appear in 

N 

L {O~l' "kJ 
k m >" ·>kl=l 

but do appear in 
N 

L {O~l' OokJ (n < m). 
k n >" '>kl =1 

This can be seen, for example, in Eq. (49) of 9(2) [i.e., 
A2(kl). A2(kJz), etc.] 

THE EXACT ENERGY 

Consider an N-fermion Hamiltonian of the form 

(50) 

where 
N N 

Ho = L h;, HI = L g;j' (51) 
i=1 j>i=1 

Suppose that r/>o is the eigenfunction of Ho. in other 
words the spin-orbitals k are the eigenfunctions of h'. 
Then, we have the Schrodinger equations. H I'P') = 
E I'P') and Ho Ir/>o) = Eo Ir/>o), or 

HD = ED; HoDo = EoDo. (52) 

Introducing the energy E",o such as 

E",o == Tr (HDo) = Eo + E1 , (53) 

where 

Eo = Tr (HoDo); El = Tr (HIDO)' (54) 

we can write the exact energy E as 

E = Tr(HD) = E + Tr [(H - E"'o)D] 
Tr (D) "'0 Tr (D) ,(55) 

or the exact "correlation" energy Ecorr as 

Ecorr = E - E",o 

Tr [(H - E"'o)D] 

Tr(D) 

For any operator G such that 

N 

G= '" (m) k gili2" 'i m , 
i m>" '>i 2>i1=1 

where g(m) is an m-particle operator, we have 

(56) 

(57) 

Tr (GDo) = (lIm!) Tr (g(m)p(m»). (58) 

Hence, E",o can be written as 

E",o = (1/l!) Tr (h' p(I») + (1/2!) Tr (g~2P(2»). (59) 

Now, to find a simpler expression of Ecorr than Eq. 
(56), we go back to the Schrodinger equations in Eq. 
(52) and derive the following equation: 

EcorrDo = Do(HI - [El + EcorrDDx' (60) 

Taking the trace of both sides, we obtain 

(61) 

Substitution of Eq. (38) into the right-hand side of 
this equation gives 

N 

Ecorr = L Tr [DoH1 Dy(m)]. 
m=1 
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Each term in this expression is reduced to 

T (D H D(l) 1 T [ (2) I 4~ ( (1) A(l» 4.t] r 0 1 Y = - r P12 g12.1{;2 Pl Y2 .1{;2, 
1 ! 

T (D H D(m» 1 T [(m) (~ ') A(m) ] r 0 1 Y = - r P12" 'm £., gij Y12"'m 
m! j>i=l 

(m ~ 2). (62) 

However, because of the "sea"-orthogonality (42), 
the terms of m ~ 3 vanish. Hence, 

E 1 T [ (2) I A: ( (1) A(l»A:t ] carr = I! r P12 g12 2 Pl Y2 2 

1 T [ (2) I A (2)] + 2! r P12 g12Y12 . (63) 

If the SchrOdinger equation Ho Icpo) = Eo Icpo) corre­
sponds to the ordina:y Hartree-F ock scheme, the 
first term of this expression vanishes because of 
Brillouin's theorem, and also, the "residual inter­
action" or "fluctuation potential" g~2 in the second 
term can be replaced by the bare interaction g12 • 

SUMMARY OF THE MAIN EQUATIONS ON 
CORRELATION DENSITY CLUSTERS 

The main equations which decompose an N-fermion 
density D into correlation cluster densities are 
summarized below: 

D = Do + Dx' Tr (DoD) = 0, 

Dx = Dy(l) + Dy(2) + ... + Dy(N), 

D,(m) ~ ~~1! A,Ap,p, ... PN-mY);'." .... N)A~, 
where 

N 

Pi = Ilk)(kl for the ith fermion. 
k>l 

There is the "sea" -orthogonality of m-c1usters: 

Trl (p19t~~· . . ,m) = O. 

The correlation energy in the H.F. scheme of an N­
electron case is given by: 

1 T ( (2) 1 A(2»). (2) 4~ ( ) ".t Ecarr = 2' r P12 - Y12 , P12 =.1{;2 P1P2 .1l;2· 
. r 12 

CONCLUSION 

We decomposed the total N-fermion density (matrix) 
operator D into a "model" (like Hartree-Fock) part 
Do and a correlation part D x . The D 1. itself is expressed 
in terms of newly defined n-fermion correlation 
densities 9(n) where n = 1,2,3,··· , N. The Dx also 
contains products of "Fock-Dirac" type densities p. 
As it has been shown previously by one of us1b,e that 
in ground state atoms and molecules correlation is 
made up mainly of N(N - 1)/2 decoupled pair corre­
lations and their products, the corresponding D x would 
contain mainly the two-body correlation density 9(2) 

and its products. The 9(2) differs from the conventional 
second-order reduced density matrix. 7 The two-body 
correlation density 9(2) contains only the pair corre­
lation functions O;;Cx i , Xj), whereas the reduced 
denSity matrix has in it all the correlation effects, as 
well as the "model" wavefunction. 

The transformation properties of correlation func­
tions under basis set or unitary transformations of the 
"model" wavefunction orbitals are particularly trans­
parent in the correlation density operators formula­
tion. 
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The construction of the algebraic matrices for the configurations (d + s)np in L-S coupling is discussed. 
Particular emphasis is given to configurations with a half-filled d shell. From a total of 42 parameters 
specifying the various interactions for the configurations (d + s)np only the matrices of 8 parameters 
need to be calculated explicitly for the complementary configurations (d + s)"p. n > 6. The matrices of 
the other 34 parameters can be obtained from the corresponding algebraic matrices of (d + s)np, n ~ 6, 
either directly or by simple changes in sign. 

1. INTRODUCTION 

The algebraic matrices of (d + s)np comprise the 
electrostatic and spin-orbit interaction matrices of the 
configurations dnp, dn-1sp, and dn- 2s2p, the matrices 
of the correction parameters representing two- and 
three-body interactions of the core d electrons, as 
well as the matrices of the interactions between 
configurations. The energy matrix (for a particular n) 
is then a linear combination of these matrices, the 
coefficients of which are parameters usually obtained 
empirically by fitting the experimental levels to the 
eigenvalues of the energy matrix. The following lists 
these parameters and gives their significance (un­
primed quantities denote the configuration dnp, 
primes denote dn-1sp and double primes denote 
dn- 2s2p): 

A, A', A" -the heights of the configurations 

S' = A' - A, S" = A" - A. 

B, B', B" -linear combinations of the Slater param­
eters P(dd) and £4(dd): 

B = "ih[9P(dd) - S£4(dd)] = F2(dd) - SF4(dd).1 

C, C', C"-multiples of the Slater parameter F4(dd): 

C = eliaF4(dd) = 3SF4(dd).1 

G~s-the parameter of the d-s interaction III the 
configuration dn-1sp: 

G~s = i-G2(dsV 

F2 , F~, F;-parameters of the direct part of the d-p 
interaction 

F2 = 3
15£2(dp),l 

G1 , G~, G~-parameters of the exchange part of the 
d-p interaction 

G1 = Y-tiGl(dp).l 

1 G. Racah, Phys. Rev. 62, 438 (1942), referred to as R II. 
2 G. Racah, Phys. Rev. 63, 367 (1943), referred to as RIll. 

G3 , G;, G;-parameters of the exchange part of the 
d-p interaction 

G3 = 2hG3(dp).1 

G~s-the parameter of the p-s interaction in the 
configuration dn-1sp: 

G~s = tG\PS).3 

IX, IX', IX" -correction parameters multiplying L1(L1 + 
1), where Ll is the angular momentum of the 
core of (d + s)np, i.e., (d + s)n.4-6 

{3, {3', fJ"-correction parameters multiplying the 
seniority operator of Racah. 2•7 

T, T', T"-parameters of Trees multiplying the 
squared matrix of the interaction 3s23dn-
3s3dn+l.8 •9 

H-parameter of the dn-dn-1s interaction 

H = R2(dd, ds)/3S. 2 

H'-parameter of the dn-ls_dn-2s2 interaction, defined 
the same as H. 

i-parameter of the direct part of the dnp-dn-1sp 
interaction 

i = R2(dp, Sp)/S.lO.l1 

i'-parameter of the direct part of the dn-1sp_ 
dn

-
2
S

2p interaction, defined the same as i. 
K-parameter of the exchange part of the dnp-dn-1sp 

interaction 

K = Rl(dp,ps)/3.1O •11 

K'-parameter of the exchange part of the dn-1sp_ 
dn

- 2
S

2p interaction, defined the same as K. 

3 E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra 
(Cambridge University Press, Cambridge, England, 1935), referred 
toasTAS. 

4 R. E. Trees, Phys. Rev. 83, 756 (1951); 84,1089 (1951). 
5 G. Racah, Phys. Rev. 85, 381 (1952). 
6 G. Racah, Lunds Univ. Arsskr. Ard. (2) 50, 31 (1955). 
7 G. Racah and Y. Shadmi, Phys. Rev. 119, 156 (1960). 
• R. E. Trees and C. K. Jorgensen, Phys. Rev. 123, 1278 (1961). 
9 R. E. Trees, Phys. Rev. 129, 1220 (1963). 

10 N. Rosenzweig, Phys. Rev. 88, 580 (1952). 
11 G. Racah, unpublished material, 1952. 
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G-parameter of the dnp_dn- 2s2p interaction 

G = R2(dd, ss)/5 = R2(ds, sd)/5 

= G2(ds)j5 = G'ds· 2 

'd' ,~, ':-parameters of the spin-orbit interaction 
of the d electrons.2 

'p' ,~, '~-parameters of the spin-orbit interaction 
of the p electron. 2 

The algebraic matrices of (d + s)np were con­
structed and then checked by the author with the 
purpose of using them to explain and predict the 
spectra of the configurations (3d + 4s)n4p in neutral 
and singly-ionized atoms of the iron group. The 
checked algebraic matrices of (d + s)jJ for all 

permissible n are available and can be obtained by 
request. 

2. THE CONSTRUCTION OF THE ALGEBRAIC 
MATRICES IN L-S COUPLING 

The matrix elements of the electrostatic and spin­
orbit interactions for the configurations djJ were 
obtained by Racah,2 Rohrlich and others.12-14 
General formulas for the matrix elements of the 
electrostatic and spin-orbit interactions for the 
configurations dn-1sp were obtained by the author.15 •1S 

Characterizing the states of djJ by dn(V1S1L1)pSLJM, 
and dn- 1 by (V2S2L2), and using the same methods as 
for dn-1sp we obtain the general formula for the d-p 
interaction of the configuration dnp: 

nFo(dp) + n I [.<dnV1S1L1 {I dn-\vZS2Lz) dSlLl)<dn-l(V2S2L2) dS1U1 I} dnV~SlUl)t5(Sl' SD 
v2S2L2 . 

x [exp 1Ti(Ll + U1 + L2 + L + 1)][2100(2Ll + 1)(2U1 + 1)]t W(L1 U1 ~) W(L1 U1 2)F2(dP)] 
2 2 L2 IlL 

+ n I [<dnvlSILl {I dn-l(V2S2L2) dSlLl)(dn-l(V2S2L2) dS~L'll} dnv~S~L'l)[exp 1Ti(Sl + S~)][(2S1 + 1 )(2S~ + 1) 
V2S2L2 

{ (
1 L Ll) (1 L Ll) }] 

X (2Ll + 1)(2L'l + 1)]tW(~2 ~ ~~) 30X 2 U1 L2 G1(dp) + 105X 2 U1 L2 G3(dp) . 
21 112 312 

(1) 

Similarly, the general formula for the spin-orbit 
interaction of the electrons d of dnp is given by 

n~d I {(dnV1S1L1 {I dn-l(V2S2L2) dS1L1) 
v.S.L. 

X (dn-l(V2SzL2) dS{L{ I} dnv{S~L~) 

x [exp 1Ti(2S1 + 2S' + S2 + L2 + .G + L + J)] 

X w(S S' 1) w( S S' _1~) 
.G L J S~ Sl 

X W(SII S~ 1) W(L1 U1 1) w( ~ .G 11) 
2 t S2 2 2 L2 Ll Ll 

X [45(2Ll + 1)(2.G1 + 1)(2L + 1)(2.G + 1) 

X (2S1 + 1)(2S~ + 1)(2S + 1)(2S' + 1)]t}. (2) 

The spin-orbit interaction of the electron p of dnp is 

3'p[exp 1Ti(Sl + S + S' + Ll + J + -m 
X [(2L + 1)(2.G + 1)(2S + 1)(2S' + I)]! 
X w(S S' 1) w(S S' 1 ) W(L .G 1). (3) 

.G L J t t Sl 1 1 Ll 

As expected, the above result is identical to Eq. (17) 

in II giving the matrix elements of the spin-orbit 
interaction of the electron p for dn- 1sp. 

The d-d interaction of dnp is the same as that of dn 

and hence is given by Racah.1 

For the configurations dn
- 2S2p the electrostatic 

energy matrix elements are 

After expanding each side of the matrix element in 
terms of antisymmetric eigenfunctions, we obtain 
contributions which characterize the d-d, d-p, s-p, 
and d-s interactions. For the above matrix element, 
the d-d and d-p interactions are given by those 
contributions for which the nth and (n + l)th 
electrons are either both d or one d and the other p. 

12 F. Rohrlich, Phys. Rev. 74, 1372 (1948). 
13 T. Ishidzu and S. Obi, J. Phys. Soc. Japan 5, 124 (1950). 
14 E. Shimoni, S. Hollander, and B. Z. Abraham, M.Sc. Theses, 

The Hebrew University of Jerusalem (1960). 
15 C. Roth, J. Math. Phys. 9, 686 (1968), referred to as I. 
16 C. Roth, J. Math. Phys. 9, 1832 (1968), referred to as II. 



                                                                                                                                    

1040 C. ROTH 

Then using (7.10) and (11.10) ITS,17 we obtain 

(dn-2(VlSlLl)s2pSLI (e2/r n n+1) Idn- 2(v{S{LDs2pSL) 
. ! 

= [exp 7Ti(Ll + 1 + L)][(2Ll + 1)(2L + 1)] 

x W(L I 0 Ll) [exp 7Ti(I..:l + 1 + L)] 
L 1 L 

x [(2I..: + 1)(2L + 1)]!W(I..:1 0 I..:l) 
L 1 L 

x [exp 7Ti(Sl + t + S)][(2Sl + 1)(2S + l)]! 

x W(~l 0 Sl) [exp 7Ti(S{ + S + t)] 
S t S 

x [(2S{ + 1)(2S + l)]!W(S{ 0 S{) 
S t S 

X (S
2lS dn-2(VlSlLl)pSLI (e2/rn ,n+1) 

x IS2lS dn- 2(v{S{L{)pSL). (5) 

Remembering that either the d-d or d-p interactions 
are considered and using (11.12) ITS, we obtain 

(dn-\VlSlLl)S2pSLI (e2/r n.n+1) I dn- 2( V{S{I..:l)S2pSL) 

= (dn- 2(VlSlLl)pSLI (e2/rn,n+1) Idn- 2(v{S{I..:l)pSL). 
(6) 

Thus, the d-d and d-p interactions of dn- 2S2p are 
the same as the corresponding interactions for dn

- 2p. 
The interactions of the p electron and s electrons 

with the closed d shell can be obtained from Eqs. (11) 
and (9) and Eq. (10).18 The results are 2Fo(ps) - G ps 

and (n - 2)[2Fo(ds) - Gas], respectively. Both contri­
butions can be incorporated into the height of the 
configuration A". 

The spin-orbit interactions for the configurations 
dn- 2S2p are the same as those for d n- 2p. 

The matrix elements for the electrostatic inter­
actions between configurations were derived by 
RosenzweiglO and Racah,u As the latter paper was 
not published and the parameters J and K first intro­
duced there we quote the results: 

n+l e2 
(dn(VlSlLl)pSLI .2 -ldn-l(V2S2L2)S(S'L2)pSL) 

i<j=lrij 

n e2 
= (dnVlSlLll .2 -

i<i=l rij 
X Idn-\V2S2L2)SSlLl) o(SlS')o(LlL2) 

+ (dnVlSlLl {I d
n-\V2S2L 2) dSlLl) 

x [6n(2L1 + l)]![exp 7Ti(L2 + L)] 

x w( ~2 ~ ~1) [(l - K)i5(S1S') 

+ [exp 7Ti(S1 - S')][(2S1 + 1)(2S' + 1)]! 

x [1/(2S + 1)]Ko(S2S)] (7) 

17 U. Fano and G. Racah, Irreducible Tensorial Sets (Academic 
Press Inc., New York, 1959), referred to as ITS. 

18 Reference 3, pp, 182 and 176, respectively. 

and 
n+l 2 

(dn-\VlSlLl)S(S'Ll)pSLI .2 ~ Idn-2(V2S2L2)S2pSL) 
i< j=1 rij 

x I dn- 2( V2S2L2)S2S2L2) i5(S'S2)6(L1L2) 

+ (dn-1V1SIL1 {I dn- 2(V2S2L 2) dS1L1) 

x [6(n _ 1)(2L1 + 1)]!W(L2 2 Ll) 
1 L 1 

x [exp 7Ti(L2 + L + Sl - S' - t)] 

X {[(2S1 + 1)/(2S' + l)]iJ'O(S'S2) 

- [(2S' + 1)/(2S1 + l)]iK 'b(SlS)}, (8) 

The matrix elements of the interactions between 
the cores, i.e., 

n 2 

(dnVl SILl I .2 ~ I dn
-

l( V2S2L2)sSlL1) 
i<j=l r ij 

and 
n 2 

(dn-l(VlSlLl)SS2L21 .2 ~ Idn-2(V2S2L2)S2S2L2) 
i<j=l rij 

have been calculated by Racah.2 

The matrix elements for the interaction between 
the configurations dnp and dn- 2S2p are the same as 
those for dn and dn- 2S 2• The latter have also been 
calculated by Racah.2 Explicitly, 

n+l 2 

(dn(V1SlLl)pSLI .2 ~ Idn
-

2(v;S{I..:l)S2pSL) 
i<j=lrij 

n 2 

= (dnVlS1Lll .2 ~ Idn
-

2S2V{S{I..:l) O(SlS~)6(LIL:l) 
i<i=lrij 

= [en - v)(12 - n - v)/4]i6(vv')6(SlS{)b(L1I..:l)G. 

(9) 

Racah and Trees4
- 6 have shown that second-order 

effects caused by perturbations on the configuration 
In by configurations differing from In by two electrons 
can be described by a model interaction of the form 

.2 [2~(ii 0 Ij) + (lq'iJ]' 
i<j 

where qij is the seniority operator. 2 For the configura­
tion dn this becomes 

~[L(L + 1) - 6n] + (lQ, 

where Q is the total seniority operator.2 If the constant 
-6n~ is incorporated into the height of the configura­
tion, the above correction reduces to 

~L(L + 1) + {lQ. 
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Trees and Jorgensen8 have shown that the main 
perturbing configuration on 3s23p63dn is the configura­
tion 3s23p43dn+2. Trees9 also remarked that the 
configuration 3s3p63dnH should give a perturbation 
of the same magnitude as 3s23p43dn+2. This perturba­
tion is not included in 

L [21X(ii a ij ) + Pqi,]' 
i<j 

since now the configurations differ by only one elec­
tron. By second-order perturbation theory, this effect 
depends upon the ratio H2j6.E, where H is the inter­
action parameter that appears in the nondiagonal 
term and 6.E is the energy difference between the two 
configurations. The parameter H2/6.E is denoted by 
T. When calculating the model interaction, one uses 
second-order perturbation theory of degenerate 
configurations which permits the introduction of these 
interactions before diagonalizing the energy matrices 
of the separate configurations. Hence, the matrices 
of T are not diagonal. 

As a particular example, consider the perturbation 
3s3p63d4 on the terms 3s23p63d\2 D and 3S23p63d332 D. 
The terms of d4 which have to be considered are ~D, 
~D, and :D. 

From dVD we get, using (81) (R III) and Table 
XXI (R III), 

2 

(d\lDs2DIL ~ Id\2Ds2 2D) 
i < j rij 

2 

= _[t]l (d4/DIL ~ Id\2Ds ID) = [l%Q]!H 
i < i rij 

and 
2 

(d4/Ds 2DIL ~ Id3
3
2Ds2 2D) = [~l]!H. 

i < j rij 

Thus by perturbation theory, the diagonal elements 
are [1.~5]H2/6.E and [~l-]H2j6.E, whereas the nondiag­
onal element from the contribution of d4l D equals 
[4742Q]!H2/6.E. 

Similarly, the terms d4lD and d4
4

3D contribute 
diagonal elements only for d3

3
2 D of 180H2j6.E and 

120H2/6.E, respectively. 
Hence, the matrix of Tfor d3

1
2D and d3

3
2D can be 

written as 

The matrix of A is a unit matrix for the three 
configurations dnp, dn-1sp, and dn- 2S2p. The matrices 
of S' and S" are unit matrices for the configurations 
dn-1sp and dn- 2s2p, respectively. 

3. COMPLEMENTARY CONFIGURATIONS 

In T AS, 19 it is shown that the electrostatic inter­
action matrices of the configurations dn and d10- n 

are the same. From this result and Eq. (6), it is 
evident that the matrices of the parameters Band C 
for the configurations d"p, dn- 1sp, and dn- 2S2p are 
equal to the corresponding matrices of d10- ns2p, 
dll-nsp, and d12- np, respectively. From the above 
article it is also evident that the electrostatic energy 
matrices of the configurations dlls and d10-ns are the 
same. Thus, the matrix of G~s for the configuration 
dn-1sp is the same as that of dll-nsp. 

From R 11,20 it is seen that the matrices of the 
parameters F2(dp) and 'd for the configurations 
dnp, dn-1sp, and dn- 2S2p are equal in magnitude but of 
opposite sign to the corresponding matrices of 
d10- nS2p, dll-nsp, and d12- np, respectively. 

For the matrices of G1(dp) and Ga(dp) , Eqs. (1) 
and (21) of I are used in a slightly modified form. For 
the case of an almost closed shell and an electron 
outside the shell, it is customary to subtract from the 
energy matrix the interaction of the outer electron 
with the closed shell. Then, the resulting matrices of 
[4lH!, have a particularly simple form. Here we 
subtract the exchange interaction contribution of the 
electron p with the closed shell of d electrons when 
using Eqs. (1) and (21) of I to obtain the matrices of 
G1(dp) and G3(dp) for an almost complete shell. From 
TAS,21 this interaction is given by -IOG1 - 35G3 • 

The coefficients of fractional parentage for an almost 
complete shell which are required to calculate the 
matrices of G1(dp) and G3(dp) can be obtained from 
(19) (R III) and Tables II, Ill, and IV of (R III). 
RosenzweiglO calculated the coefficients of fractional 
parentage by this method for dn

, n > 5. Checking his 
results, one mistake was found. From (19) (R III), 

(d6
4
3 D {I d5

5
2S d3 D) = -t(d5

5
2S {I d\3 D d2S). 

By Table IV (R III), the above coefficient equals 
- [is]!, whereas in Table VI of Rosenzweig's paper 
it is given as [f-s]i. 

Since each term of dll-nsp has a corresponding term 
formed from the same ancestors as dn-1sp, it is evident 
from Eq. (34) of I that the matrix of G' for dn-1sp is 

1'8 

the same as the matrix of G' for dll-nsp 1'8 • 

From (3), giving the spin-orbit interaction for the 
electron p of (d + s)np, it is evident that this formula 
is independent of n. Hence the matrices of '1' for 
dnp, dn- 1sp, and dn- 2S 2p are equal to the corre­
sponding matrices of d10- nS2p dll-nsp and d12- np 
respectively. " , , 

19 Reference 3, Chap. XIII, Sec. 1. 
20 Reference 1, Sec. 6. 
21 Reference 3, Eqs. (9) and (10), p. 182, and Eq. (10), p. 176. 
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Also, from the definitions of the correction param­
eters oc and f3, it is evident that the matrices of these 
parameters for dnp, dn- 1sp, and dn- 2S2p are equal to 
the corresponding matrices of dlo- nS2p, dll-nsp, and 
d12- np, respectively. On the other hand, the matrices 
for the correction parameter T must be calculated 
separately for each n using the method outlined in the 
previous section. 

We now derive the transformation relationships 
from the original configurations (d + stp to the 
complementary configurations (d + s)l2-np for the 
dn_dn- 1s and dn-1s_dn-2s2 interactions. 

Using (74) (R II) to transform the reduced matrix 
elements of the tensor U(2) and (19) (R III) to trans­
form the coefficients of fractional parentage we 
obtain from (79) (R III): 

n 2 

(dnvSLI L ~ Idn-l(v'S'L)sSL) 
i<j=lrij 

= [n/14]~t~)exp TTi(L - z.;')][exp TTi(L - z.;' + 1)] 

X (dlo-nvSLII U(2) IldlO-V'SI:') 

x [exp TTi(S + S' + L + I:' - l)][(l1 - n) 

X (2S' + 1)(2L + 1)/n(2S + 1)(2I:' + l)]t 

x (dll-VS'L {I dlO-n(v"Sz.;') dS'L) 

x (2z.;' + l)t/(2L + 1) + L [exp TTi(L - I:')] 
v"L" 

X [exp TTi(L - I:' + 1)] 

x (dll-V'S'z.;'11 U(2) Ildll-VS'L) 

x [exp TTi(S + S' + L + I.:' - l)][(l1 - n) 

X (2S' + 1)(2I.:' + l)/n(2S + 1)(2L + 1)]t 

x (dll-nv"S'I:' {I dlO-n(vSL) dS'z.;')/(2L + 1)~} 

x R2(dd, ds). (10) 

The above expression can be written as 

[exp 2TTiS'][exp TTi(S + l - S')] 

x [(2S' + 1)/(2S + 1)]![(11 - n)/14]~ 

x L~)exp TTi(L - I:')] (dlO-nvSLII U(2) IldlO-nv"SI.:') 

X (dll-VS'L {I dlO-n(v"SI:') dS'L) 

x [_l_J! + L [exp TTi(L - I.:')] 
2L + 1 v"£" 

X (dll-V'STII U(2) Ildll-VS'L) 

x (dll-nv"ST {I dlO-n(vSL) dS' z.;') 

x (2z.;' + l)t /(2L + 1) }R2(dd, ds). 

By (79) (R III), the above equals 

[exp 2TTiS'][exp TTi(S + l - S')][(2S' + 1)/(2S + l)]t 
ll-n 2 

X (dll-VS'LI L ~ Idlo-n(vSL)sS'L). 
i< j=1 r ij 

Then by using (81) (R III) we finally obtain 

n 2 

(dnvSLI L ~ Idn-l(v'S'L)sSL) 
i<i=lrij 

12-n 2 

= [exp 2TTiS'] (dll-n(v'S'L)sSLI L ~ Idlo-ns2vSL). 
i<j=1 r ij 

(11) 
On replacing n by (12 - n) in (11) we obtain 

n 2 

(d n
-

1(v'S'L)sSLI L ~ Idn- 2
S
2VSL) 

i<j=lrij 

l2-n 2 

= [exp 2TTiS'] (d l2- nvSLI L ~ Idll-n(v'S'L)sSL). 
i<j=lrij 

(12) 

From (11) [(12)], it is evident that for n > 6 the 
matrix of H[H'] for (d + s)np equals that of H'[H] 
for (d + s)l2-np if n is odd, and equals the negative of 
the matrix of H'[H] for (d + s)12-np if n is even. 

We now derive similar relationships as (11) and (12) 
for the matrices of J and J'. 

From (7) we obtain by using (19) (R Ill) for the 
transformation of the fractional parentage coefficients 
that the coefficient of J in the matrix element 

is 

[exp TTi(Sl + Ll + S2 + L2 - m 
x [(11 - n)(2S2 + 1)(2L2 + 1)/n(2Sl + 1) 

x (2Ll + 1)]![6n(2Ll + 1)]t 

X (dll-nV2S2L21} dlo-n(VISlLl) dS2L2) 

x [exp TTi(L2 + L)] W(L2 2 Ll) b(S1S') 
1 L 1 

= (dll-nV2S2L21} dlo-n(VlSlLl) dS2L2) 

x [6(11 - n)(2L2 + l)]t[exp 2TTiSd 

x [exp TTi(Ll + L + S2 - SI - m 
x w(Ll 2 L2) [(2S2 + 1)/(2S1 + l)]tb(SIS') 

1 L 1 

= [exp 2TTiSd (dll-nV2S2L2 I} dlO- n 

X (V1SIL1) dS2L2) [6(11 - n)(2L2 + l)]t 

x [exp TTi(Ll + L + S2 - S' - l)] 

X W(L1 2 L2) [(2S2 + 1)/(2S' + 1)]tb(S'S2)' 
1 L 1 
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By (8), the above expression is just exp (2rriS1) 

multiplied by the coefficient of J' in 

13-n 2 

(dll-n(V2S2L2)S(S'L2)pSLI I ~ Idlo-n(V1S1Ll)s2pSL) 
i<;=lri; 

Thus, 
n+l 2 

(dn(V1S1L1)pSLI L ~ Idn-l(V2S2L2)S(S'L2)pSL)J 
i< i=1 rij 

= exp (2rriS1) (dll-n(V2S2L2)S(S'L2)pSLI 
13-n e2 

X L - Idlo-n(V1SIL1)S2pSL)J' (13) 
i<i=1 rij 

On replacing n by (12 - n) in (13) we get 

= exp (2rriS1) (dI2-n(V1SIL1)pSLI 
13-n 2 

X L ~ Idll-n(V2S2L2)S(S'L2)pSL)J' (14) 
i<i=1 rij 

From (13) [(14)], it is evident that for n > 6, 
the matrix of J[J'] for (d + s)np equals that of J' [J] 
for (d + s)12-np if n is even, and equals the negative of 
the matrix of J' [J] for (d + s)12-np if n is odd. 

The matrices of K and K' must be calculated for all 
n using (7) and (8). The coefficients of fractional 
parentage are transformed using (19) (R III). 

From (9) directly, 

n+l 2 13-n 2 

(dnpl I ~ Id"-2S2p) = (d10- ns2pl L ~ Id I2-"p). 
;<j=1 r ij i<i=1 rij 

However, as pointed out after (75) (R III), a 
minus sign must be introduced in the above expression 
for n equal to 6 and terms of seniority number 2 as 
well as for n equal to 7 and seniority number 3. 

Thus, with the exception of G1 , G~, G;, G3 , G~, G;, 
T, T', Til, K, and K', the configuration dnp corre­
sponds to d1o- ns2p, dn- 1sp to dll-"sp and dn- 2S 2p to 
d12-jJ. However, as the matrices of G;, G;, and T" of 
dn

- 2S 2p correspond to the matrices of Gi, G3 , and T 
of dn- 2p, the matrices of only 8 parameters need to 
be calculated anew for complementary configurations. 
Of these, the matrices of T and T' are particularly 
easy to evaluate. 

It should be noted that for n > 6 the height of the 
configuration dnp is A + S", the height of dn - 1sp is 
A + S', and the height of dn - 2S 2p is given by A. 

4. THE CONFIGURATIONS d5p, d5sp, AND d5s2p 

The half-filled d shell can be considered as either 
the configuration comprising five electrons or as the 
configuration with five holes in the d shell. From 

(65) (R III), it is evident that the only difference in 
the energy matrices in these two cases is a change in 
sign of all nondiagonal matrix elements connecting 
terms of seniority number 1 or 5 with terms of 
seniority number 3. Thus, in the configuration d5 or, 
equivalently d5skp [k = 0, 1, or 2], to transform from 
the scheme of d5 considered as five electrons to the 
scheme of d5 as five holes, it is only necessary to 
change the sign of those rows and corresponding 
columns based on d 5 with seniority number 3. This 
transformation leaves the eigenvalues invariant. Thus, 
when considering the configurations d5skp alone, it is 
irrelevant whether the core d5 is considered as com­
prising five electrons or as five holes in the d shell. 
Also in (d + S)5p , (d + s)Sp, and (d + s)1p we can 
define d5 in each case as either consisting of five 
electrons or as five holes in the d shell. However, 
after choosing the particular scheme for d5 in d5skp, 
it is necessary to be consistent when calculating the 
electrostatic interaction of d5skp, the spin-orbit 
interaction of d5skp and the interactions between 
configurations. 

For (d + S)5p , i.e., d5p + d4sp + d3s2p, in the 
interaction d5p-d4sp as given by (7) and in the 
interaction d5p-d3s2p as given by (9), the configura­
tion d5p is considered as having five d electrons. Thus, 
using (7) and (9) for the interactions between configura­
tions, it is necessary to be consistent and calculate 
d5p also in the scheme of five electrons d. 

For (d + S)6p , it is equally convenient to choose d5 

of d5sp as comprising five electrons or as five holes 
in the d shell. Since for the physical applications of 
(d + S)6p the main configurations are d6p and d5sp, it 
seems logical to consider d5sp analogously to d6p, 
i.e., as consisting of five holes in the d shell. 

The matrix elements for the interaction between the 
configurations dSp and d5sp are obtained from (7) 
with the simplifications (11) and (13) for the matrices 
of Hand J, respectively. 

In all these relations, (19) (R III) is used to trans­
form the coefficients offractional parentage (d6 {I d5 d) 
to (d4 d I} d5

). In the first coefficient d5 is defined in the 
same manner as d 6 , i.e., consisting of five holes in the 
d shell. 

The interaction between the configurations d5sp 
and d4s2p is given by (8). The fractional parentage 
coefficients (d5 {I d4 d) as tabulated in R III are 
calculated with d5 being considered as five electrons 
in the d shell. Thus in the matrices of H'(d5sp-d4s2p), 
J'(d5sp-d4s2p) , and K'(d5sp-d4s2p) as obtained from 
(8) and using (81) (R III) and Tables IV and XXII 
of R III, it is necessary to change the signs of 
all those matrix elements connecting terms of d4s2p 
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with those of d5sp based on d5 with seniority number 3. 
For the configuration d5sp, the only parameters 

which have nondiagonal matrix elements connecting 
states of seniority number 1 or 5 of d5 with those 
based on d 5 with seniority number 3 are F~, G~, G~, 
T', and ,~. As the matrices of the parameters F~ and 
,~ for d5sp are equal in magnitude and opposite in 
sign of the matrices of F~ and ,~ for the complementary 
configuration d-5S-1p, it is evident that the only 
matrix elements of F~ and ,~ are those connecting 
states based on d5 with seniority numbers 1 or 5 and 
states based on d5 with seniority number 3. Now, the 
fractional parentage coefficients (d5 1{ d4d) appearing in 
(17) of I and (13) of II are tabulated in R III with d5 

considered as comprising five electrons. Thus, the 
matrix elements of F~ and ,~ calculated with the aid of 
the fractional parentage coefficients given in Table 
IV (R III) must have their signs changed in order to 
comply with the. choice of d 5 as consisting of five 
holes in the d shell. Similarly if the fractional parent­
age coefficients appearing in (21) of I are taken from 
Table IV (R III), the matrices of G~ and G~ are those 
of the configuration d5sp, where the core d5 is defined 
as consisting of five electrons. Then it is necessary to 
change the signs of all the matrix elements of G~ and 
G~ which connect terms based on d5 with seniority 
numbers either 1 or 5 and terms based on d5 with 
seniority number 3. In addition the interaction of the 
p electron with the closed d shell should be subtracted 

from (21) of I. This expression is given by -IOG~ -
35G~: Furthermore, also the matrix elements of T 
connecting terms of seniority number 1 or 5 with 
terms of seniority number 3 must have their signs 
changed. Finally, a minus sign must be introduced 
in the matrices of G(d6p-d4s2p) for terms of seniority 
number 2. 

Since, in (d + S)7p, the configurations d7p and d6sp 
are complementary configurations of das2p and d4sp, 
respectively, it is logical to consider the configuration 
d5s2p as complementary to d5p. Thus the core d5 of 
d5s2p is defined as comprising five holes. By the same 
reasoning as for the interaction dGp-d5sp of (d + 
S)6p , the interaction d6sp-d5s2p as obtained from 
(8) with the simplifications (12) and (14) for H'(d6s­
d5s2) and J' (d6sp-d5s2p) , respectively, refers to five 
holes in the core d5 of d5s2p. In the interaction d7p-d5s2p 
as given by (9), a minus sign must be introduced for 
terms of seniority number 3. If the matrices of d5p are 
to be used for the configuration d5s2p then it is 
necessary to change the signs of the nondiagonal 
matrix elements connecting states of d5 with seniority 
number 1 or 5 and those states with seniority number 
3. As for d5sp these matrices are of F2 , G1 , Ga , T, and 
'd' The matrices of F2 and 'd simply reverse their sign. 
For the matrices of G1 and Ga it is also necessary to 
subtract from the height -IOG1 - 35Ga which 
represents the interaction of the p electron with the 
closed d shell. 
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In this paper we consider a gener~1 action principle for mechanics writte~ by m~s of the eleme~ts 
of a Lie algebra. We study the physical reasons why we have to choose precisely a Lie algebra to wnte 
the action principle. By means of such an action principle we work out the equations of motion and a 
technique to evaluate perturbations in a general mechanics that is equivalent to a general interaction 
picture. Classical or quantum mechanics come out as particular cases when we make realizations of the 
Lie algebra by derivations into the algebra of produ.cts of functions or operators, respectively. Later on 
we develop in particular the applications of the action principle to classical and quantum mechanics, 
seeing that in this last case it agrees with Schwinger's action principle. The main contribution of this 
paper is to introduce a perturbation theory and an interaction picture of classical mechanics on the same 
footing as in quantum mechanics. 

1. INTRODUCTION 

We present in this paper a general action principle 
for mechanics, valid for classical or quantum problems. 
From such a principle the equations of motion may 
be derived, but its main application is the possibility 
of deducing an interaction picture, valid quite gen­
erally, from which perturbation expansions can be 
obtained. In particular, of course, we get a perturba­
tion method for the two kinds of mechanics mentioned 
above. 

We look for the "intersection" of the various 
dynamical structures in a common formalism. This 
common abstract mathematical structure is that of 
the realizations of a Lie algebra t, by derivations in 
an associative linear algebra D. All dynamical 
theories can be unified in the above-mentioned manner, 
since they have enough features in common. We 
start from an initially very general presentation of the 
dynamical principle to obtain, later on, as realization 
of our principle, action principles for each one of the 
mentioned mechanics. But the main aim of this paper 
is the application of this technique to the evaluation 
of perturbations. l The elements of the Lie algebra 
are abstract mathematical entities isomorphically 
associated with the physical dynamical variables. 

Let us examine the case for quantum mechanics. 
If we have only one irreducible representation of the 
"algebra of observables," all relevant information of 
the theory is contained in the algebraic structure 
alone. Hilbert space representations are not needed 
since they add nothing to our knowledge of the phys­
ical world: this is certainly the case when the number 
of degrees offreedom is finite. We may say, thetefore, 
that for ordinary quantum mechanics, the purely 
algebraic approach should prevail. However, in 
quantum field theories we have infinitely many 

1 E. C. Sudarshan, Lectures in Theoretical Physics, 1961 Brandeis 
Summer Institute (W. A. Benjamin, Inc., New York, 1962), p. 144. 

degrees of freedom, and it is well known that there 
exist, indeed, many inequivalent irreducible repre­
sentations of the same algebra. Nevertheless, the 
differences between inequivalent representations of 
dynamics in quantum field theory are too fine and 
they do not have any physical importance. Any 
faithful representation of the algebra of observables 
will give the same physical results, and therefore, 
none of them is needed. Whether the number of 
degrees of freedom of quantum mechanics is finite or 
infinite, our discussion shows that the answer that 
we find is in favor of the purely algebraic approach. 
We conclude that all faithful representations are 
"physically" equivalent, even though they may be 
mathematically strong inequivalent, and conclude 
that none of them is needed. 2 

The vector space of the Lie algebra of the general 
dynamical structure of mechanics has a dual space 
whose elements are caned states. The states deter­
mine the mapping of the Lie algebra t onto the field 
of real numbers, which are the elements that can be 
compared with the physical reality. They correspond 
to the expectation values of the observables for a 
state-a vector in Hilbert space-that are commonly 
used in quantum mechanics. The selection of a partic­
ular (faithful) representation is a matter of conven­
ience without physical implications. It may provide 
a more or less handy analytical apparatus. 

We can find many mappings of a Lie algebra into 
the field of real numbers. It is, therefore, possible to 
define states in many different ways, and so we can 
have many kinds of mechanics from the same dynam­
ical Lie algebra structure. To obtain classical or 
quantum mechanics we have to specify clearly what 
kind of mapping has to be used for each case. How­
ever, a Lie algebra may have additional mappings, 

2 R. Haag and D. Kastler, J. Math. Phys. 5, 848 (1964). 
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unexplored by physics as yet, into the field of real 
numbers, that eventually may generate another kind 
of mechanics. Of course, we can compare, and we 
here do so, the action principle presented in this paper 
only with action principles and perturbation methods 
for the two kinds of mechanics mentioned that are 
the ones used in physical problems. But we hope that 
the action principle presented is valid more generally, 
even though we are not able at the present time to 
check these further applications. 

We do not study in this paper classical or quantum 
statistical mechanics, because we are essentially con­
cerned with dynamics and they offer nothing new to 
the action principle that we present. Statistical mechan­
ics differs from other kinds of mechanics not in the 
action principle but in the mapping of the elements 
of the Lie algebra into the field of real numbers; 
that is done by means of density operators or distri­
bution functions, kinematical aspects to which we 
do not pay special attention here. 

Dynamical variables and states are duals to each 
other. In a most general sense, states are the mappings 
of the Lie algebra onto the field of real numbers. 
Besides the action principle, which is purely dynamical, 
there is another aspect in all mechanics-namely, the 
choice of admissible states belonging to the dual space 
of the dynamical Lie algebra-a kinematical aspect 
that limits the mappings onto the field of real numbers 
which have physical meanings. Generally, there are 
additional requirements, most frequently imposed to 
preserve the meaning of probability, so that not every 
element of the vector dual space is an admissible 
physical state. The admissible states form a manifold 
that usually has to be convex, in order not to have 
negative probabilities. This manifold of states is in 
general not a subspace because the convexity con­
ditions limit the number of admissible linear combina­
tions that one may make. The natural determination 
of the admissible manifold of states imposes additional 
conditions to the Lie algebra C, or to its realizations 
into another linear associative algebra D, by means 
of derivations. 

To determine the convex manifold of states, which 
is physically admissible, further additional informa­
tion not included in the Lie algebra specifications is 
needed. The convex manifold of states must be so 
chosen that, in a Schrodinger-like picture of dynamics, 
the changes compatible with the action principle 
will not throw them out of the admissible manifold. 

We do not study in this paper a Schrodinger-like 
picture of dynamics but rather a Heisenberg-like 
picture of dynamics deduced from the action principle 
that we here introduce. 

There are dynamical theories which have to be 
Lorentz-covariant. Physically we have to require that 
for every element of the Poincare group an automor­
phism of the algebra has to be introduced. The 
requirement that the Lorentz transformations be 
represented by unitary operators in Hilbert space for 
quantum mechanics is a very powerful restriction 
that may not be completely justified on physical 
grounds,3 and in the same way, intimately connected 
with the action principle are questions about sym­
metry properties of the physical system. This means 
that a Lie algebra may have additional, unexplored 
structural features, the existence of which is inherent 
in the special form of its action element. 

In Sec. 2 we present as a postulate the general 
action principle for a quite general mechanics without 
specifying whether it is classical or quantum mechanics. 
The action principle is written by means of the ele­
ments of an abstract algebra that is a Lie algebra. 
We examine immediately which is the physical mean­
ing of all the properties of the Lie bracket multiplica­
tion. We apply the action principle to obtain the 
equations of motion and to arrive at an interaction 
picture in a general scheme of mechanics. Later on 
we examine the consistency requirements between 
both applications-for deduction of the equations of 
motion and for the evaluation of perturbations-of 
the action principle. 

In Sec. 3 we make concrete the realization of the 
action principle into the algebra that is proper for 
classical mechanics. A perturbation theory valid for 
classical mechanics is presented as deduced from our 
action principle. In Sec. 4 we do the same for quantum 
mechanics; in particular we observe how Schwinger's 
action principle can be deduced from the action 
principle postulated here. 

We conclude this paper in Sec. 5 with a discussion 
of the possibility of extending the application of the 
present action principle to other mechanics that may 
eventually be derived. 

The main contribution of this papef-is to introduce 
an interaction picture, and from it a perturbation 
theory of classical mechanics on the same footing 
as in quantum mechanics. 

2. ACTION PRINCIPLE 

We plan to introduce the action principle as a 
postulate by means of the elements of a Lie algebra, 
which we designate by L. For any three elements 
A, B, C, such that 

A, B, CE C 

3 R. Haag, Lectures in Theoretical Physics. 1964 (University of 
Colorado Press, Boulder, Colorado), p. 107. 
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of the Lie algebra, the distributive and nonassociative 
product of any two of the elements of L, which we 
write down as [A, B], has to satisfy the following 
properties to generate a Lie algebra: 

[A, B] = - [B, A], (2.1) 

that is, the anti symmetry condition, and 

[[A, B], e] + [[B, e], A] + [[e, A], B] = 0, (2.2) 

called the Jacobi identity. 
Later on we examine which is the physical meaning 

of these two conditions on the elements of the algebra. 
Such a study gives us the reasons why we choose 
precisely a Lie algebra as the mathematical structure 
most fit to postulate the action principle. (The symbol 
[ , ] is called a Lie bracket.) 

For any element A of the algebra, the action prin­
ciple that we postulate is written as 

oA = dA - oA = [oW, A], (2.3) 

where oA is the total infinitesimal variation of the 
element A of the algebra in relation to a certain 
parameter A of a certain class of parameters that we 
study later. We should write more carefully as follows: 

oA == o;.A, (2.4) 

notation that we use as it is needed. From the total 
variation dA, we have to subtract oA, which is the 
change in A associated with the explicit appearance 
in A of the parameter A, since the latter cannot be 
produced by any action principle, but can be deduced 
immediately once we are given the explicit dependence 
of A on the parameter A: it corresponds to the partial 
derivative of A with respect to the parameter A. 
Without loss of generality and in order not to com­
plicate the equations, we always suppose that the 
elements A of the Lie algebra do not depend explicitly 
on the parameters A, so that 

oA = 0. (2.5) 

The difference oA = dA - oA is always the dynamical 
variation of the element A of the algebra, equal to the 
total variation less the explicit variation. 

W is also an element of the algebra which plays a 
very special role and which we call Action. We study 
the general properties of W for any mechanics. The 
concrete specification of W depends on the kind of 
mechanics that we are considering and, more specifi­
cally, on the problem that we study. We call oW the 
variations of W in relation to a parameter A of a class 
of parameters, some examples of which are presented 
later on. The elements 0 Ware such that 

OWE C. (2.6) 

As we saw, we designate by [, ] the combination or 
multiplication law for any ordered pair of elements 
of the algebra. The actual nature of the bracket [,] 
has to be specified for each kind of mechanics, as we 
see later on. 

The requirement that a Lie bracket, the multiplica­
tion of the elements of the Lie algebra, be always 
expressible as a linear combination of the elements 
of the Lie algebra by means of the structure constants 
ensures, according to the action principle presented 
above, that the variations of any dynamical symbol 
are a linear combination of these same elements. 
Therefore, structure constants govern the dynamics. 

We should present now the reasons for choosing 
Lie algebras to express the general action principle. 
This Lie algebra contains two elements Wand Je 
(so that W, Je E L), called respectively Action and 
Hamiltonian of the system. The time variation of the 
Action yields the Hamiltonian, whose Lie bracket 
with any element of the algebra provides us with the 
dynamical time derivative, since the explicit time 
derivative of an element of the algebra cannot be 
generated by a Lie algebra bracket. Generally any 
element of the algebra A generates a certain dynamical 
variation of all the other elements of the algebra in 
relation to a certain parameter. We impose the physi­
cal condition that no element can produce a dynamical 
variation of itself, a condition that implies that the 
Lie bracket of an element A with itself is always zero: 

[A, A] = 0. (2.7) 

If A and B are elements of L, then since an al­
gebra is a vector space, A + B will also be an 
element of L. From the above result and the fact that 
the combination relation of any algebra is distributive, 
we have 

° = [A + B, A + B] 

= [A, A] + [A, B] + [B, A] + [B, B] = 0, 

which gives 

[A, B] = - [B, A]. (2.8) 

Therefore, the antisymmetry requirement of the Lie­
bracket multiplication is equivalent to the physical 
condition that no element can produce the dynamical 
variations of itself. 

Next, let us see where the Jacobi identity comes 
from. We should indeed require that the bracket­
composition law be consistent with the dynamical 
variations of the elements of our algebra in relation 
to any parameter. This requirement is equivalent to 
the statement that any functional relationship, such 
as e = [A, B], existing between any three elements 
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of our algebra A, B, C for a certain value of the 
parameters that determine the dynamical variations, 
should be preserved for any other value of these 
parameters. For the sake of concreteness, we con­
sider the dynamical time evolution of the system 
produced by X, the Hamiltonian of the system, 
which is an element of the algebra we are considering. 
Then the elements A, B, C, X are considered at an 
instant of time t, and they satisfy 

C = [A, B] (2.9) 

at time instant t. We would like to find out the 
requirements which our algebra has to satisfy in 
order that this relation be also valid at another time 
instant t + dt, infinitesimally different from t. The 
element A becomes A + dt[A, X] as deduced from 
an action principle as we see later. We would have 
similar expressions for the changes of Band C. In 
particular, C becomes C + dt[C, X]. But from the 
relationship between C and the bracket [A, B] that 
we want to preserve for the time instant t + dt, we 
should have 

C + dt[C, X] = [A, B] + dtnA, B], X] 

= [A + dt[A, Xl], [B + dt[B, Xl]. 

(2.10) 

If we keep only terms linear in dt and use the anti­
symmetry of the brackets already assumed in our 
algebra, then the Jacobi identity between A, B, and 
X immediately follows. If we had considered other 
kinds of dynamical variations, we would have 
obtained in a similar manner the Jacobi identity 
among any three elements of our algebra. This result 
is completely general, since the Lie-bracket multipli­
cation is the only combination law to obtain from any 
pair of elements A, B, and a third element C. 

We consider, therefore, that the Jacobi identity 
expresses the consistency between the algebra whose 
elements describe the physical system and the action 
principle that we have presented; i.e., the Jacobi 
identity guarantees that the variations of the elements 
of the algebra compatible with the dynamical action 
principle do not throw these elements out of the 
algebra. 

We have, therefore, to write the action principle 
between elements of a Lie algebra in order that the 
dynamical evolution of the system produce new 
elements within the same algebra. We remember that 
we have used a Heisenberg-like picture of the dynamics 
of a system to arrive at these conclusions. 

Besides the general form of the action principle 
as a Lie bracket, the practical basis for the applica­
tions of this dynamical principle is the fact that there 

exists a class of parameters A such that the variations 
b). Ware obtained by appropriate variation of a single 
element W of the Lie algebra. The action principle 
must be complemented by the explicit specification 
of such a class. 

Of the whole class of variation parameters that 
can be considered, we study here only the instances 
when A is the time t of the system and, secondly, the 
case in which A is the coupling parameter g between 
two systems. Variations with respect to the time 
yield the equations of motion, while when we change 
the coupling parameter infinitesimally we get a per­
turbation expansion that, as we said, is the main aim 
of this paper. 

Let us consider the temporal evolution of the 
system. We designate by A(t) any element of the 
algebra at instant t. There is an automorphism between 
the set of elements A(t) and those of A(tI ) considered 
at another instant t l of time. The action principle, in 
the form that we have presented it, implies that the 
dynamical time evolution of any element of the 
algebra is obtained by multiplying such an element 
by another b W of the same algebra, i.e., by an element 
b W evaluated at the same instant of time t. An ele­
ment b W evaluated at another instant of time t l 

cannot generate according to (2.8) the time evolution 
at instant t. This deduction from the action principle 
(2.3) is equivalent to the principle of stationary 
action. It states that W, whose meaning is b( W) = b W, 
must be stationary with respect to variations at 
another time instant tI, t 1 ¥= t, since b W can only 
contain elements of the algebra associated with 
instant t. Therefore, we write 

(2.11) 

where X(t) is called the Hamiltonian of the system. 
The fact that the dynamical temporal variations of 
the elements of the algebra at an instant t can only be 
generated by an element of the algebra evaluated at 
the same time instant t, implies the existence of 
equations of the motion. The general equation of 
motion is 

oAIM = [A, X]. (2.12) 

Since [X, A] is a linear combination of elements of 
the Lie algebra L, determined by the structure con­
stants, the same equation of motion can be applied 
to oAlot. We get 

o2AIOt2 = nA, Xl, X], (2.13) 

and, in general, 

on AlOIn = [ ... , [A, Xl, X, ... , X] (2.14) 

with n multiplication brackets. 
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Applying Taylor's theorem, we can write 

A(t) = {e-tJe A(O)etJe }, (2.15) 

where the braces indicate that the expression is only 
symbolic in the sense that its only meaning is 

t t2 

A(t) = A(O) + - [A(O), Je] + - nACO), Je], Je] + .. '. 
I! 2! 

(2.16) 

Indeed, the exponentials of Je in (2.15) are not defined, 
since the only multiplication that we have introduced 
in the algebra is the Lie-bracket multiplication ac­
cording to which the powers of any element of the 
algebra are identically zero, given the anti symmetry 
of the brackets required by physical conditions. 
Indeed, for instance, so far 

Je2 == [Je, Je] = 0. (2.17) 

The fact that the expression (2.15) is only symbolic 
is a serious inconvenience for the practical applica­
tions of the action principle, since we do not have an 
analytical apparatus to use in our calculations. This 
is the reason why we have to introduce realizations 
of the Lie algebra defining a new algebra and a new 
product (,) that, since it does not enter into the 
action principle, does not have to be anti symmetric 
as it is required on physical grounds for the Lie­
bracket product [ , ]. Then, powers of an element are 
defined by means of this new kind of product. This is 
the reason why the dynamical Lie algebras are realized 
by means of derivations though, evidently, these 
realizations are not required by the physical con­
tent of the theory; they simply are convenient ways 
of performing the calculations that appear in the 
action principle and of mapping the Lie algebra into 
the field of real numbers. 

Let us consider the introduction of a general 
interaction picture to study perturbations. We con­
sider that the action element W can be divided into 
two parts coupled by the parameter g, so that 

(2.18) 

and we want to obtain the change of any element of 
the algebra when the coupling parameter changes 
from g to g + ~g. Action principle (2.3) yields 

baA = [bgW,A] = [WI,A]dg, (2.19) 

where the Lie bracket [A, WI] has to be. evaluated for 
the value It = g of the coupling parameter. Wo is the 
unperturbed action; it corresponds to g = O. The 
action corresponding to g = 1, W = Wo + WI' is 
the fully perturbed action, since we consider WI to be 
the perturbation. 

We need to study the boundary conditions for the 
application of the perturbation. Undoubtedly the 
action W should contain two labels to indicate when 
the interaction begins and when it ends. So 

W == Wet, to), (2.20) 

where to is the instant when the perturbation starts 
and t the final moment of action of the perturbation. 
The physical consistency requirement implies that 

(2.21) 
and that 

(2.22) 

from which we deduce 

W(t, to) = - W(to, t). (2.23) 

The action element Wet, to) evidently possesses the 
form 

(2.24) 

where L(t l ) is the Lagrangian. As we see later, the 
action Wet, to) has to be varied in relation to the upper 
limit t in order to obtain the Hamiltonian at the 
instant, i.e., 

(2.25) 

Taking the action principle (2.3) to evaluate per­
turbations, we deduce that 

~nA/~gn = 0, if t = to for any n, (2.26) 

since W(to, to) = 0. From here we deduce that, as 
assumed before, to is the instant when the perturba­
tion starts to act and that, therefore, the perturbation 
acts during the interval t - to' 

Ifwe write the time labels explicitly, Eq. (2.19) has 
the following form: 

bA(n it - = [Wlt, to), A(t)] = dtl[L(tl), A(t)]. (2.27) 
~g to 

From here we also have, as before, 

b
2

A(t) = (tdtl[~L(tl) , A(t)] + (tdt1[L(t1), ~A(t)], ~g2 Jto ~g J to ~g 
(2.28) 

which is a procedure that can be continued so as to 
evaluate [~nA(t)]/(~gn) for any value of n. 

The explicit expression for the element A for g = 1, 
i.e., fully perturbed, is obtained from the same element 
A for g = 0, i.e., from the unperturbed element, by 
means of a Taylor's expansion in powers of Llg = 1, 
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and so 

1 bACt) I A(t)!g=l = A(t) !g=o+ - -
1! og g=O 

+ ... + ~ onA(t) I +... (2.29) 
n! bgn g=O ' 

which is an expansion that can also be written in a 
symbolic way by means of exponentials of W l • This 
is. the general interaction picture, since here all the 
successive Lie brackets have to be evaluated for 
g = 0, i.e., for'the elements of the Lie algebra calcu­
lated for the unperturbed motion generated by Wo. 

To apply the above formula to a perturbation 
expansion we have to suppose that the motion of the 
system generated by the unperturbed action Wo has 
been solved exactly. Then we can calculate exactly the 
different successive Lie brackets that appear in (2.29). 
The term in this formula that contains n times the 
perturbing action W l is the nth perturbation. Indeed, 
to apply expression (2.29) to a concrete perturbation 
problem, we have to define for each kind of mechanics 
the Lie bracket. But, undoubtedly, we have written a 
general perturbation expansion. 

The combination or multiplication law of any two 
elements A and B of the Lie algebra C, by means of 
which the action principle is introduced, is written as 
[A, B]. We see in the applications that, as a matter 
of fact, such a product becomes the Poisson bracket 
or the commutator between any two elements, 
respectively, in each one of the mechanics in which 
the action principle is applied. 

In the vector space of the elements of the abstract 
Lie algebra L we define a second combination law 
of the two elements, that we design by ( ,), which 
maps pairs of elements of the dynamical abstract Lie 
algebra, A and B, into another such element (A, B), 
under which the vector space becomes an associative 
algebra D. This implies that the new product (A, B) 
is also distributive. We also further require that the 
two product operations satisfy 

[(A, B), C] = (A, [B, CD + ([A, C], B) (2.30) 

for any three elements of the Lie algebra. 4 This prop­
erty is referred to by saying that the Lie bracket is a 
derivation in a linear associative algebra with the 
product (A, B). 

In a linear associative algebra, powers of an element 
are uniquely defined. The associative and distributive 
product ( , ) is often referred to as the ordinary product. 
As a matter of fact, the product ( ,) is either the 
ordinary product of analytic functions in classical 

4 J. P. Serre, Lie Algebras and Lie Groups (W. A. Benjamin, Inc., 
New York, 1965). 

mechanics or the ordinary product of operators in 
quantum mechanics. 

By virtue of the derivation property of the Lie 
bracket, it follows that algebraic relations among 
the elements of the Lie algebra, involving either the 
ordinary product (,') or the Lie bracket [,], are 
preserved by infinitesimal transformations. 

A Lie algebra provides only an abstract framework 
for the dynamical properties of a physical system, 
and. even if this framework is supplemented by the 
dual space of physical states, it is not enough for the 
complete and practical specification of the physical 
situation. We have to introduce also the additional 
structure of an associative algebra D, and an explicit 
realization of the Lie algebra C, by derivations in this 
associative algebra D. And so, as we see, for classical 
mechanics we use analytic functions where ( , ) is the 
ordinary product of the same and [ , ] is the Poisson 
bracket; but for quantum mechanics we introduce 
operators in Hilbert space where ( , ) is now the ordi­
nary product of the same operators, while [,] is 
proportional to the commutator. For instance, powers 
of the dynamical variables will, in general, have a 
meaning in the explicit realization of the algebra not 
being defined in the algebra C itself. 

Our dynamical scheme is as follows. We have an 
abstract Lie algebra C, whose elements constitute the 
dynamical variables, and a concrete linear associative 
algebra D, which furnishes a realization of C by 
derivations. 

We note in passing that classical and quantum 
mechanics, in order to be discussed, fall within this 
characterization. As a matter of fact, in Sec. 3 of this 
paper we examine the case for classical mechanics 
while in Sec. 4 we study, from the viewpoint of this 
paper, quantum mechanics. 

The most important point that we want to make 
clear in this paper is that considering all different 
mechanics as different realizations of one and the 
same algebra C, we obtain a unified apparatus to 
formulate the dynamical properties of all mechanical 
systems, to introduce a general interaction picture for 
dynamics, and to deduce a general method for evalu­
ating perturbations in all kinds of mechanical systems. 

The entities that form the associative algebra D, 
in which we obtain realizations of the Lie algebra L 
by derivations, have composition laws of their own, 
only part of which will reflect, in a homomorphic 
manner, the composition table of C. In general, we 
are able to define functions of the representatives of 
the elements, additional relations that it may not be 
possible to define in the original algebra C, and that 
give rise to elements that do not belong to the algebra 
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L. This additional content of the realization has always 
a definite physical meaning, allowing the introduction 
of physical degrees of freedom, and so it is not only a 
matter of mathematical freedom. 

A canonical transformation is a mapping which 
leaves Lie-bracket relations invariant; they are essen­
tially automorphisms of the algebra. The dynam!cal 
evolutions of the elements of the algebra are canonIcal 
transformations. The set of all automorphisms of a 
given Lie algebra constitutes the corresponding Li.e 
group, which, accordingly, consists of sets of canOnI­
cal transformations. 

All these Lie algebras contain an identity I, which 
is an element whose Lie bracket with any other 
element of the algebra is zero. Normalization of the 
states is achieved, requiring that the identity be 
mapped into the real number 1. In this paper we do 
not study the mappings of the Lie-algebra elements 
into the field of real numbers, since we are mostly 
concerned with dynamical questions and not with 
the states. 

We want to add, however, that the states can be 
characterized in classical and quantum mechanics in 
a very similar manner. From the physical viewpoint, 
the possibility to obtain this lies in the form that 
Ehrenfest gave to the principle of correspondence: 
the expectation values in quantum mecha?ics of 
dynamical operators obey .the sam~ equations. of 
motion as the correspondlllg claSSIcal dynamIcal 
variables. 

3. CLASSICAL MECHANICS 

The action principle that we have established as a 
postulate is 

bA = [bW, A], (3. I) 

where by [ , ] we indicate the Lie-bracket multiplication. 
In classical mechanics we have to introduce the sets 

of canonical conjugate variables qk' h, where k = 
I 2 3 ... n by means of which we define the 
Poi;so~ br;ck~t between two analytical functions U 
and V of the sets qk ,h that we designate by [U, VJc 

(3.2) 

where the subscript c comes from classical mechanics. 
Our action principle is translated into classical 

mechanics when the Lie-bracket multiplication is 
the Poisson bracket between analytic functions of 
the canonical set of conjugate variables, as follows: 

OA = [oW, A] = [bW, AJe (3.3) 

that, when A represents the variables qk and h, yield 

) _ -GoW(t, to) 0 (t) = GbW(t, to), (3.4) 
Oqk(t - opit) ,Pk Oqk(t) 

which are equations of motion already obtained 
before.s 

To simplify notation, when we deal with classical 
mechanics, the notation indicating Lie bracket will 
denote the Poisson bracket, i.e., we do not write from 
now on a special sign to specify that in classical 
mechanics the Lie bracket is interpreted always as 
the Poisson bracket. We see that the elements of the 
Lie algebra for classical mechanics are represented by 
analytic functions where the multiplication (,) is 
simply ordinary multiplication of functions and the 
Lie-bracket multiplication [ , ] is the Poisson bracket 
between the elements that are multiplied, with the 
notation (u, v) = uv. We see quite easily that relation 
(2.30) is satisfied between these two kinds of products. 

As has been shown,S the temporal evolution of the 
physical system is obtained from action principle 
(3.1) or its equivalent (3.4). Indeed, to see this fact 
we study complete variations of the action integral that 
corresponds to an intrinsic variation /).q(t) of the 
dynamical variables and to a change of the upper 
limit of the action integral 

The intrinsic variation 

(3.6) 

is supposed to be zero at tl = to. To evaluate the 
complete variation of the dynamical variable at time t, 
we have to add to /).q(t) the variation due to the shift 
f = t + Ot of the upper limit 

q(f) = q(t) + t5tq(t), (3.7) 

so that its complete variation is 

oq(t) = /).q(t) + Otq(t). (3.8) 

Now the evaluation of b W(t, to) is straightforward. 
We get 

b W(t, to) = - t5t(Jeq(t) , p(t» + p(t)bq(t), (3.9) 

where the Hamiltonian Je(q, p) is defined, as is usually 
done,by 

-Je = L - pq. (3.10) 

• L. M. Garrido, J. Math. Ana!. Appl. 3, 295 (1961). 
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The time evaluation corresponds to 

btW(t, to) = -btJe(q(t),p(t», 

the case in which the action principle yields 

. btp(t) oJe 
-p= ---=-, 

Ot oq 

which are Hamilton's equations of motion. 
The variation 

(3.11 ) 

(3.12) 

(3.13) 

gives the kinematic independence of q(t) and pet), 
since then 

o (t) = o[p(t)oq(t)] = 0 (t) 
qq op(t) q, 

-Oqp(t) = op(t) Oq(t) = o. 
oq(t) 

(3.14) 

So far we have done nothing new. The preceding 
formulas are well known and so the postulated action 
principle appears as a different way of writing the 
equations of motion. Such a postulate is only meaning­
ful if we can also obtain from it other results beyond 
the equations of motion. This is the case, since our 
action principle yields also perturbation theory and 
provides a means of writing an interaction picture for 
classical mechanics. And this is what we do next. 

We would like to study the system whose action 
suffers the effect of a perturbing Lagrangian so that 
the new action becomes 

Wet, to) = w(o)(t, to) = Wo(t, to) + gW(t, to) 

where 

= (t L(o)(qit'), pit'» dt', (3.15) 
Jto 

(3.16) 

Here to is the time instant when the perturbation starts 
out. For the study of perturbations we fix to and t, but 
change the coupling parameter g froll]. g to g + bg, 
so that 

where 

W1(g)(t, to) = (tL1(qi t'), pit'» dt1 , 

Jto 

(3.17) 

(3.18) 

since in the evaluation of Wio)(t, to) we have to use the 
canonical conjugate variables evaluated at the value g 
of the coupling parameter qg and pg in order to cal­
culate the Poisson bracket that appears in classical 
mechanics. Usually, however, the Lagrangian is not 
given as presented above but in terms of a set of 
generalized coordinates q and the time derivatives of 
the same q. Using the definition of generalized 

momenta canonically conjugate to a given generalized 
coordinate, we can eliminate the time derivative of 
the coordinate g and write the Lagrangian as a 
function of sets of canonical conjugate variables q 
and p. If this variation is applied to the action principle, 
we obtain 

(3.19) 

where now A == Ag , i.e., the element of the Lie 
algebra depends on the coupling parameter. To have 
a clear idea of how to calculate the Poisson bracket 
that appears here we work out two examples later on. 

Since the perturbation is analytic in the coupling 
parameter g, we make use of Taylor's expansion 

A == A I = A ~ OgAg I ~ O;Ag I 
1 0 0=1 0 + l' ~ _ + 2' ~ 2 . ug g-O • ug g=O 

+ ... + ~ o~Ag f +... (3.20) 
n! Ogn g=O ' 

where the unperturbed system is obtained for g = 0 
and the fully perturbed motion corresponds to g = 1. 
We have to evaluate (o~Ag)/ogn from our action 
principle starting from 

bA 
- = [WI' A]. 
bg 

(3.21) 

In this way we obtain the general interaction 
picture for classical mechanics and a procedure to 
evaluate perturbations in classical mechanics to any 
order in the perturbing action. 

The perturbation method that results from the 
action principle (3.3) in classical mechanics does not 
follow the same steps as the technique deduced before 
for Hamiltonian's equations of motion. 6,7 

We now clarify most of our ideas, working out 
some examples that indicate how the perturbation 
techniques deduced from the action principle postu­
lated above can be applied to classical mechanics. 
The action integral is defined as follows for the 
unperturbed motion: 

Wo(t, to) = (tLo(qo, go, t1) dt1. (3.22) 
Jto 

The Lagrangian may depend on time explicitly. 
For simplicity, we limit ourselves to the case when 
the motion of the system is properly described by a 
single generalized coordinate and its time derivative, 
but the principle is valid for motions with any fixed 
number of generalized coordinates. 

6 L. M. Garrido, Proc. Phys. Soc. (London) 76, 33 (1960). 
7 L. M. Garrido and F. Gascon, Proc. Phys. Soc. (London) 81, 

1115 (1963). 
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If we call Po == oLo(qo, go)/ogo the canonical con­
jugate momentum, we can eliminate the time deriva­
tive go of the coordinate and write the Lagrangian as 
a function of qo and Po. Using the same symbol for 
the new function, we get 

and therefore 

oqo(t) , 
-- = cos OJ(t - t ), 
oqo(t') 

oqo(t) 1. ( ') -- = - sm OJ t - t 
oPo(t') OJ ' 

oPo(t) . ( , 
-- = - OJ sm OJ t - t ) 
oqo(t) , 

oPo(t) = cos OJ(t - t'). 
oPo(t') 

(3.30) 

The action integral becomes 

Wo(t, to) = [tLo(qo, Po, t1) dt1 , 

Jto 

Making use of the above calculations, let us evalu­
ate the first term of the perturbation series of the 

(3.24) harmonic oscillator perturbed by the Lagrangian 

which cannot be evaluated until the equations of 
motion are solved. Let us suppose that we have 
solved such equations exactly, equations correspond­
ing to the unperturbed motion, and have written their 
solutions in terms of the boundary values at the time 
origin 

qo == qo(t) = qo(qo(O) , Po(O) , I), 

Po == poet) = Po(qo(O), PoCO), I). (3.25) 

By means of these expressions we can evaluate qo 
and Po at any time I = I', and consider qo(/') and 
Po(/') as boundary values, so that we are able to write 
the solutions of the unperturbed equations of motion 
as 

qo == qo(t) = qo(qo(t'), poet'), t - t'), 

Po == paCt) = Po(qo(t'), poet'), t - t'). (3.26) 

Now we define derivatives with respect to the 
boundary values at any instant, and evaluate expres­
sions like [Opo(/)]/[Opo(t')], which is the derivative of 
a function with respect to the same function at any 
other time. 

Evidently 

oPo(t) = 1, 
oPo(t) 

oPo(t) = 0, 
oqo(t) 

oqo(t) = 1, 
oqo(t) 

oqo(t) = O. (3.27) 
oPo(t) 

To be more concrete, we evaluate derivatives with 
respect to boundary values when the unperturbed 
system is the harmonic oscillator, whose Lagrangian 
is 

Lo(qo, Po) = tp~ - OJ2tq~· (3.28) 

The equation of motion yield the following solu­
tions: 

qo(t) = qo(O) cos OJt + PoCO) sin OJt, 
OJ 

poet) = -qo(O)OJ sin OJt + pocO) cos OJt, (3.29) 

(3.31) 
when 10 = O. 

With the help of expansions obtained before, we 
get 

q(t) = qo(t) + ~ ~ dtl + ... 21t o 2(t) 

2 to oPo(t) 

/1
2 

- - P (0) sin OJt + ... 
2OJ3 0 , 

/1
2 it oq2(t ) pet) = poet) - - _0 _1 dtl + ... 

2 0 oqo(t) 

= Po(t) - /12fqo(tl) cos OJ(t1 - t) dt1 + ... 
/12 2 

= poet) - - tqo(O) cos OJt - !.!:..- tpo(O) sin OJt 
2 20J 

/1
2 

- - qo(O) sin OJt + . . . . (3.32) 
20J 

As a final application, we deduce from our action 
principle the definition of the Poisson bracket intro­
duced by Peierls8 for the nonrelativistic case. To 
define the Poisson bracket between A(q, p) and B(q, p) 
at time I = T, Peierls introduces a perturbing 
Lagrangian 

Ll = A(q(t), p(t»o(t - T), (3.33) 

where oCt - T) is Dirac's delta, and considers an 
infinitesimal variation of the coupling parameter 
around g = O. He then evaluates variations corre­
sponding to two-boundary conditions, 10 = 00 and 
10 = - 00, called advanced and retarded perturba­
tions, respectively. Correspondingly, we have to 
calculate the changes induced in B(q, p) that we call 
respectively 0-Band 0+ B. Peierls' definition of the 

• R. Peierls, Proc. Roy. Soc. (London) A214, 143 (1952). 
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Poisson bracket [A, B] is 

[A, B] = lim 1- (b+ - b-)B. 
og-->obg 

(3.34) 

To show the validity of Peierls' definition is quite 
easy if we utilize the action principle that we have 
postulated, since then 

lim 1- (b+ - b-)q(T) 
o.-->obg 

= -[0 L: A(q(t1), p(t1»b(t1 - T) dt1]/[OP(T)] 

oA(q(T), peT»~ 
= -

op(T) 

lim ~ (b+ _ b-)p(T) = oA(q(T), p(T» , (3.35) 
Og-->O bg oq(T) 

and therefore 

lim ~ (b+ - b-)B(q(T), peT)~ 
Og-->O bg 

oB oA oB oA I 
= op oq - oq op t=T· (3.36) 

That justifies Peierls' statement. 

4. QUANTUM MECHANICS 

The equations of motion of quantum mechanics 
can be formulated in a form which is isomorphic to 
the Poisson-bracket formulation of classical mechan­
ics, with quantities proportional to commutators 
taking the place of Poisson brackets. The quantum 
scheme introduces the associated algebra by means 
of all "analytic functions" of operators in Hilbert 
space. The expression "analytic function" is here 
understood with the meaning of convergent sym­
metrized power series. 

We have stated our action principle as follows: 

bA = [bW, A], (4.1) 

where [ , ] is the Lie-bracket multiplication. In quantum 
mechanics the Lie-algebra multiplication is realized 
by means of commutation of operators in Hilbert 
space as follows: 

[bW, A] == [bW, A]q = (ljin)(bWA - AbW). (4.2) 

Here the associative algebra D has the product 
equal to the ordinary product of operators in Hilbert 
space. The Poisson-bracket multiplication is equal to 
the factor (lfin) multiplied by the commutator of 
operators as specified in (4.2). The ordinary product 
( , ) is in quantum mechanics 

(15W, A) = 15WA, (4.3) 

where b Wand A are Hilbert space operators. With 
these two definitions of [ , ] and of ( , ), we can see 
quite easily that the relation (2.30) is satisfied. 

As a particular case, we can consider the time 
evolution by means of the relation bt W = -Jeb! that 
yields 

in M = AJe - JeA 
ot ' 

(4.4) 

which is the well-known Heisenberg equation of 
motion in Heisenberg picture. Usually we would have 
to specify the time limits in the variation of the action 
as done in (2.28), the case when the action principle 
becomes 

bA(t) = [bW(t, to), A(t)], (4.5) 

where to is the instant when the perturbation starts to 
act. 

We have stated the action principle by means of 
variations of the elements of the Lie algebra, that in 
quantum mechanics are operators of Hilbert space. 
In this way such a principle is applicable -both to 
classical and to quantum mechanics. But in quantum 
mechanics only, we want to transform this action 
principle to another, written by means of the variation 
of the transformation function as it was done by 
Schwinger. 9 

The quantities that in quantum mechanics are 
related to the physical reality are the matrix elements. 
To transfer from a Heisenberg-like picture in which 
we stated the action principle, to a Schrodinger-like 
picture as Schwinger stated it for quantum mechanics, 
we have to remark that the infinitesimal unitary 
transformation of the observables given by 

bACt) = A(t) - A(t), (4.6) 

A(t) = (1 + /n bW(t, to»)A(t) ( 1 - i~ bW(t, to») 

(4.7) 

= A(t) + [bW(t, to), A(t)] ( 4.8) 

induces in the eigenstates a transformation from 
la) to 1£1) given by 

(£11 Ala) = (al Ala), 

6 la) = 1£1) - la) == 115a), 

6 la) = 6 W(ta, to) la'; 
in' 

(4.9) 

(4.10) 

(4.11) 

where ta is the time instant at which the state vector 
la) is evaluated. 

9 J. Schwinger. Phys. Rev. 91, 713 (1953). 
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The variation of the transformation function is 
given by the following expression if the two eigen­
vectors of the transformation function are varied 
independently: 

t5(a I b) = (t5a I b) + (a I t5b) 

= i! (al t5W(ta, to) - t5W(tb , to) Ib) 
Ii 

= i! (al t5W(ta, tb) Ib), (4.12) 
Ii 

which is the action principle for quantum mechanics 
as stated by Schwinger. 9 

Schwinger considers (4.12) as the definition of the 
infinitesimal operator t5 W(ta, tb ), from which he 
deduces that the requirement that any infinitesimal 
variation maintains the multiplicative composition 
law of transformation functions implies the additive 
composition law for the infinitesimal operators (2.25). 
The fundamental dynamical principle is contained in 
the postulate that there exists a class of transforma­
tion-function alterations for which the characterizing 
operators t5 Ware obtained by appropriate variation 
of a single operator W given by (2.27). 

The fact that the action element has to be the 
integral of the Lagrangian can be deduced in quantum 
mechanics from the requirement that any infinitesimal 
alteration of the transformation function maintains 
the multiplicative composition law of the same 
transformation functions. This conclusion, however, 
is a consequence of the fact that usually, in quantum 
mechanics, the dynamical Lie-algebra principle is 
realized by means of an algebra of operators in 
Hilbert space. We deduce immediately that the 
action principle (4.12) is also valid for the calculation 
of perturbations in quantum mechanics. 

Indeed, if we use action principle (4.12) and apply 
Taylor's theorem 

o 
(a I b) = (a I b)la~o + og (a I b)lg~o 

02 

+ og2 (a / b)lg~o + ... , (4.13) 

where g is the coupling parameter between the two 
parts of the Action 

W(ta' tb) = (ta dt{ Lo(t) + gL1(t)}. (4.14) Jt. 
Action principle (4.12) yields immediately 

..£. (a / b) = i (a'lta dtLI(t) Ib), 
og Ii t. 

(4.15) 

which is a relation valid for any value of the coupling 

constant g and, in particular, for g = O. We have 
also 

02 
i 0 fta 

;2 (a / b) = - ;- L dt(a I c)(cl L1(t) Id)(d I b) 
u g Ii u g c,d t. 

(4.16) 
with the restriction tc = ta = t, that implies 

i. (cl L1(t) Id) = o. 
og 

(4.17) 

Therefore, after applying again the result (4.15), 
we obtain 

(4.18) 

where we have introduced the time-ordering operation 
[ ]+, which has the property that in operating on a 
product of time-labeled operators, it rearranges them 
in the same order as the time sequence of their labels, 
the latest one in time occurring first in the product. 

In general, we have 

ann (a I b) = (al (i)nftadt(l)ftadt(2) ... rt'dt(n) 
o g Ii t. t. J t. 

X [L1(t(l)L1(t(2) ... L
1
(t(n)]+ Ib) (4.19) 

that has to be evaluated for g = 0 to obtain the 
expres<;ion for (a I b) in (4.13). So we have 

(a I b) = (al(exp {~J:aLl(t) dt))+lb)/g=o, (4.20) 

which is an expression from which we deduce the 
well-known formula for the evolution operator in the 
interaction picture with which we can calculate 
perturbations in quantum mechanics. 

Indeed, if U is the evolution operator in the inter­
action picture we have 

(a I b) = (al U(ta, tb) Ib)lg~o, 

and, therefore, 

U(ta, tb ) = (exp H f"LI(t) dt}L 
which is a very well-known expression. 

5. CONCLUSION 

(4.21) 

(4.22) 

The general structural features of dynamical 
theories that we have exhibited have a profound 
physical meaning. Classical and quantum dynamics 
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require particular realizations (functions or operators) 
as the natural realizations of the Lie algebra of dynam­
ics common to both of them. The realization that is 
important for kinematics and for the physical inter­
pretation of the theory is not important for the 
dynamical structure analysis. That is why we can 
obtain, as we have done above, a general interaction 
picture valid for any kind of mechanics. 

The relative importance of the selected realization 
of the kinematic part of any mechanics is illustrated, 
considering the possibility of a transcription of 
classical and quantum mechanics each into the 
natural realization of the other.10 Doing so we see 
that many of the features of the formalisms of all 
kinds of mechanics become identical. From this point 
of view the main difference between the two mechanics 
is in the choice of the Lie bracket. The difference 
between classical and quantum mechanics resides 
mainly in the choice of realization for the dynamical 
group. But we see also that each mechanics is very 
awkward in the natural representation of the other. 

As has been shown before,lO there is a general form 
of a Lie bracket which includes the brackets of classi­
cal and quantum mechanics as special cases. This fact 
suggests the existence of more general mechanical 
formalisms. 

After we have examined the validity of the action 
principle for classical and quantum mechanics, a 
question that arises quite naturally is whether there 
exists a superscheme beyond, and inclusive of, the 

10 T. F. Jordan and E. C. Sudarshan, Rev. Mod. Phys. 33, 515 
(1961). 

two kinds of mechanics that we have specifically 
studied. The problem of the existence of a universal 
superscheme has to be answered affirmatively, so far 
as we know now; however, it has to be left open in 
this paper. 

Such a superscheme will be obtained when the 
action principle is extended to yield also the variations 
of the Lie-algebra elements induced when we change 
the realization by derivations of the algebra. It can 
be seen that action principle (2.3) gives also these 
variations when t5 W is interpreted as the change in 
the action that is induced by the change of realization. 

The different realizations of the algebra will be 
mapped isomorphically into a set of parameters that 
have continuous or discrete values. We obtain 
classical and quantum mechanics when we give to 
these sets of parameters a concrete, fixed set of values. 
Since the action principle is valid also for the varia­
tions of the elements of the algebra corresponding 
to the variations of these sets of parameters which 
determine the realization, we can obtain, in a form 
compatible with the action principle, continuously or 
discretely different kinds of mechanics. This process 
allows us to obtain, in a quite natural way, a semi­
classical approximation to quantum mechanics, for 
instance. 

The principal aim of this paper has been to write 
an action principle (2.3) from which an interaction 
picture valid for classical and quantum mechanics 
could be deduced, and from it to write down a general 
procedure to evaluate perturbations in both kinds of 
mechanics mentioned. 
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By an improved mathematical technique, the field equations derivable from a Lagrangian which is 
quadratic in the curvature components can now be studied in greater detail. The intercalation of a high­
frequency metrical plateau between the flat Minkowskian metric and the macroscopic physical world has 
the consequence that the resulting perturbation equations are no longer of fourth but only of second order, 
thus making a comparison with Einstein's equations possible. The principal difference is that the free 
vector of Einstein's theory is now restricted by a divergence condition, with the result that the equations 
of the electromagnetic field, expressed in terms of the vector potential, become solutions of the macro­
scopic field equations. The cases of fourfold symmetry with imaginary time and 3 + 1 symmetry with real 
time are discussed. The gravitational phenomena and the second-order interaction terms, needed for the 
construction of material particles, remain outside the limits of the present investigation. 

1. INTRODUCTION 

The great discoveries of Einstein opened a new 
perspective in our speculative outlook on the phe­
nomena of nature. Although it was the phenomenon 
of universal gravitation which led Einstein to his 
deep-rooted analysis of the problem of geometry and 
the discovery of the Riemannian nature of world 
geometry, one could hardly stop here and relegate 
the realm of geometry to gravitatioRal phenomena 
alone. The field equations 

(1.1) 

so fundamental for the description of the gravita­
tional field, can hardly be considered as more than 
the first step toward a much more comprehensive 
structure. These equations put the matter tensor equal 
to zero, whereas we can hardly doubt that metrical 
tensor and matter tensor are of equal significance and 
that it is their interaction which has to be considered 
as the true battleground of physical phenomena. 

Einstein arrived at the equations (1.1) with such 
convincing necessity that he doubted the possibility 
of making Riemannian geometry responsible for 
more than purely gravitational events. But if we believe 
in the fundamental significance of action principles, 
then the field equations (U) follow from a special 
choice of the basic action integral, namely the scalar 
curvature R, multiplied by the volume element, and 
integrated over the entire manifold. 

It was WeyP who first called attention to the fact 
that a rational action integral should have invariance 
not only with respect to arbitrary coordinate trans­
formations, but also with respect to the arbitrary 
units in which we measure lengths (gauge invariance). 

1 H. Weyl, Math. Z. 2, 384 (1918); Ann. Physik 59, 101 (1919); 
Physik. z. 22, 473 (1921). 

Einstein's action integral is dimensioned (the square 
of a length), whereas we should demand that the 
basic action integral become a pure number. This 
means that the basic Lagrangian must depend 
quadratically on the curvature components. The 
general possibilities can be reduced to the choice2 

(1.2) 

where f.1 is an a priori undetermined (positive) 
constant. 

Here we have an action principle which promises 
the possibility of erecting world geometry on a basis 
of maximum rationality. We would hardly be justified 
to abandon the tenets of Riemannian geometry before 
we have convinced ourselves that this action principle 
cannot lead to sufficiently general results. 

From a purely gravitational standpoint, one would 
scarcely see the necessity of modifying Einstein's 
linear invariant. Nevertheless, occasionally such 
efforts were made. BuchdahP investigated the gravita­
tional equations, which follow if Einstein's R is 
replaced by R2. Gregory, 4 and later Pechlaner and 
Sexl,5 employed a linear combination of Rand R2. 
Penney6 refers to the quadratic action principle in his 
investigation of the classical electron. 

The principal aim of Weyl in his discussion of gauge 
invariance was to find a natural place for the electro­
magnetic vector potential in the geometry of nature. 
He endeavored to generalize the Riemannian basis 
of geometry by demanding that the field equations 
should determine the ratios of the gik only, leaving a 
free factor at every point. One can show, however, 

2 C. Lanczos, Ann. Math. 39,842 (1938). 
3 H. A. Buchdahl, Nuovo Cimento 23, 141 (1962). 
• R. C. Gregory, Phys. Rev. 72, 72 (1947). 
• E. Pechlaner and R. Sexl, Commun. Math. Phys. 2, 165 (1966). 
• R. Penney, Phys. Rev. 137, B1385 (1965). 
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that the vector potential thus introduced exists 
already within a purely Riemannian framework. 7 

The calculations of Pauli8 concerning the theory of 
Weyl did not lead to promising results. 

The author's early papers9 demonstrated the exist­
ence of a field vector which satisfied the potential 
equation, but the identification of this vector with 
the vector potential foundered on the difficulty that it 
leads to a vanishing of the free electric charge. In the 
later phase of his speculations he came to the realiza­
tion that no progress can be made as long as we 
adhere to the purely historically motivated idea that 
cosmic geometry must be erected on a flat Minkow­
ski an background, considering the Riemannian line 
element as nearly flat, whenever we are away from 
the central core of material particles. By this assump­
tion we throwaway the valuable quadratic terms of 
the curvature tensor and reduce our problem to an 
oversimplified structure. A much richer structure is 
obtained if we assume that there exists a highly 
agitated metrical plateau of such high frequency that, 
for all macroscopic purposes (including even nuclear 
events), only the average values of the gik are at our 
disposal which thus become constants, although they 
hide the existence of very high curvatures.10 

The present paper develops a mathematical treat­
ment of the quadratic action principle, which makes it 
possible to draw definite conclusions concerning the 
interaction between the basic plateau and the macro­
sC0pic superposition effects. The detailed structure of 
the basic lattice eludes our present mathematical 
possibilities. We can argue, however, on the basis of 
symmetry considerations. They permit us to exhibit 
certain general consequences of the basic hypotheses 
which are interesting in themselves, although they have 
to be corroborated by future research. 

2. THE BASIC LAGRANGIAN 

The following viewpoint will guide us in the sub­
sequent discussions of this section. A Lagrangian, 
which is not more than quadratic in the action vari­
ables, leads to linear field equations. This excludes 
any inter~ction and is thus unable to cope with the 
physical facts. On the other hand, a Lagrangian of 
high algebraic order would make the study of inter­
actions exceedingly difficult. Can we perhaps succeed 
with a Lagrangian which is not higher than cubic in 
the action variables? Such a Lagrangian would 
guarantee the existence of weak and also strong 

, C. Lanczos, Rev. Mod. Phys. 29, 337 (1957). 
8 W. Pauli, Physik. Z. 20, 457 (1919). 
• C. Lanczos, Phys. Rev. 39, 716 (1932); 61, 713 (1942). 
10 C. Lanczos, J. Math. Phys. 4, 951 (1963); 7, 316 (1966); 8, 829 

(1967). 

interactions and, at the same time, facilitate the 
mathematical study of the interaction terms. We will 
see that such a program can actually be carried out 
up to a last term, which is a determinant, and thus of 
fourth rather than of third order. 

We define our first action variables h; by putting 

h~ = R~g!. (2.1) 

Our quadratic Lagrangian (1.2) now becomes 

(2.2) 

The metrical tensor gik appears in the form gikg-! 
consistently throughout this paper. We should choose 
a special notation for this quantity, but it will be 
more convenient to remember that we denote this 
modified tensor by gik while the usual gik becomes 
gikgl. In fact, we put 

gt = e'" (2.3) 

and consider as our action variables the new gik, 
which now satisfy the auxiliary condition 

Ilgik II = 1, (2.4) 

and the scalar cp. The actual metrical tensor, to be 
denoted by gik' now becomes 

Similarly, 
(2.5) 

and 
(2.6) 

(2.7) 

We see that our new action variables have no tensor 
significance, although they are closely related to tensor 
quantities. 

The Lagrangian (2.2) holds under the auxiliary 
condition 

Rik - (CP,ik - cp,ar:k - r:k,a + rfar~p) = O. (2.8) 

This gives rise to a Lagrangian factor pik and the 
added Lagrangian 

L2 = _lk(hiagak - CP,ik + cp,ar:k + r:k,a - rfar~p). 

(2.9) 

By joining the r:':, to the previous action variables, 
our Lagrangian is still of not higher than third degree. 
But the freedom of varying the r:':, entails the auxiliary 
condition 

r a _ -",/2 [ikJ - 0 'kgam e - , 
m 

(2.10) 

where 

[~J = t[(e",/2gimh + (e",/2gkm),i - (e",/2gik),m]' 

(2.11) 
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Hence we have to add the further Lagrangian 

L3 = -uikmrr:kgam - !(gim,k + gkm,i - gik,m) 

- i(gimIP,k + gkmIP,i - gikIP,m»). (2.12) 

Here again the added Lagrangian does not surpass 
the third degree. 

In addition, however, the auxiliary condition (2.4) 
gives rise to a last Lagrangian of the form 

(2.l3) 

which is of the fourth degree, in view of the four­
dimensional character of the space-time world. 

3. THE FIELD EQUATIONS 

Our final action variables become 

(3.1) 

We can now carry out the variations and obtain the 
basic field equations. These equations fall into two 
categories. The variation with respect to the variables 
in the second and third brackets do not restrict the 
type of geometry we are interested in. We may call 
these equations the "morphological equations," 
because they establish certain fundamental quantities 
which will be helpful in the study of that particular 
geometrical structure which is established by the 
quadratic action principle without specifying yet that 
geometry beyond its Riemannian character. The 
decisive statements concerning the specific structure 
of world geometry will be obtained by the variations 
of IP and the gik . 

We tabulate the morphological equations in the 
sequence of varying with respect to hi, l\ Uikm , r~, 
obtaining 

pkagai = h7 - fl h07, 
ha - 1,a ra + rPra igak - IP,ik - IP,a ik - ik,a ia kP' 

r~gam = Hgim,k + gkm,i - gik,m) 

+ HgimIP,1c + gkmIP,i - gikIP,m), 

(3.2) 

(3.3) 

(3.4) 

uikag = pile _ pikm + piark + pkari (3.5) am ,m I,m am am· 

In absolute terms these equations have the following 
significance, if we use the symbol I for covariant 
differentiation: 

ik = (Rik - flRg*ik)e"', 

r:;; = i':z + Hb;"IP,k + b;:'IP,i - gikIP'!'), 

uikag = U ik = e"'(Rik _ IIRg*ik) am m rim' 

(3.6) 

(3.7) 

(3.8) 

The notation r~~ is employed for the usual definition 
of the r~, but now formed with respect to our 

present gik' They satisfy the condition 

r:a = 0, (3.9) 
and thus 

rfa = IP,i' (3.10) 

We now come to the study of the specific field 
equations which follow by varying the basic action 
variables IP and gik' The variation of IP yields the 
following scalar relation: 

P:~k + (pikr;k),a T" Huiakgik),a + !(uikagik),a = 0. 

(3.11) 

The sum of the first two terms has already invariant 
significance, if we take into account Eq. (3.6): 

Pik + (pikra) = e"'(Rik _ IIRg*ik) . 
.,k .k ,a r I,k' 

In view of the divergence identity 

(Rik - tRg*ik)lk = 0, 

the right-hand side becomes 

(t - /1 )e'" 1lR. 

(3.12) 

(3.13) 

(3.14) 

The operator Il is the usual invariant Laplace operator 
(extended to four dimensions): 

A _ gik 
U - lik . 

Similarly, by (3.8), we obtain 

(uiakgik).a = (U!k),k = e"'(t - /1)IlR 
and 

(3.15) 

(3.16) 

(3.17) 

Hence, the field equation caused by the variation of 
IP becomes 

(i - t/1 + t - /1)IlR = HI - 3fl)IlR = 0, (3.18) 

which yields the result (well known from earlier 
treatments) that the scalar curvature R must satisfy 
the scalar wave equation 

IlR = O. (3.19) 

This equation is lost only for the singular value 
fl = t, which would lead to an unacceptable under­
determination, although exactly this singular value 
plays a characteristic role in Weyl's theory.ll Hence 

R = const = Ro (3.20) 

is an exact first integral of the field equations. In a 
Riemannian geometry of positive-definite signature, 
this is the only possible solution of the potential 
equation which is free of singularities and behaves 

11 Confer Ref. 7, p. 343. 
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properly in infinity. Even in the indefinite Minkow­
skian case, it seems highly improbable that the source­
less eigensolutions of the scalar wave equation can 
have physical significance. We thus assume that (3.20) 
is not only a possible, but a necessary consequence of 
the field equations and a characteristic property of 
the quadratic action principle. 

This result has immediately profound consequences. 
It shows that the scalars ({J and h are coupled by the 
relation 

e-lP12h = Ro. (3.21) 

Furthermore, from (3.8) by contraction we obtain 

u:k = e'P(Rmk - I1Rg*mk)lm 

= e'P(! - f-t)R,mg*mk = 0 

and likewise, multiplying by gik' we get 

(3.22) 

gikU!:: = e'P(l - 411)R,rrl = O. (3.23) 

Hence the two vectors, which could be obtained by 
contraction from the third-rank tensor 11:: (symmetric 
in i, k), both vanish. 

We also notice from (3.8) that on the right-hand 
side the term proportional to 11 cancels out. Hence we 
can replace the definition (3.5) of 11-::: by putting 

U ik = hik _ hikm + hiark + hkari (3 24) m ,m '1m am atn"· 

Finally, we vary the basic Lagrangian with respect 
to gik, obtaining the following set of fundamental 
field equations: 

_t(paih~ + pakh;) + Cgik 

= l.(U"ik + Uaki _ Uika) + l.(u"p;rk + uapkr; ) 
2 .a 2 "P ap 

- t(u"ik + U"ki - Uik")({J,,,. (3.25) 

If this equation is multiplied on both sides by gik' we 
find that the right-hand side cancels out identically, 
in consequence of the previous relations (3.22) and 
(3.23). This determines the Lagrangian factor C in 
the sense of 

c = tpp' h~ 
= Hh~hp - I1h2

). (3.26) 

4. THE PERTURBATION EQUATIONS 

We cannot hope to obtain the general solution of 
a highly nonlinear set of ten partial differential equa­
tions. We can follow, however, Einstein's procedure 
in the investigation of his gravitational equations. 
We start with a fundamental field (which satisfies 
the field equations) which we take for granted and 
investigate a small perturbation of this field. This must 
lead to a linear set of equations for the perturbation. 

Einstein identified the basic field with the flat 

Minkowskian manifold. This is not our program. If 
we assume the existence of a metrical plateau of very 
high frequency, then the quadratic terms of the 
Riemann tensor can cause by resonance very high 
average curvatures, although the amplitudes of these 
vibrations remain very small. Our field equations are 
such that they allow the so-called "cosmological 
equations" 

R - * - 'PIZ ik - agik - ae gik (4.1) 

as exact solutions. Ordinarily we would assume that 
the constant a must be very small. In our highly 
agitated field, however, this constant-whose dimen­
sion is the reciprocal square of a length-might 
become excessively large, if measured in ordinary 
units, because the order of magnitude of this con­
stant becomes proportional to 

(4.2) 

where w denotes the lattice frequency and I:t. the 
amplitude of the vibrations. 

In our present variables the relation (4.1) appears 
in the form 

(4.3) 

and we can easily convince ourselves that the field 
equations are trivially fulfilled, because the tensor 
u~ vanishes identically. For this purpose we write 
(3.24) in the form 

Uik = hik _ lhikm + hiark + hkarA i 
m ,m 2 I,m am am 

+ th~(I5!.({J~ -15~({J~) + th~(I5~({J~-I5:"({J,i). 
(4.4) 

The substitution of (4.3) yields the vanishing of u~, 
and the field equations (3.25) are satisfied, because 
both the left and the right side vanish separately. 

We now take the perturbation of the field equation 
(3.25), i.e., a small modification of the basic solution 
(4.3). We generally denote a small perturbation of a 
quantity by an overbar, e.g., 

(4.5) 

and so on, with the understanding that we neglect 
quantities which are of second order in gik' We make, 
however, the further assumption that the perturbation 
is small not only in amplitude, but also infrequency, 
in comparison to the frequency of the original quantity. 
This has the consequence that the perturbation equa­
tions need not be taken locally, but can be integrated 
over a lattice cell. At this point we abandon the 
principle of general covariance, because averaging 
over a domain is not a covariant operation. 

If we consider Eq. (4.1) in the average sense, then 
the gik become constants. The same can be said of the 
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scalar qJ, in view of (3.21). This constant can be 
normalized to zero which brings the basic field into 
the form 

(4.6) 

(We neglect here cosmological effects which would 
cause a slow, secular change of the gik') 

We get three types of terms: those proportional to 
0'2, those proportional to 0', and absolute terms which 
are independent of 0'. Dimensional considerations 
show us that terms of the first type are not differenti­
ated, terms of the second type are twice differentiated, 
terms of the third type are four times differentiated. 
In view of the symmetry of the basic solution with 
respect to the four axes, the 0'2 terms are reduced to a 
single term, proportional to gik' This term must 
cancel out. If this were not the case, then our lattice 
would not be able to transmit signals oflow frequency. 
We have the numerical constant fl at our disposal 
and must assume that this constant is adjusted in 
such a way that the undifferentiated term propor­
tional to gik drops out. This leaves us with the twice 
differentiated terms proportional to 0', and the four­
times-differentiated absolute terms. The latter ones 
are practically negligible in comparison to the former, 
in view of the largeness of 0'. The resulting field 
equations will thus be of second order only. If we 
proceed in the customary fashion by erecting the 
perturbation equations on a flat space, then 0' van­
ishes and the only remaining terms are those which 
are four times differentiated. The basic reason which 
made Einstein lukewarm toward the quadratic action 
principle was that the resulting differential equations 
became of fourth order, which did not seem to jibe 
with our physical experiences. This difficulty is over­
come by the presence of the agitated metrical plateau. 

The terms which are decisive for the perturbation 
of the field (3.25) become on the left-hand side 
(after canceling out the terms with 0'2): 

_t[(paigPk + pakgPi)lzap + (haigPk + hakgPi)Pap) 

= -0'[(1 - 4fl)gaigPklzap + gaigPk(lzap - fllzp"gP"gaP») 

= -0'[(2 - 4fl)gaigPklzap - fllzapgaPgik), (4.7) 

while on the right-hand side we obtain (considering 
that the original u;: vanish and also the average 
values of r~ are zero): 

t( iiailr + iiaki - iiika),a' (4.8) 

The gik, although locally highly agitated, are for 
our purposes constants. If we multiply on both sides 
by gik and take into account the fact that the perturba­
tion of Eq. (3.22) and (3.23) gives 

(4.9) 

and 

(4.10) 

we obtain on the right-hand side zero, and this yields 
for the left-hand side 

(4.11) 

Hence we can omit the second term on the right-hand 
side of (4.7) and write down our perturbation equa­
tion as follows: 

-0'(2 - 4fl)gaigPklzap = t(iiaik + iiaki _ iiika),a' (4.12) 

The perturbation of (4.4) yields 
A OJ. 

iiik = lzik _ l.hik(ij + hiark + hkari 
m ,m 2 T,m exm 12m 

= lz!"':n - to'lkrp,m + O'gap,mgaigPk. (4.13) 

Under these circumstances, we can put 

iiik = Vik (4.14) m ,m' 
where 

Vik = lzik _ to'gikrp + O'gapgaigPk. (4.15) 

The condition (4.10) imposes the condition 

vikgik = lzikgik + O'gapgaP - 2arp = O. (4.16) 

This is, in fact, in harmony with the demands of Eq. 
(3.21): 

(4.17) 

whose perturbation gives exactly the condition (4.16). 
To this has to be added the condition 

( 4.18) 

which is an immediate consequence of (2.4). Hence 
(4.16) is reduced to 

(4.19) 

We have to add the remark that the hik appearing 
on the left-hand side and the right-hand side of (4.12) 
are not the same quantities. On the left nik is multiplied 
by 0', but not on the right. On the left the linear 
terms of the operator (2.8) are activated, while on 
the right the perturbation of the highly agitated 
quadratic terms of the curvature tensor become 
operative, which are proportional to the large 
constant 0'. 

5. THE EINSTEIN OPERATOR 

In his investigation of weak gravitational fields, 
Einstein employed the field equations (1.1) in the 
form of a pert urbation of the flat Minkowskian 
metnc. Let us, for the sake of mathematical 
simplicity, introduce the imaginary coordinate 

X4 = ict, (5.1) 
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thus reducing the basic line element to the Euclidean 
normal values 

(5.2) 

Then we can dispose of the distinction between 
covariant and contravariant components and write in 
our present notation: 

with the auxiliary condition 

g~~ = 0. 

(5.3) 

(5.4) 

The Einstein operator Rik has two remarkable 
properties. The first is the divergence condition 

(5.5) 

The second is that Rik is automatically zero, if we put 

gik = f{'i.k + f{'k.i - if{'a,abik , 

if; = f{'~.a· 

(5.6) 

(5.7) 

The fact that the field equations (1.1) leave a free 
vector undetermined was originally a great puzzle 
to Einstein,I2 since it appeared to him as an nnpermis­
sible underdetermination, until he realized that it is a 
natural consequence of general covariance, expressing 
the freedom of infinitesimal coordinate transforma­
tions. Hence the vector f{'i is void of physical signifi­
cance. The freedom of choosing f{'i can be utilized for 
a natural normalization of our reference system. 
After the normalization, the field equations of 
Einstein for infinitesimal gravitational fields can be 
written as follows: 

are identical with Einstein's Rik expressed in the form 
(5.3). Had we no right-hand side, our field equations 
would coincide with Einstein's equations for infinitely 
weak gravitational fields. 

Now we come to the right-hand side of (4.12) 
which becomes 

(5.12) 
with 

(5.13) 
where 

and thus 
hik - h ~i {Jk h- 2-- ~pg g = ik - agik , (5.14) 

(5.15) 

The hik which appear here originate from the 
perturbation of the high-frequency lattice field. They 
are caused by the quadratic terms of the tensor Rik 

and have the following general structure: 

(5.16) 

where the coefficients a~Pik and bik are the components 
of t~o numeri~al tensors, obtained by averaging 
certam quadratIc resonance terms over the lattice. 
We have no right to dispose freely of these coefficients, 
because they are determined by the structure of the 
basic lattice. Since, however, that structure is beyond 
our ~resen: knowledge, we can rely only on symmetry 
consIderatIOns. If we assume that our lattice is 
macroscopically homogeneous in all the four axes, 
then we can put 

hik = aIgik + a2if;bik · 

Then (4.19) gives 

(5.17) 

llYik = Yik.~~ = ° 
with the coordinate condition 

(5.8) (2a - 4(2)if; = aIgikbik = 0, (5.18) 

Yi~,~ = 0, (5.9) 
where 

(5.10) 

or, expressed in our gik , 

Yik = gik - iif;bik · (5.11) 

Let us investigate what our field equations give under 
corresponding circumstances. 

Our basic perturbation equation is (4.12) and we 
will start with the left-hand side which, in view of 
(5.2), becomes proportional to hik . In this hik' we 
have to utilize those terms which are independent of 
a. The definition (2.7) of hik shows that these terms 

12 A. Einstein and M. Grossmann, Z. Math. Physik 62, 225 
(1913). 

and hence by (5.15) we obtain 

Vik = (al - a)gik' 

to which we have to add the condition (4.9): 

Vi~.~ = (al - a)gi~.~ = O. 

The resulting field equations now become 

if; = 0, 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

llgik = O. (5.23) 

~e compare these equations with Einstein's equa­
tions (5.8) and (5.9) for infinitesimal fields. These 
equations remain once more valid if the definition 
(5.10) of Yik is modified to 

(5.24) 
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The modification of Einstein's equations is twofold. 
First, the t in Einstein's normalization equation 
(5.10) is changed to 1. Second, the condition (5.9) is 
no longer a matter of normalization but a consequence 
of the field equations. For this reason the Einsteinian 
equations have now a second solution. Previously, 
the solution 

(5.25) 

had no physical significance, since the free vector Ti 
was purely caused by coordinate transformations. In 
our noncovariant theory (covariant in principle, but 
made noncovariant by the existence of a strong 
'basic matter field), the vector Ti is no longer free but 
subject to the equation 

t,.Ti = ° (5.26) 

together with the condition 

Ta,a = 0. (5.27) 

In (5.26) we recognize the equation of the electro­
magnetic vector potential, while (5.27) is the Lorentz 
condition. This condition is here again demanded by 
the field equations and is not a matter of normaliza­
tion. 

The change of t to 1 in (5.24) has the consequence 
that it annihilates the mass in Einstein's static and 
spherically symmetric solution of the gravitational 
equations. This is not necessarily an absurd result. 
In view of the excessive smallness of the gravitational 
effects compared with the electromagnetic effects, it is 
entirely plausible that the free mass should be treated 
as a second-order phenomenon, which does not come 
into evidence in the first approximation, particularly 
if this approximation assumes complete symmetry of 
the basic field with respect to the four axes. 

6. THE CASE OF 3 + 1 SYMMETRY 

If we pursue a purely pragmatic philosophy, then 
any mathematical structure is acceptable if it fits the 
sum total of observed phenomena as they exist at a 
certain period of historical evolution. With such a 
notion, rationalistic or aesthetic arguments can have 
no place in theoretical considerations. If, on the 
other hand, in experiencing the ever-widening 
unification of the fundamental principles, and 
particularly under the influence of Einstein's great 
discoveries, we arrive at the viewpoint that the basic 
structure of nature is rationally comprehensible, then 
we cannot start out with the hypothesis of an indefinite 
metric which from the beginning destroys the basic 
tenets of a rational geometry. It is true that the 
mathematical artifice of operating with an imaginary 
time makes the four coordinates apparently homo-

geneous. Yet the very fact of the + + + - signature 
of the Minkowskian metric indicates that the sym­
metry pattern of the physical universe is not of the 
4 + 0, but of the 3 + 1 variety. 

Let us assume that we do not deviate from the 
rationalism of a genuinely Riemannian geometry and 
operate with a line element which is positive-definite 
in all the four axes. We also assume our high­
frequency metrical plateau which should satisfy the 
field equations 

(6.1) 

at least in the macroscopic sense. This lattice need 
not be locally symmetric with respect to the four axes; 
and thus it is conceivable that in the macroscopic 
superposition effects, the hik of the general form 
(5.16) will not necessarily follow a fourfold, but a 
3 + 1 symmetry pattern. In the present section we 
want to investigate what consequences could be drawn 
from such a hypothesis. Can we come to a model 
which could demonstrate that a Minkowskian metric 
for the perturbation is nevertheless reconcilable with a 
strictly Riemannian structure of the basic plateau? 

Once more we want to assume that the macro­
scopically constant gik are normalized in the sense of 
(5.2). But now all our four coordinates are real. The 
only change, in comparison with our previous treat­
ment, is that we abandon the too-special assumption 
(5.17) and leave hik for the time being unspecified. 
However, the condition (4.14) is still valid, and hence 
we can once more reduce the tensor u~ to the second­
rank tensor Vik. But then there exists a remarkable 
isomorphism between the Einstein operator on the 
left-hand side of (4.12) and the right-hand side of the 
same equation. We want to exploit this similarity. 

Let us denote 
-2a(l - 2ft) = p. (6.2) 

The entire field equation (4.12) can now be written in 
the following form: 

P(~if,ik + !Ta,20ik) - [ikJ = 0, (6.3) 
rx ,a 

if the Christoffel symbol [ ] is applied to the following 
quantity: 

g;k = pgik + Vik 

with the auxiliary condition 

(6.4) 

(6.5) 

As we have seen in (5.6) and (5.7), these equations 
are identically satisfied by putting 

pgik + Vik = p( Ti,k + Tk,i - tTa,aOik), (6.6) 

if = Ta,a' (6.7) 
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to which the condition 

(6.8) 

has to be added. 
The difficulty in making further progress lies in the 

fact that the v ik' defined by (5:I 5), depend on hik' 
which again is determined by the structure of the 
high-frequency metrical lattice. At present we will 
be satisfied with a tentative solution of Eq. (6.6), 
which is interesting from the physical viewpoint, 
although its real motivation would require a much 
deeper investigation. 

We agree that in the next set of formulas the 
indices i, k, oc only assume the values 1,2,3, while the 
index 4 shall be considered separately. We now put 

Vik = 'Pi,k + 'Pk,i - 2( 'Pa,a + 'f]'P4,4)bik , 

Vi4 = 'f]('Pi,4 + 'P4,i)' (6.9) 

V44 = 2'f]2'P4,4 = 2'f]( 'Pa,a + 'f]'P4,4) = - 2'f]'Pa,a' 

The constant 'f] is a numerical constant-possibly very 
large-which we assume to be negative. 

Now we have no difficulty in showing that Eqs. 
(6.8) become identical with the Maxwell vacuum 
equations for the electromagnetic field strength 

(6.10) 

(the subscripts go once more from 1 to 4), usually 
written in the form 

( 6.11) 

The constant 'f], taken with a negative sign, has the 
significance of 1/ c2• 

The metrical dissonance. In the last section we have 
exhibited a possible solution of the perturbation 
equations which can be identified with Maxwell's 
vacuum equations for the electromagnetic field, in 
spite of the fact that our metric is a genuine Rieman­
nian metric (of the signature + + + +). This estab­
lishes a dissonance between the metric of the basic 
plateau and the macroscopic superposition. Can we 
allow such a dissonance in view of the empirically 
established fact that in all differential equations of 
mathematical physics the time coordinate has always 
a hyperbolic and not an elliptic character? Do we 
have any evidence of a four-dimensional Laplace 
operator which is elliptic in all the four variables? 

In order to answer this question we remark the 
following. In our ordinary physical theories, we con­
sider the light velocity c as a dimensioned quantity, 
which can be normalized to any value we like by our 
choosing the proper unit for the time t. The "second" 
is a very large unit; its 1/3 . 1010 part makes the light 

velocity equal to 1. In our present considerations 'f] is 
a pure ,number, since the fourth coordinate X4 is 
already normalized by the macroscopic equation 
gik = bik · Hence 'f] is an absolute quantity, determined 
by the structure of the metrical lattice. It is possible 
that the natural unit of time is still many orders of 
magnitude smaller than the usual relativistic normali­
zation. This is the case if 'f] happens to be a very 
large constant which makes the light velocity every 
small. If this is the case, then even the fastest and 
most rapid physical events are still very slow in 
absolute units. This means that in absolute units the 
universe is in a quasistationary state. Under such 
circumstances the derivative %x4 becomes practically 
negligible in comparison to the other %xi , which 
means that the four-dimensional Laplace operator 
becomes practically reduced to the usual three­
dimensional potential operator. In macroscopic 
relations the operation 02/0X~ becomes noticeable 
only if magnified by the very large factor 'f] which, 
being negative, explains the hyperbolic character of 
time in all observed phenomena of physics. 

7. CONCLUSIONS 

The present investigation was motivated by the 
following thought. Can we, encouraged by the great 
speculative victories of Einstein, apply mathematical 
principles of maximum rationality to the exploration 
of the physical world? In particular, can we establish 
a Riemannian geometry of maximum rationality as a 
unifying basis of all physical phenomena? A quadratic 
action principle seems to fit the criterion of such 
rationality, particularly if we do not abandon the 
positive-definiteness of a genuine Riemannian line 
element. 

In carrying out this program, this paper deviates 
from Einstein not only by replacing Einstein's linear 
action integral by a quadratic one-which is a pure 
number and thus independent of the units in which 
lengths are measured-but also by replacing the flat 
field, on which the fields of material particles are 
erected, by a' highly agitated periodic field, macro­
scopically characterized by the cosmological equations 
with a very large cosmological constant. In this case 
the resulting perturbation equations are no longer 
of fourth but only of second order, making a com­
parison with Einstein's infinitesimal gravitational 
equations possible. The result is that these equations 
now possess a second solution, which can be correlated 
to the electromagnetic field. This opens new possi­
bilities toward the understanding of the relation 
between gravitational and electromagnetic phenomena. 
Moreover, replacing the fourfold symmetry of the 
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Minkowskian metric by a 3 + 1 symmetry of a real 
metric, a model was obtained which simulates the 
Minkowskian metric for the superposition field, 
although the basic metric is strictly Riemannian, i.e., 
positive-definite. 

The present investigation does not go beyond the 
linear approximation. The second-order interaction 
terms, which must be made responsible for the 
construction of material particles as excited eigen-

JOURNAL OF MATHEMATICAL PHYSICS 

states of the field equations, have not been taken into 
account in this paper. 
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Polynomial bases for the irreducible representations of the orthogonal group, which are characterized 
by the Gel'fand pattern, have been obtained. The method used is very similar to Moshinsky's and is a 
generalization from the unitary group to the orthogonal group. The Wigner coefficients of 0(3), 
commonly called the Clebsch-Gordan coefficients of R(3), are rederived by means of the polynomial 
bases obtained in this paper. 

I. INTRODUCTION 

In a previous paper,! henceforth referred to as I, we 
obtained normalized lowering and raising operators of 
the orthogonal group in the group chain O(n)::::J 
O(n - 1) ::::J ••• ::::J 0(2). As a result, the Gel'fand­
Zetlin matrix elements for the generators of the 
orthogonal group have been obtained. In this note we 
show how to construct polynomial bases for the irre­
ducible representations of the orthogonal group as 
represented by the Gel'fand pattern. 

Alcaras and Ferreira2 have constructed bases for 
a restricted class of the irreducible representations of 
the orthogonal group. They consider only the case 
where the first Casimir invariant lin) is not equal to 
zero. The rest are put to zero, and therefore their 
representation has only a single row. In this note we 
obtain representations for any Gel'fand pattern where 
m ij need not be zero. 

The procedure is as follows. Since we already possess 
from I the normalized lowering operators, it is only 
necessary to work out a polynomial for the highest 
weight, in order to obtain all the other polynomials 

* Present address: Department of Physics, St. Louis University, 
St. Louis, Mo. 

I M. K. F. Wong, J. Math. Phys. 8, 1899 (1967); see also, S. C. 
Pang and K. T. Hecht, J. Math. Phys. 8, 1233 (1967). 

2 J. A. C. Alcaras and P. L. Ferreira, J. Math. Phys. 6, 578 (1965). 

in the irreducible representations of the group. For 
once the highest-weight polynomial is known, the rest 
can be simply obtained by applying the normalized 
lowering operators successively to the highest-weight 
polynomial. 

It is found that the highest-weight polynomial can 
be obtained by a method very similar to Moshinsky's3 
in the case of the unitary group. This is presented in 
Sec. 2. In Sec. 3 we show how to obtain the Wigner 
coefficients of 0(3), commonly called the Clebsch­
Gordan coefficients of R(3), by means of the poly­
nomials thus obtained. Computation of some Wigner 
coefficients of 0(5) is now in progress. 

II. CONSTRUCTION OF THE HIGHEST­
WEIGHT POLYNOMIAL P 

Since the method we use to find the highest-weight 
polynomial P is parallel to Moshinsky's method in 
finding the highest-weight polynomial of the unitary 
group, we shall first review briefly Moshinsky'S 
argument in the case of the unitary group4 and then 
carryover his arguments step by step into the case of 
the orthogonal group. 

Moshinsky defined two kinds of operators e:' and 

3 M. Moshinsky, Nucl. Phys. 31, 384 (1962). 
• M. Moshinsky, J. Math. Phys. 4, 1128 (1963). 
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(1) 

(2) 

He then points out that the highest-weight polynomial 
should satisfy Cartan's theorem, i.e., it should be 
unique. This means that the highest-weight poly­
nomial P should satisfy both Eqs. (3) and (4): 

CssP = hsP, Css'P = 0, s < s', (3) 

e~p = hsP, e~'p = 0, ft < ft'. (4) 

It is to be noted that CBS' (s < s') and e~' (ft < ft') 
are the raising generators of the unitary group corre­
sponding to the positive roots es - es, or ell - ell" 
These can all be obtained by combining the n primitive 
roots of Un+1' which are Css+1 ' Thus, the second 
parts of (3) and (4) can be further simplified to read 

CSS+1P = 0, s = 1,2, ... , n - 1, (3') 

e~+1p = 0, ft = 1,2,' . " n - 1, for Un' (4') 

The equivalence of Eqs. (3) and (4) to the well­
known case of the three-dimensional rotation group 
has also been pointed out by Moshinsky. In that case, 
the highest-weight polynomial must satisfy Eqs. (5) 
and (6), corresponding to Eqs. (3) and (4): 

IJ' = -!(j + i)P, I+P = 0, (5) 
where 

10 = (ii)(r. p + p. r) = -!(r· V +!) 1+ = tp2, 

L z = jP, L+P = 0, (6) 

where 

L=(rxp), p=i-1V, L+=L.,+iLy • 

We now carryover Moshinsky's method from the 
unitary group to the orthogonal group. Using the 
notation of I and making use of the concept of 
primitive roots, we find that the highest-weight poly­
nomial P is defined by the following equations: 

For O(2k + 1), 

J2a.-1p P 
217. = m2k+l,. , a; = 1, 2, ... , k, (7) 

D~+IP = 0, p = 1,2, ... , k - 1, (8) 

mk+1p = 0. (9) 

For O(2k), 

J~~-1 P = m2k,a.P, a; = 1, 2, ... , k, (10) 

D~+1P = 0, p = 1, 2, ... , k - 1, (11) 

A~-lp = 0, (12) 

where the generators J: can be expressed in two dif­
ferent ways: 

J~(l)=-d:(xIlPaa -xllqa
a

), (13) 
1l=1 xllq xllP 

J~(2) = -d: (XPIL ~ - xqll _a_). (14) 
1l=1 aXqll aXp/1 

The definitions of A, D, and E are the same as in I. 
Cartan's theorem requires that P should satisfy Eqs. 
(7), (8), (9), or (10), (11), (12), whether J~ is expressed 
by (13) or by (14). If such a polynomial can be found, 
then it is unique and is therefore the correct highest­
weight polynomial. 

We now show how P can be obtained. First, in the 
case of O(2k), define 

av,t == X 2v- 1,2t-l - iX2v- 1,2t - iX2v ,2t-l - X 2v,2t. (15) 

Using J~(l) as expressed by (13) and rewriting Eqs. 
(10), (11), and (12) in terms of av,t, we obtain 

J~~-I(l)P = ± a va. ~ P = m2k,.P, 
v=1 aava. 

a;=1,2,"',k, (10') 

D~+1(l)P = iavp _a_ P = 0, 
v=1 aaVP+1 

p = 1,2, ... , k - 1, (11') 

A~-l(l)P == 0 =>- 0 = O. (12') 

Equation (12') means that any function of av,t satisfies 
Eq. (12). 

Using J~(2) as expressed by (14) and rewriting Eqs. 
(10), (11), and (12) in terms of av,t again, we obtain 

J2a.-l(2)P ~~ a 
2. = ~a.v - P = m2k,a.P, 

v=1 aa.v 

a;=1,2,"',k, (10") 

k a 
D~+1(2)P = L apv -- P = 0, 

v=1 aa p+1,v 

p = 1, 2, ... , k - 1, (11") 

A~-1(2)P = 0 =>- ° = O. (12") 

Comparing, now, (10'), (11'), and (10"), (11") with 
the equivalent Eqs. (3), (3'), and (4), (4') in the case 
of the unitary group, we find that they are exactly the 
same. That is, our J:~-l(l) is equivalent to Moshinsky's 
Css and D~+1 is equivalent to his C,s+l' J:~-1(2) is 
equivalent to his e~ and D~+1(2) is equivalent to his 
e~+1. Thus the arguments used by Moshinsky3 to 
obtain the highest-weight polynomial of the unitary 
group can be completely carried over to the case of the 
orthogonal group. Moreover, the uniqueness of the 
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highest-weight polynomial as characterizing an irre­
ducible representation of the group and expressed by 
the determinants 6.i, 6.i~, etc., is also established 
following Moshinsky's proof. 

Thus, the highest-weight polynomial P, for 0(2k), 
is 

(16) 
where 

(17) 

(p here means permutation over Sl S2 .•• s •. ) 
For 0(2k + 1), Eqs. (7) and (8) are unchanged, i.e., 

they still go to Eqs. (10'), (II') and (10"), (11"), with 
m2k,a replaced by m2H1,a' while Eq. (9) becomes 

HI 0 
E~k+1(I)P = - 2 avk -- P = 0, (9') 

v~1 oa v,H1 

k+1 0 
E~k+l(2)P = - :2 akv -- P = 0. (9") 

v~1 oak+1 ,v 

Equations (9') and (9") can be satisfied as long as P 
does not contain av,k+l or ak+1, v' In this case, av,k-tA. is 
defined as follows: 

av,k+l = X2v- 1,2k+1 - iX2v ,2k+l, 

since X2v-l,2k+2 and X2v,2H2 do not exist in 0(2k + 1). 
Similarly, 

ak+l.v = X2k+l,2\,-1 - iX2k+l,2v for 0(2k + 1). 

Therefore, in the case of 0(2k + 1), P is also ex­
pressed by 

P = (6.Dm2k+l,,-m2k+,,2 

x (6.12)m2Ic+I,2-m 2HI,a ••. (6.12"'k)m2k+1," (18) 
12 12'''/,' 

It remains only for us to normalize P. This can be 
done easily. We expand the function P into a poly­
nomial of xu' and use the condition that 

(X~i' x~'i') = 0ii,Oii'0hh'h! 

When hand h' are half-integers, we write 

h! = f(l + h) 

and using the relations f(l + z) = zf(z) and rm = 
(7T)~, we obtain the normalization factors for both 
integer and half-integer eigenvalues of miJ. The pro­
cedure of writing h! = f(l + h) agrees with the 
prescription given by Bargmann5 for half-integers h 

5 V. Bargmann, Comm. Pure Appl. Math. 14, 187 (1961); Rev. 
Mod. Phys. 34, 829 (1962). 

and h', since, according to Bargmann, 

1 12

" (zh, Zh) = - exp [i(h' - h).p] d.p 
7T 0 

x L" rh+h
'+1e-·

2 

dr = 0hh,f(1 + h). 

In the case of 0(3), for example, we obtain for the 
normalized highest-weight polynomial :1' (mSl = J): 

such that 

1 J :1' - --a 
- 2J -JJ! 11 

(:1', :1') = 1. 

III. WIGNER COEFFICIENTS OF 0(3) 

(19) 

(20) 

In this section we calculate the Wigner coefficients 
of 0(3) by means of the polynomials just obtained. 
By applying the normalized lowering operators 
obtained in I, i.e., N-IL~, (J - m) times to the 
normalized highest-weight polynomial :1' in (19), we 
obtain the normalized polynomial for the irreducible 
representation :1'(J, m): 

~'(J, m) = ~[2J-m J! J! (1 - m)! 2J!]-! 
2Jy'J! mImI (J+m)! 

X [.j2 i(J; - iJ~)J~]J-ma;'I' (21) 

When two angular momenta J(I) and ]<2) are 
coupled together, we obtain, for the coupled angular 
momentumJ, 

J~ = J~(1) + J~(2); p, q = 1,2,3; p > q. (22) 

Note that J~(l) and J~(2) are not to be confused with 
J~(l) andJ~(2) in Eqs. (13) and (14). Then the highest 
weight P(J, J) of the coupled angular-momentum 
system satisfies the following two equations: 

J~P(J, J) = JP(J, J), 

E~P(J, J) = 0. 

We see that (23) is satisfied if we put 

(23) 

(24) 

P(J, J) = :2 Am,:1'(I)(J 1, m1):1'(2)(J 2, J - ml), (25) 

where :1'(1l and :1'(2) are restricted to the systems (1) and 
(2), respectively. Applying now Eq. (24) to Eq. (25) 
and remembering that 

E~ = E~(1) + E~(2), (26) 

we obtain a recurrence relation for Am" i.e., 

A m,+1 = _ [ (11 - m1)(Jl + ml + 1) Ji. 
Am, (J2 - J + m1 + 1)(J2 + J - m1) 

(27) 
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This equation is the same as Eq. (2.17) of Moshinsky,4 
and is the same as Eq. (3.6.1) of Edmonds,6 if we 
write (27) as 

, 
Am, [ (J I - ml + 1)(JI + ml ) Jlr 

Am,-l = - (J2 - J + m1)(J2 + J - m1 + 1) . 

(27') 
In fact AmI is already the Wigner coefficient 

(J1J2m1J - ml I JJ) 
for m = J. 
. If we put m1 = J1 in (27') first, and then apply the 

recurrence relation (27') (JI - m1) times to AJ ,/AJ ,_I, 

we obtain 

AJ, = (_l)J ,-m, 
AmI 

X [(J2 + J - J1)! (211)! (J2 - J + m1)! (Jl - m1)!J*. 

(J2 + J - ml)! (Jl + m1)! (J2 - J + J1)! 

(28) 
By normalizing P(J, J) in Eq. (24), we obtain 

J 

I Am,A!., = 1. (29) 
m,~-J, 

Combining (28) and (29), we obtain 

A - [ (2J1)! (2J + 1)! J!-
J,- (Jl+ J2+ J + 1)!(J1-J2 +J)! . (30) 

Combining (28) and (30) we obtain Am, . 
To obtain the general Wigner coefficient for any m, 

we can apply the lowering operator Fi = Fi(I) + F~(2) 
I A. R. Edmonds, Angular Mompntum in Quantum Mechanics 

(Princeton University Press, Princeton, N.J., 1957). 

to Eq. (25) and obtain a difference equation between 
the Wigner coefficients, and applying the finite-dif­
ference technique used by Edmonds,6 we obtain from 
Am, the general Wigner coefficients (J1J2m1m2 1 Jm). 
The formula so obtained agrees with that first ob­
tained by Racah. 7 

CONCLUSION 

In conclusion, we see that our polynomial basis is a 
function of Xii (i,j = 1,2,' .. ,n) for O(n), which 
has dimension n2 , whereas before polynomials for 
O(n) have only been constructed in an n-dimensional 
space, e.g., the spherical harmonics, from which only 
a restricted class of the irreducible representations of 
O(n) can be obtained. By enlarging the dimensionality 
of the space from n to n2, we are able to obtain all the 
irreducible representations of O(n). Our construction 
of the highest-weight polynomial P is greatly helped 
by the work of Moshinsky on the unitary group. In 
this formalism one has only to solve some first-order 
partial differential equations. It is remarkable that our 
highest-weight polynomial for 0(2k) and 0(2k + 1) 
has the same form as the highest-weight polynomial 
for the unitary group U(k). In order to gain some 
confidence in the polynomial basis we have so 
obtained, we have shown how to rederive the Wigner 
coefficients of 0(3) with the help of these normalized 
polynomials. 
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Matrix methods are developed for calculating the eigenvalues and eigenvectors of a large class of 
quantum-mechanical operators which may be regarded as perturbed forms of special-function operators. 
Specific representations are obtained for the latter, including all of the importaht cases treated by Infeld 
and Hull. To these are added representations for terms sufficient to generate forms corresponding to the 
Mat:lieu equation, the Lame equation, and others. A rapidly convergent computational scheme applic­
able to asymmetric matrices, which retains its stability even when the perturbing terms become large, is 
described; and its use is illustrated by application to the operator p(1 - q')p (X'q', corresponding to the 
Legendre-like form (d/dx)(1 - x 2)(d/dx) + (X'x'. Though group-theoretic considerations are stressed, 
appropriate correlations with differential and integral equations are presented throughout. 

1. INTRODUCTION 

Because Schrodinger's formulation of quantum 
mechanics leads to irreducible divergent integrals for 
the infinite-degree-of-freedom systems of quantum 
electrodynamics, Dirac has expressed the view that it 
should be regarded as a limiting case of the matrix 
mechanics originally proposed by Heisenberg.1 We 
believe this to be true, and also feel that the algebraic 
character of the latter gives it a considerable com­
putational (and philosophical) advantage, in spite of 
the fact that the former has been developed much 
more extensively. Accordingly, we have undertaken 
to extend the matrix methods initiated by Born and 
10rdan2 and to develop a compatible perturbation 
technique. The results are presented here, along 
with certain other features which appeared while 
pursuing these objectives-most notably, a system­
atic procedure for calculating specialized step 
operators and a simple method of handling large 
perturbations. 

It is a curious historical circumstance that one of the 
basic ideas on which our developments depend was 
suggested by Schrodinger himself.3 This is the factori­
zation concept, exploited from the differential equation 
point of view by Infeld and Hull.4 In its algebraic 
form, it has previously been stated in a preliminary 
way and used to solve a number of fundamental 

.. Robertson Research Fellow in Mathematical Physics at the 
University of Adelaide for 1966-67, during which time most of this 
work was completed; currently associated with the Department of 
Metallurgy, Mechanics and Materials Science and the Center for 
Applied Mathematics at Michigan State University. 

1 P. A. M. Dirac, Nature 203, 115 (1964). 
, M. Born and P. Jordan, Elementare Quantenmechanik (Springer­

Verlag, Berlin, 1930). 
3 E. SchrOdinger, Proe. Roy. Irish Acad. A46, 9 (1940). 
• L. Infeld and T. E. Hull, Rev. Mod. Phys. 23, 21 (1951). 

quantum-mechanical problems by Green.5 Also, it 
seems to have evolved from differential equation 
considerations and led a separate existence in the 
development of computational theory.6 Another 
essential concept, that of a co diagonal matrix, rep­
resents an adaptation for our purposes of a general 
definition originally framed by Lanczos,1 but since 
used in a more specialized sense by others.s Both of 
these terms will be fully explained as they appear in 
subsequent sections. 

Since our emphasis will be on an operator algebra 
in which differential forms do not explicitly appear, it 
may be helpful to display in advance the type of 
differential equations which may be solved by the 
codiagonal perturbation method. One example is the 
Legendre-like eigenequation 

[~ (1 - X2) ~ + OC2X2 + al]ul(X) = 0, (Ll) 
dx dx 

which in operational form, featuring the quantum­
mechanical conjugate variables q and p satisfying 
qp - pq = i (with h = 1), becomes 

[A - a(!)]1p(l) = [pel - q2)p - oc2q2 - a(l)]1p(I) = 0, 

(1.2) 

with oc representing a constant of any magnitude. The 
solution of this equation is used. to illustrate each 
part of the present work. A second example, which 
should suffice to give some idea of the range of 
problems which can be solved, is the special Lame 

5 H. S. Green, Matrix Mechanics (P. Noordhoff Ltd., Groningen, 
The Netherlands, 1965). 

• J. G. F. Francis, Computer J. 4, 265,332 (1961). 
7 C. Lanezos, Applied Analysis (Prentice-Hall, Inc., Englewood 

Cliffs, New Jersey, 1956). 
8 C. Strachey and J. G. F. Francis, Computer J. 4, 168 (1961). 

1069 



                                                                                                                                    

1070 H. S. GREEN AND T. TRIFFET 

eigenequation 

[
(1 - Kx2)~(1 - X2)~ 

dx dx 

- (3 - K - 2KX2)X ~ - AX2 + al]ul(X) = ° (1.3) 
dx 

or 

[A - a(l)]1p(l) = [(1 - Kq2){p(1 - q2)p + 3iqp} 

_ iK(1 - q2)qp + Aq2 _ a(l)]1p(l) = 0, (1.4) 

where K < 1 and A is an unrestricted constant. A 
general form of this equation is one of the cases 
treated in Sec. 4. 

2. THE OPERATOR A = rB + ~ 
A. General Properties 

Examination of the operators given in (1.2) and 
(1.4) above will establish that both are of the form 

A = rep, q)B(p, q) + t::.(p, q). (2.1) 

In the first example, 

B = p(1 - q2)p, 

r = 1, 

t::. = _oc2q2, 

while in the second 

(2.2) 

Although rand t::. are not required to be self-adjoint, 
we suppose that A is self-adjoint in the sense that 

A == rJ'A*rJ'-l = A, (2.5) 

where rJ' is possibly different from rJ. Under these 
circumstances, the eigenvalues aU) of A, like those of 
B, are real and form an indefinitely increasing se­
quence, starting with a finite value aU). If A' is an 
operator which does not satisfy these conditions, it 
will normally be possible to find a transformation 

A = F(A'), (2.6) 

such that the transformed operator A is of the required 
type. 

It should be pointed out that most of the develop­
ments to follow will apply to any operator A of the 
general form described. But, because of the wealth of 
important applications, we have in mind especially 
the possibility that A depends, as in the above ex­
amples, on a coordinate q and the conjugate momen­
tum p or, more generally, on a number of such 
coordinates and momenta. 

In many of the examples, the operator B will be of 
the form 

(2.7) 

The "singularities" of operators of this type are zeros 
of/l(q) or poles of!a(q). If qW and q(2) are such singu­
larities (numbers), and there is no other singularity in 
the interval (qU), q(2», the Hilbert space will be defined B = p(1 - q2)p + 3iqp, 

r = (1 - Kq2), (2.3) in such a way that 

t::. = -iK(1 - q2)qp + Aq2, 

with K < 1. We shall now formulate the general 
requirements to be satisfied by the operators B, r, 
and t::.. 

We may identify B as an unperturbed linear oper­
ator, and rand t::. as perturbations. The operator B 
is defined on an associated Hilbert space H. It is not 
necessarily Hermitian, but is self-adjoint in the sense 
that 

(2.4) 

where B* denotes the Hermitian conjugate, and rJ 
is a positive-definite linear operator (rJ = I in both 
examples cited above). The eigenvalues b(i) of B will 
then be real, and we shall suppose that they are 
distinct and bounded below, but not above, so that, 
suitably ordered, they form an indefinitely increasing 
sequence starting with a finite value b(1). The operators 
rand t::. are nonsingular (or satisfy certain weaker 
conditions which will be formulated later) on the 
Hilbert space H; we shall suppose further that r is 
positive-definite. 

q(1) < (4), q4» < q(2) (2.8) 

for an arbitrary normalized vector 4>, where ( , ) 
represents the scalar product. Because of the restric­
tions placed on rand t::., the singularities of A will be 
identical with those of B. 

B. Eigenvalues and Eigenvectors 

The equation to be solved is 

(r B + t::.)1p(I) = a(l)1p(I), (2.9) 

wherein it is assumed that the eigenvalues b(i) and the 
corresponding eigenvectors 4>(i) of B can be found 
without approximation. Let us expand the perturbed 
eigenvectors in terms of 4>U) and a set of undetermined 
numerical coefficients 1J!;ll: 

(2.10) 

Now, if we pre multiply the eigenequation of B by r, 

r Bc/P) = rbU)4>(i), (2.11) 

and make the appropriate substitutions in (2.9), the 



                                                                                                                                    

CODIAGONAL PERTURBATIONS 1071 

result is 

I 1p~!)tl¢(;) = L 1p~Z)(a(Z) - bWr)¢}il. (2.12) 
j j 

Applying the adjoint ;P(i) = cp(i)*rr\ and supposing 
that cp(i) is normalized in the usual way (;P(i)cp(1) = 15 ij), 

this becomes 

'" tl .. 1/J(Z) = a(lJ1/J(Z) - '" bWr .. ",(lJ (2.13) L., 2} 't' j 't,£.., 0'1' j , 

where 
j j 

tl .. = .I(i)tl../,.U) 
t3 'f 'f" 

r
ij 

= ;P(i)refo(1)· 

It remains to solve the system of equations 

I(tlij + bw rij)1p;l) = a(Z)1p!l); 
j 

(2.14) 

(2.15) 

(2.16) 

but now it is apparent that we may proceed by sepa­
rately diagonalizing the matrix B, then determining 
the elements of rand tl in terms of the resulting 
matrix to facilitate diagonalization of the total ex­
pression bracketed above. The perturbed eigenvalues 
a(l) will be obtained as a direct result, while the per­
turbed eigenvectors are determined by the 1p~l). 

In what follows, we develop methods of identifying 
these three matrices, of calculating their elements, and 
of diagonalizing them in such a way that rapid con­
vergence will occur in most cases irrespective of the 
magnitude of the elements. Matrix representations of 
the coordinate and momentum variables q and p in 
terms of the diagonal form of B are also presented, so 
that the elements of r(q,p) and tl(q,p) can be 
obtained without recourse to the relations (2.14) and 
(2.15). 

3. THE OPERATOR B 

A. Eigenvalues and Eigenvectors 

We consider first the problem of finding the eigen­
values and eigenvectors of the unperturbed operator 
B. Here, our object will be to obtain and tabulate a 
large number of exact results, using only matrix 
techniques, to simplify the identification of this 
operator. 

The eigenvalues of any matrix which, like thos!'! of 
B, are bounded below, can be found by constructing 
a sequence of operators, 01 , O2 , ••• and corresponding 
numerical multiples of the unit operator, bO), 
b(2), .. " such that 

B = B1 = (f10~ + bO), 
B2 = 01{f1 + b(1), 

Bj = (flJj + b(i), 

Bj+1 = Oj~ + b(1), 

(3.1) 

(3.2) 

where OJ = 'Y}O:'Y}-l is the adjoint of OJ (defined so that 
B is self-adjoint), and bU) has its maximum value at 
each step. When this is done, the jth eigenvalue of B, 
in numerically ascending order, is b(1). The proof is as 
follows. 

By using the relations (3.1) and (3.2) we may easily 
establish that 

m 
0102 , •• emOm ... 0201 = IT (B - bW ). (3.3) 

j~l 

The left side of (3.3) can be written as 'Y}O*'Y}-10, where 
o = Om' .• (MJ1 or, since 'Y} is positive-definite, as 

its eigenvalues must therefore be nonnegative. Thus, 
if b is any eigenvalue of B, 

m 

IT (b - b(J» ~ 0 (3.5) 
j~l 

for all m. It follows from this set of inequalities that 
the only eigenvalues less than the upper bound of the 
increasing sequence b(1), b(2), ... , are the b(j) them­
selves. To determine the eigenvector corresponding to 
b(i), we note that if cpj is the vector satisfying 

and 
"/"(1) = 0 0 ... 0. ../,.. 'I' 1 2 1-1'1'1 , 

then it follows from (3.1) and (3.2) that 

BefoU) = 0102 , •• OJ_1(OjOj + b(i»)efoj 

= b(j)cp(j). 

(3.6) 

(3.7) 

(3.8) 

This argument is a simple generalization of one 
given for Hermitian operators by one of the authors 
elsewhere.5 It is the algebraic formulation of the 
factorization concept referred to earlier. Here we wish 
to draw attention to the fact that the OJ, and the B j , 

determined by this method are not unique. If Uj is 
unitary adjoint (OjUj = UjOj = 1), we can replace 
OJ by Uilj at any stage of the factorization, so that 
Bj+1 is replaced by UjBj+1 OJ' This, of course, does not 
affect the eigenvalues obtained. One particular choice 
of the OJ is especially useful for setting up matrix 
representations of the various operators, however: 
that which makes the B j all commute with one another. 

To illustrate this matter, let us return to the oper­
ator listed under (2.2), 

B = p(1 - q2)p, (3.9) 

whose eigenvectors in the coordinate (Schrodinger's) 
representation are the Legendre polynomials. The 
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singularities of this operator are q(l) = -1 and q(2) = 

1. The 0; obtained most naturally are 

Ol = (1 - q2)tp, (3.10) 

OJ = (l - q2)tp - i{j - l)q{l - q2)-t, (3.11) 

and these are sufficient to obtain the eigenvalues 

bU) = j{j - 1) (3.12) 

of B. However, the 

Bj = p(l - q2)p + (j - 1)2/0 - q2) (3.13) 

obtained with this choice of the 0; do not commute 
with one another. On the other hand, as will be 
demonstrated below, if we write 

B = M(M + 1), (3.14) 

we can use alternatively 

OJ = [(2M + 1)(M + 1)(M + 2j)/(2M + 3)]! 

X [q + i{l - q2)p/M] (3.15) 
and this will yield 

B; = (M + j - 1)(M + j), (3.16) 

which commutes with B. 
In the present section, we shall generally restrict 

ourselves to use of the particular 0; associated with B; 
which do commute with one another. Then we shall 
be able to express OJ in the form 

0; = E(B; - bU)!, 
where 

EE = 1, EE = 1 - p; 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

The isolation of the "step" operator E allows us to 
establish a representation in which the elements of 
Bj and OJ are 

(Bjhl = b(Hk+I)/jkl' 

(0) - (b(Hk) - bU)!/j j kl - k+ll, 

(iij)kl = (b(HI) - bU)!/jk 1+1' 

B. Matrix Representations 

(3.21) 

(3.22) 

(3.23) 

Let us now consider the problem of finding a matrix 
representation for a linear operator B, self-adjoint in 
the sense already described, and a self-adjoint operator 
a which does not commute with it. In the applications, 
B will be a function of one or more coordinates and 
their conjugate momenta, and then a may be identified 
with some elementary function of the coordinates. 
From B and a, we construct a sequence of linearly 

independent operators a1 = a, a2 , as, ... , by form­
ing successive commutations with B: 

Bal - alB = alcll + a 2c 21 , 

Ba2 - a2B = a lcl2 + a2c22 + aaca2, 
(3.24) 

where the cjk are either numerical constants or 
operators which commute with B; they will, for 
instance, often depend on B itself. The choice of 
a2 , aa,' .. is not unique; therefore, neither are the 
coefficients cjk • But the cjk always form an almost 
triangular matrix in which cjk vanishes if j > k + 1. 
They are analogous to the structure constants of a 
Lie algebra; however, the aj and B may not always 
constitute elements of such an algebra. The com­
mutators of the aj among themselves need not be 
expressible in terms of the aj and need not form a 
finite sequence, even when the above sequence of 
equations terminates. In the applications which we 
shall consider in this section, the latter sequence will, 
in fact, always terminate; and since most of the above 
considerations apply equally well to the general 
operator A, it is this termination which in practice 
distinguishes B from A. 

For the Legendre operator (3.9), 

B = p{l - q2)p, 

taking a l = q, we find 

[B, a I ] = Bq - qB 

= -2i{l - q2)p + 2q 

= 2( a l + (2), 

where a2 = -i(1 - q2)p, and 

[B, a2] = [p, -i(l - q2)p](l - q2)p 

= 2a1B. 

(3.25) 

(3.26) 

Suppose, in general, that the eigenvalues of the 
matrix cjk are }.(l), and that the corresponding right­
and left-eigenvectors are ;(l) and ~(l): 

L Cjk~~l) = }.w~~l). 
k 

" rWc ., = A(z)/w "'- '=', 'le ~J 

where we may normalize the ~(l) so that 

L 'jk) ~~z) = (\,. 

Furthermore, let 

a(f) = L a, ~i,ll, 
I, 

(3.27) 

(3.28) 

(3.29) 

(3.30) 
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so that 

ak = I a(Z){,kll
. (3.31) 

I 

Then 
[B, aW ] = a(l) A (I), (3.32) 

where in general A(I) = A(I)(B). It follows that if tp(i) is 
an eigenvector of B, corresponding to the eigenvalue 
b(i) , 

B(a(l)tp(i) = a(I)(B + A(I)'1//') 

= [b(j) + A(I)(b<i)]a(l)tp(i). (3.33) 

Thus, if a(l)tp(i) does not vanish, it is also an eigenvec­
tor of B, and b(i) + A(I)(b(i) is the corresponding 
~igenvalue. 

There are several possibilities to be considered, 
depending on the number of A(I) and the relations 
between them. In most of the applications to be 
considered, there will be only two nonvanishing A(I). 
Then we choose the one which is positive in the range 
of eigenvalues of interest; calling this A(l), the relation 

(3.34) 

is a difference equation connecting the eigenvalues in 
that range. It follows from the fact that a1 = Iz all) '1° 
is self-adjoint, that the other nonvanishing A(l), which 
we call A (2), is negative and has the property 

(3.35) 

There may be a third AU), A(3), which vanishes. 
Successive normalized eigenvectors are related by 

aWtp(i) = IXj'!j'(i+!), 

a(2)tp(i+I) = (Jjtp(i) , 

(3.36) 

(3.37) 

where IXj and (Jj are constants which determine the 
matrix elements of aW and a(2) in a representation in 
which B is diagonal. The first eigenvector tp(l) satisfies 
a(2)tpW = 0. 

This possibility is illustrated by the example B = 
p(l - q2)p. There we obtain A(1) = 1 + (l + 4B)~ and 
A(2) = 1 - (l + 4B)!; but, as mentioned in connec­
tion with (3.14), to remove the square root we set 
B = M(M + 1), so that AW = 2(M + 1) and A(2) = 
-2M. Then, since ;(1) = (M + 1, 1) and ;(2) = 
(M, -1), 

alI) = q(M + 1) - i(l _ q2)p, 

a(2) = qM + i(l _ q2)p. 

(3.38) 

(3.39) 

The introduction of an operator like M, whose 
eigenvalues differ by unity, is a device which in many 
instances simplifies the algebra. 

If there are more than two nonvanishing A(I), 
including two which are positive, suppose these to be 
A(I) and A(3). It may happen that the corresponding 
a(1) and a(S) are connected by a relation of the type 

(3,42) 

In this case, it is convenient to introduce an operator 
a such that 

a(1) = ams(1)(B), 

a(3) = ans(3)(B), 

Ba = arB + A(B)]. 

(3.43) 

(3.44) 

(3.45) 

The operator a then plays the part of aU) in the pre­
vious discussion, and A plays the part of AU). However, 
it may happen that there is no relation of the type 
mentioned between a(1) and a(3); a simple example 
arises if 

B = pi + p~ + IXqi + 2yq1q2 + (Jq;, (3.46) 

where [qI' PI] = [q2' P2] = i and other commutators 
of the q's and p's vanish. The most direct way of 
dealing with this possibility is to introduce a product 
representation, in which the eigenvectors of Bare 
denoted by tp(i,k), with 

Since 

alI) tp(j,k) = IX~I) '!j'(i+1,k), 

a(3)tp(j,k) = IXj3)'!j'(j,k+l). 

a(I)a(2)tp(i+I) = IX j{Jjtp(i+l), 

all) a(2) tp(l) = 0, 

(3.47) 

(3.48) 

(3.49) 

(3.50) 

aU)a(2) is an operator which both commutes with B 

and can be expressed as a function of B, 

(3.51) 

The first eigenvalue of B is determined from the con­
dition a(I)a(2)tp(1) = 0, which yields 

(3.52) 

subsequent eigenvalues can then be obtained by using 
the relation (3.34), 

These are the recurrence relations of the Legendre 
polynomials in operational form. Also, 

To illustrate the method of determining the function 
(3.40) feB), we consider again the example MaW = a(l)(M + 1), 

Ma(2) = a(2)(M - 1). (3.41) B = p(l - q2)p = M(M + 1), 
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noting that 

a(1)a(2) = q(M + 1)a(2) - j(l _ q2)pa(2) 

= qa(2) M - j(1 _ q2)pa(2) 

= M2 - (1 - q2)M(M + 1) 

+ (1 - q2)p(l - q2)p 

=M2. (3.53) 

According to the prescription f(b(1) = 0, the least 
eigenvalue of M must be zero, which means that the 
least eigenvalue of B must be zero also. 

To determine the matrix elements of aU) and a(2), 
we also need a relation between a(2) and the adjoint 
0'(1) of a(1). It is clear that such a relation must exist, 
for it is easy to show that B commutes with a (1) 0'(1) , 

which must therefore be a function of B, in view of 
our hypothesis that B is nondegenerate. Thus, we 
write 

(3.54) 

where g(B) is a function which, like feB), is easily 
calculated. Now, 

aU )O'(1) = f(B)g(B) 

= [h(I)(M - 1)]2, (3.55) 

say, and 
0'(2)a(2) = f(B)/g(B) 

= [h(2)(M - 1)]2. (3.56) 

Clearly, if E is the step operator introduced in Eqs. 
(3.17)-(3.20), 

a(1) = h(I)(M - 1)E" = E"h(I)(M), 

a(2) = Eh(2)(M - 1) = h(2)(M)E. 

(3.57) 

(3.58) 

The matrix elements of a(1) and a(2), in the representa­
tion in which B is diagonal, are given by 

(a(1)ik = (jj k+lh(1)(m(k», 

(a(2»ik = (j1+lkh(2)(m(i), 

(3.59) 

(3.60) 

where m(i) = m(1) + j - 1 is the jth eigenvalue of M. 
Matrix elements of the other all), if any, can be 
inferred in a similar way. Since the ak = Ll a(n'~l) are 
expressed in terms of the aU), their matrix elements are 
also readily available. 

We again illustrate the procedure with the help of 
the example B = p( I - q2)p. In this particular in­
stance the adjoint is simply the Hermitian conjugate 
and we have 

0'(1) = (M + l)q + ip(1 _ q2) 

= (M - l)q + i(l - q2)p. (3.61) 

To shift the multiplier (M - 1) to a position on the 

right of the term in which it occurs, we use 

q = a l = (a(l) + a(2»/(2M + 1), 

(M - l)q = [a(1)M + a(2)(M - 2)]/(2M + 1), 

-i(l - q2)p = a2 

= [a(1)M - a(2)(M + 1)]/(2M + 1), (3.62) 

whence 

0'(1) = a(2)(2M - 1)/(2M + 1). (3.63) 

Thus, if B = M(M +.1), 

h(1)(M) = M[(2M + 1)/(2M + 3)]t, (3.64) 

h(2)(M) = M[(2M + 3)/(2M + 1)]t. (3.65) 

C. Exactly Soluble Problems 

Most operators of the type B(q, p), characterized 
by the fact that they can be diagonalized exactly, are 
connected with the hypergeometric differential equa­
tion or one of its limiting forms. Listed below are 
results obtained by the preceding method for a variety 
of operators of this type, which are bounded below 
but unbounded above. Many additional results can be 
obtained from them by one or the other of two 
transformations, which we shall first describe. 

The first type includes canonical transformations of 
the coordinate and momentum. If 

Q = Q(q), 

P = HQ'(q)]-lp + HQ'(q)]-l, 

(3.66) 

(3.67) 

where Q is any function with a derivative Q', then 
[Q, P] = j follows from [q, p] = i. Some of the more 
frequently used transformations are: 

Q = (3q + y, 

Q = qP, 

Q = (q - (3)/(q - y). 

(3.68) 

(3.69) 

(3.70) 

If the operator B whose eigenvalues are required 
involves a transcendental function Q(q), such as 

Q = cos «(3q + y), 

Q = exp (-(3q), 

(3.71) 

(3.72) 

then an obvious first step will be to eliminate this 
function by the appropriate canonical transformation. 
One or two examples are given below, but the list is 
not intended to be exhaustive. 

The second type of transformation which can be 
usefully employed includes unitary and similarity 
transformations on B itself: 

B --+ B' = SBS-I. (3.73) 
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There is a corresponding transformation, 

'!pU) _ '!pU)' = s'!pU) , (3.74) 

of the eigenvectors of B. An arbitrary nonsingular S 
can be resolved into two factors, one of which is 
unitary-adjoint and the other self-adjoint. If S is 
unitary-adjoint (SS = 1), the form of rJ is not 
affected by the transformation, i.e., B' = rJB'*rJ-1; 
but if S is self-adjoint, 

(3.75) 

In the following list of exactly soluble examples, we 
tabulate (a) the operator B, its singularities qW and 
q(2), and rJ ; (b) the relation between Band M, whose 
eigenvalues differ by an integer; (c) appropriate forms 
of a1 and a2 (a3 = 1, wherever it is needed), and their 
relation to the step operators aW and a(2); (d) the 
functions feB) and g(B), which determine the matrix 
elements of aW and a(2); and (e) the jth eigenvalue 
bU) of B. 

1. The Harmonic Oscillator 

B = p2 + q2, rJ = 1, 

q(1) = _ 00, q(2) = 00, 

B=2M, 

a1 = q = HaU ) + a(2», 

0'2 = -ip = HaW - a(2», 

feB) = 2M - 1, g(B) = 1, 

b(i) = 2j - I. 

2. The Three-Dimensional Oscillator 

B = l + q2 + fJq-2, rJ = 1, 

q(l) = 0, q(Z) = 00, 

B=2M, 

a1 = q2 = HaW + a(2» + M, 

(3.76a) 

(3.76b) 

(3.76c) 

(3.76d) 

(3.76e) 

(3.77a) 

(3.77b) 

a2 = -2iqp - 1 = a(1) - a(2), (3.77c) 

feB) = 4fJ + 1 - 4(M - 1)2, g(B) = 1, (3.77d) 

b(iJ = 2j + (4fJ + l)i. (3.77e) 

The different range (q(1), q(2}) explains why the eigen­
values differ from those obtained for the simple os­
cillator, even when fJ = O. 

3. Generalized Associated Legendre Harmonics 

B = (1 - q2)p2 + (f3 + 2yq)/(l _ q2), 

rJ = (l - q2), 
q(l) = -1, q(2) = 1, 

B = M(M + 1), 

(3.78a) 

(3.78b) 

a1 = q = (a(l) + a(2»(2M + 1)-1 

- y [M(M + 1)]-\ 

a2 = -i(l - q2)p = [aW(M + 1) - 0'(2)M] 

X (2M + 1)-1, (3.78c) 

feB) = M2 + y2jM2 - (fJ + 1), 

g(B) = (2M - I)/(2M + 1), (3.78d) 

b(i) = (mW + j - I)(mW + j), 
where m(1)2 + y2/m(1)2 = fJ + 1. 

4. Hypergeometric Harmonics 

B = p(l - q2)p + 2i([t + yq)p, 
rJ = (1 - q)-(I'+v)(1 + q)-(v-,,), 

(3.78e) 

q(l) = -1, q(2) = 1, (3.79a) 

B = (M - Y)(M + 'Ji + 1), (3.79b) 

a1 = q = (a(l) + a(2»(2M + 1)-1 - [tY[M(M + 1)]-1, 

a2 = -i(l _ q2)p 

= [a(l)(M - Y) - a(2\M + Y + 1)](2M + 1)-1 

+ [t(M - Y)(M + Y + l)[M(M + l)r\ 

feB) = M2 + [t2y2/M2 _ [t2 _ y2, 

g(B) = (2M - 1)/(2M + 1), 

(3.79c) 

(3.79d) 

b{j) = (m w + j + y)(m{l) + j - y - 1), (3.7ge) 

where m(1)2 + [t2 y2/mW2 = [t2 + y2. 
This operator is related to that listed under Ex­

ample 3 above by a similarity transformation, but is 
listed independently because of its wide applications. 
The relations between the constants fJ, y, [t, and yare 
obviously 

5. Coulomb Harmonics 

B = qp2 + f32q + yq-l, rJ = q, 
q{l) = 0, q(2) = 00, 

B = 2f3M, 

0'1 = q = Ha(1) + a(2»/fJ + M/fJ, 

a2 = -iqp = HaW _ a(2», 

feB) = M(M - 1) - y, g(B) = 1, 

bU) = f3[2j - 1 + (4y + l)i]. 
If we set y = l(l + 1), then 

b(i) = 2f3(j + I). 

6. The Hydrogen Atom 

B' = p2 - 2rxq-1 + yq-2, rJ = 1, 

q(l) = 0, q(2) = 00. 

(3.80a) 

(3.80b) 

(3.80c) 

(3.80d) 

(3.80e) 

(3.81a) 
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This example will serve to illustrate the type of 
procedure required when the discrete eigenvalues are 
bounded above. Then the discrete eigenvectors of B' 
do not form a complete set and are unsuitable as a 
basis for a matrix representation. We first notice that 
there is no difficulty in finding the eigenvalues and 
eigenvectors of B' by the factorization method. If we 
set y = l(l + 1), so that I is the angular momentum, 
we see the equations 

B' = Bl = ()i()1 + bU), 

B - () ()* + b(j) - (j* () + b(i+1 ) i+l - ;; - Hl;+1 

to be satisfied by taking 

(); = p + i(l + j)q-l - ioc/(l + j), 
Bj = B' + (21 + j)(j - l)q-2, 

b(i) = -oc2/(l + j)2, 

But, as the B; do not commute with one another, this 
decomposition is not readily adapted to calculating 
matrix elements. We therefore consider the trans­
formation 

Q = fUj, p = fl-1p, 

which transforms the eigenvalue equation 

B'1p = - fl21p 

to 
(QP2 + yQ-l + Q)1p = (2oc/fl)1p. 

The operator B = QP~ + yQ-l + Q, whose eigen­
values are related to those of B' and whose eigen­
vectors (with the coordinate Q) are the same as those 
of B', is of the form considered in Example 5 above, 
with fJ = l. We infer that 

B' = _(OC/M)2, (3.8Ib) 

since the operators on the two sides of this equation, 
applied to the typical eigenvector 1p, yield the same 
eigenvalue - fl2. Because of the coordinate trans­
formation involved, the operator M is here different 
from that used in Example 5. We can use the same 
matrix representation, however, on the understanding 
that B' is not diagonal, except for a single ele~ent 
corresponding to the eigenvalue _(OC/fl)2. Finally, 

feB') = M(M - 1) - l(l + 1), g(B') = 1, (3.8Id) 

7. Confluent Hypergeometric Harmonics 

B = qp2 + 2i(fJq + v)p, 1] = q1+2
Ve2PQ, 

(3.8Ie) 

q(ll = 0, q(2) = 00, (3.82a) 

B = 2fJM, (3.82b) 

0'1 = q = HO'U) + 0'(2»)/fJ + (M - v)/fJ, 

0'2 = -iqp = _0'(2) - M, (3.82c) 

feB) = M(M - 2v - 1), g(B) = 1, (3.82d) 

bUl = 2fJ(j + 2v). (3.82e) 

8. Associated Legendre Harmonics 

B = (1 + q2)2p2 + 4fl(1 + q2), 1] = (1 + q2)2, 

qW = _ 00, q(2) = 00, (3.83a) 

B = 4M(M + 1), (3.83b) 

0'1 = (1 + q2)-1 

= HaW + a(2»)(2M + 1)-1 + t 
+ tfl[M(M + 1)]-1, (3.83c) 

0'2 = iqp + t 
= [a(llM + a(2)(M + 1)](2M + 1)-1 + 1 

- .u[M(M + 1)]-1, 

feB) = (M + 1)2 + fl2/(M + 1)2 - 2fl - t, 
g(B) = (2M + 3)/(2M + 1), (3.83d) 

(3.83e) 

where (m(ll + 1)2 + fl,2f(mW + 1)2 = 2fl + t. 

9. Particle in a Box 

B = p2 + 4fl tan2q, 1] = 1, 

qW = -7T/2, q(2) = 7T/2. (3.84a) 

The transformation 

Q = tanq, P = Hcos2 q P + P cos2 q) 

yields 

B = (1 + Q2)P2(1 + Q2) + 1 + 4flQ2, 

and, with a similarity transformation, reduces this 
problem to that considered in Example 8 above. Thus, 

B = (2M + 1)2, (3.84b) 

0'1 = cos2 q, 

0'2 = i sin q cos q p - sin2 q + t, (3. 84c) 

feB) = (M + 1)2 + fl2/(M + 1)2 - 2fl - t, 
g(B) = (2M + 3)/(2M + 1), (3.84d) 

b(i) = 4(j + m(l) - l)(j + mUl), 

10. Kummer Harmonics 

B = q2p2 + (32q2 - 2ocq, 1] = q2, 
qUl = 0, q(2) = 00. 

(3.84e) 

(3.85a) 

This case resembles Example 6 in that it is not suited as 
it stands for defining a complete matrix representation, 
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B being a decreasing function of M: 

B = M(1 - M), (3.85b) 

a l = q-l = (aW + a(2»/(l - 2M) 

- ~[M(l - M)]-I, 

a2 = ip = [aW(l - M) - a(2)M]/(I - 2M) 

- ~[M(l - M)]-I, (3.85c) 

f(B) = ~2/(l - M)2 - (P, 

g(B) = (3 - 2M)/(1 - 2M), (3.85d) 

b(i) = (mW + 1 - j)(j - m(I), 

where (l - m(I»2 = {PJ~2. 

11. Coupled Harmonic Oscillators 

(3.85e) 

B = pi + p~ + (1 + ~)qi + 2(Jqlq2 + (1 - ~)qL 
'Yl - 1 qU) _ q(I) _ rr. q(2) _ q(2) _ "" 
./ -, I - 2 - - "-', I - 2 - vv. 

(3.86a) 

This example, involving two degrees of freedom, is 
easily generalized to any number of degrees of free­
dom; thus it is especially useful in dealing with quantal 
systems containing several particles.9 

B = 2(1 + y)tMI + 2(1 - y)tM2' 

where y = (rt2 + {p)i, 

a l = ql = (J(aW - a(2» + (J(a(3) - a(4», 

a2 = -iPI = {J(1 + y)i(a(l) + a(2» 

(3.86b) 

+ (J(1 - y)!(a(3) + a(4), 

a3 = q2 = «(X. - y)(a(I) - a(2» 

+ «(X. + y)(a(3) - a(4», 

a4 = -ip2 = (rt - y)(l + y)!(a(l) + a(2» 

+ (rt + y)(1 - y)!(a{3) + a(4», (3.86c) 

f(BI) = (MI - t)J[4(J2y(1 + y)!], g(BI) = 1, 

(3.86d) 

f(B2) = (M2 - t)f[4(J2y(1 - y)!], g(B2) = 1, 

b(i.k) = (2j - 1)(1 + y)! + (2k - 1)(1 - y)i. 

(3.86e) 
12. Cylindrical Harmonics 

B = -qpqp + q2, 'YJ = q, 
qU) = 0, q(2) = 00, (3.87a) 

B = M2, (3.87b) 

at = tTl = iaW/[L(L + 1)] + ia{Z)/[(L - l)L], 

a2 = -ip = ta(I)f(L + 1) - ta(2)/(L - 1), 
(3.87c) 

feB) = L(L - 1), g(B) = I, (3.87d) 
b{i) =j2. (3.87e) 

I H. S. Green, Nuc\. Phys. 54, 505; 57, 483 (1964). 

This example is unusual because both 

a(1) = (q-lL - ip)(L + I) 
and 

a(2) = (q-1L + ip)(L - I) 

contain a factor, depending on B only, without which 
the equationf(b(l» = 0 would have no solution. The 
possibility of introducing such a factor exists only 
because aUl = a(2), and there is a vector 11'(1) for 
which a(2)tpUl = 0, while aUltpUl ::;6 O. 

4. THE OPERATORS r AND fl 

A. Matrix Representation 

Our discussion of the operator B has yielded a 
number of independent operators, the a(I), and B 
itself, for which matrix elements can be written down 
at once. In most of the examples, there were just two 
a(l), or three-including a a(3) which was simply a 
constant multiple of the unit operator. Usually we were 
able to express B in terms of a "diagonal" operator 
M, and a Ul and a(2) in terms of M and the step 
operators E and i: 

B = B(M), 

a(l) = ih(l)(M), 

a(2) = h(2)(M)E. 

(4.1) 

(4.2) 

(4.3) 

The operator i is represented by the matrix ijk = 
I5 j HI> E by Ejk = I5j+1 k' and M by Mjk = m(i)l5jk , 

where m(i) = m(1) + j - 1. 
We wish to consider next the determination of the 

matrix elements of rand Ll as a preliminary step 
towards the diagonalization of A = r B + Ll. Since 
the same considerations will apply to both perturba­
tion matrices (as well as to many other matrices of 
similar type), let us agree to featureLl in the discussion. 

We denote by Ll(O) the diagonal matrix whose di­
agonal elements are identical with those of Ll. Similarly 
we denote by Ll(!)E!, where I is any positive integer, 
the matrix with elements identical with those of Ll in 
the lth diagonal above the center, and zero elsewhere. 
Finally, i l Ll (-!) denotes the matrix with elements iden­
tical with those of Ll in the Ith diagonal below the 
center, and zero elsewhere. Then Ll is expressed in the 
form 

ct) 

~ = ~(O) + L (E/~H) + ~(I)EI). (4.4) 
1=1 

Now we shall assume that 

Ll(I) = Ll(I)(M). (4.5) 

There is a sense in which every matrix Ll can be repre­
sented in this way; all that is required is to define the 
function Ll(l) so that ~(!)(m(I) + j - 1) is the jth 
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element in the Ith diagonal from the center. However, 
as our notation suggests, we shall require that L\(l)(m) 
be an analytic function of its argument, with a well­
defined asymptotic behavior as m -+ 00. When this 
requirement is met, we will say that L\ has codiagonal 
form. A codiagonal perturbation can also be repre­
sented entirely in terms of M, a(I), and a(2): 

00 

L\ = E(O) + L (a(lHEH ) + E(!)a(2JZ), (4.6) 
1=1 

with 

L\(-I) = E(-!)(M)h(1)(M) 

x h(1)(M + 1) ... h(1)(M + 1- 1), (4.7) 

L\(l) = E(I)(M)h(2)(M) 

x h(2)(M + 1) ... h(2)(M + I - 1). (4.8) 

L\(O) = ECO)(M). (4.9) 

For convenience we note here that 

h(I)(M - 1) = [f(B)g(B)]!, (4.10) 

h(2)(M-1) = [f(B)/g(B)]!, (4.11) 

where the functions feB) and g(B) are those listed in 
the previous section. 

We may therefore define our first task as that of 
finding the explicit form of the right side of (4.6). 
When this has been done, the L\(l) are given by (4.7)­
(4.9) and we can write down the matrix elements of 
L\ in the form 

00 

L\jk = L\~O)bjk + L(L\k-1)bik+l + L\~!)bi+lk)' (4.12) 
1=1 

L\~!) = L\(l)(m(I) + j - 1). (4.13) 

In the examples we shall consider, only a small 
number of the L\Cl)(M) will be different from zero. 
Usually the nonvanishing diagonals are L\C-l) , L\(O), 
and L\(1) or L\C-2) , L\(O), and L\(2); the matrix L\jk will 
then have tridiagonal form. But the methods we will 
develop are by no means limited to such simple 
instances. 

We illustrate the procedure with the initial example 
given in Eqs. (1.2) and (2.2): 

A = p(1 - q2)p - rt.2q2. 

To obtain the matrix elements of this operator , which 
commonly arises through the use of spheroidal co­
ordinates in quantum mechanics, we begin by noting 
that B = p(1 - q2)p contains the singularities of the 
operator in the range qO) = -I to q(2) = I, which is 
usually of physical interest, and that this is one of the 
exactly diagonalizable operators considered in the 
preceding section. From the discussion of this operator 

in the text, or by specialization from Example 3 listed 
there, we find 

q = (aW + a(2»)/(2M + I), (4.14) 

q2 = a(I)2[(2M + 1)(2M + 3)]-1 + [(2M + 3) 

x (2M + 5)]-la(2)2 + a(I}a(2) [(2M + 1) 

x (2M - 1)]-1 + a(2)a(I) [(2M + 1) 

X (2M + 3)]-1, (4.15) 

and 

h(1)(M) = (M + 1)[(2M + 1)/(2M + 3)]!, (4.16) 

h(2)(M) = (M + 1)[(2M + 3)/(2M + I)]!, (4.17) 

so that 

since the jth eigenvalue of M is 

mCi) =j - I. 

Thus we have 

L\CO) = -rt.2M 2[(2M + 1)(2M - 1)]-1 

+ (M + 1)2[(2M + 1)(2M + 3)]-1 

(4.18) 

(4.19) 

(4.20) 

= -(1.2(2M2 + 2M - 1)[(2M - 1)(2M + 3)]-\ 

(4.21) 

E(-2) = -rt.2[(2M + 1)(2M + 3)]-1 (4.22) 

E(2) = -(1.2[(2M + 3)(2M + 5)]-1, (4.23) 

while all other E(l) vanish. Also, 

L\H) = -rt.2(M + l)(M + 2) 

X [(2M + 1)(2M + 3)2(2M + 5)]-!, (4.24) 

L\(2) = -(1.2(M + l)(M + 2) 

X [(2M + 1)(2M + 3)2(2M + 5)]-i. (4.25) 

It will be seen that L\ is represented by a symmetric 
matrix, a consequence of the fact that it is self­
adjoint (Hermitian, with 1) = I): 

L\jk = L\jO)bjk + L\~-2)bjk+2 + L\j2)bi+2k' (4.26) 

L\;O) = -(1.\2l - 2j - 1)[(2j - 3)(2j + 1)t\ 

(4.27) 
L\ (.-2) = L\ (.2) 

1 1 

= _(1.2j(j + 1)[(2j - 1)(2j + II 
X (2j + 3)]-!. (4.28) 

B. Further Examples 

In listing a few additional examples we will include 
those which are particularly simple, yet have a wide 
range of applications in quantum mechanics and other 



                                                                                                                                    

CODIAGONAL PERTURBA nONS 1079 

branches of mathematical physics. We shall not 
display detailed calculations, which are similar to 
those of the example just considered. 

(1) A = (1 - Kt)p(l - q2)p 

+ 2i«(I. + (3q2)qp + Aq2. (4.29) 
Let us define v and p by 

'11(1 - K) = (I. + (3, 

p(1 - K) = (l.K + {3, 

(4.30) 

(4.31) 

so that the operator can be written in the form 

A = (1 - Kq2)B - 2ip(1 - q2)qp + Aq2, (4.32) 

B = p(1 - q2)p + 2ivqp. (4.33) 
Thus 

r = 1 - KQ2, (4.34) 

~ = -2ip(1 - q2)qp + Aq2. (4.35) 

In order that r should be nonsingular and positive­
definite on the Hilbert space of B, we must have K < 1. 
Given an operator of similar form but with K > 1, we 
should apply the transformation Q = Kiq, P = Kip. 
Here, the operator ~ is not bounded; but as the 
asymptotic increase with M is of lower order than that 
of r B, this is not objectionable. 

The operator B is of the type listed under Example 
4 in the previous section (with fl, = 0). We find 

q2 = (q2)<O) + i2(q2)<-2) + (q2)(2)€2, (4.36) 

_i(l_q2)qp = [_i(l_q2)qp](O) 

+ i2[ -i(l _ q2)qp](-2) 

+ [-i(l - q2)qp](2)€2, (4.37) 
where 

(q2)(O) = t - (2'112 + t)[(2M - 1)(2M + 3)]-1, 

(4.38) 

(q2)(2) = (q2) (-2) = R(M + I), (4.39) 

[-i(l - q2)qp](O) = -t(v + t) - (2'11 + 3)('112 - t) 
x [(2M-l)(2M+ 3)]-1, (4.40) 

[-i(l - q2)qp](-2) = (M - v)R(M + I), (4.41) 

[-i(l - q2)qp](2) = (M + v + 3)R(M + I), (4.42) 

and 

R(M) = { (M2 - v
2
)(M + 1)2 - V2])i (4.43) 

(2M - 1)(2M + 1)2(2M + 3) . 

The jth eigenvalue of M is m(i) == v + j - 1, and 
the matrix elements of r and ~ are therefore 

r - r(O)o + r(-2)j< r(2h 
jk - j jk k Ujk+2 + j U1+2k' 

Ll - Ll (0)15 + Ll (-2).., A (2).., 
jk - j jk k Uik+2 + Uj U1+2k, 

( 4.44) 

( 4.45) 

where 

r~O) = 1 - t + tK(V2 - t)[(v + j - t)(v + j + t)rt. 
(4.46) 

r (-2) - r(2) - R( +.) 
j - j - v J, ( 4.47) 

~~O) = [tA - tA(V2 
- t) - p(v + t) 

- p(v + t)(v2 
- t)][(v + j -%)('11 + j + t)rt. 

( 4.48) 

~~-2) = [2p(j ~ 1) + A]R(v + j), ( 4.49) 

~~2) = [2p(2v + j + 3) + A]R(v + j). (4.50) 

For K = 0 and p = 0, the operator A is connected 
with the associated spheroidal and Mathieu harmonics. 
The applications of these harmonics are described in 
the tables of spheroidal and associated spheroidal 
(including Mathieu) wavefunctions published by 
Flammer10 and by Stratton, Morse, Chu, Little, and 
Corbato.u The method of computation used for these 
tables is equivalent to the diagonalization of the 
symmetric matrix to which Aik reduces when K = P = 
0, and the calculations could have been much simplified 
by the use of standard techniques available for this 
process. 

When K ~ 0 and p = tK, '11= t, the operator re­
duces to the one used as an example in Eqs. (1.4) and 
(2.3); it is connected with ellipsoidal or Lame har­
monics, which also have many physical applications. 
Particular forms of the eigenvalue problem arise in 
connection with Wick's equation and the Bethe­
Salpeter equation in relativistic quantum mechanics. 

(2) A = (1 - Kq)p(1 - q2)p 

+ 2i«(I. + (3q + yq2) + Aq. (4.51) 

If we define fl" v, and p by 

fl,(l - K2) = (I. + K{3 + y, 

'11(1 - K2) = K(I. + {3 + KY, 

p =fl, - (I., 

this operator assumes the form 

(4.52) 

(4.53) 

(4.54) 

A = (1 - Kq)B - 2ip(l - q2)p + Aq, (4.55) 
where 

B = p(1 - q2)p + 2i(fl, + vq)p. (4.56) 
Here 

r = 1 - KQ, (4.57) 

~ = -2ip(l - q2)p + Aq, (4.58) 

10 C. Flammer, Spheroidal Wave Functions (Stanford University 
Press, Palo Alto, Calif., 1957). 

11 J. A. Stratton, P. M. Morse, L. 1. Chu, 1. D. C. Little, and F. 
J. Corbato, Spheroidal Wave Functions (John Wiley & Sons Inc 
New York, 1956). ' ., 
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and we must have -I < K < I if r is to be nonsingu­
lar on the Hilbert space defined by B. 

The operator B is now precisely that discussed 
under Example 4 in the previous section, and we have 
immediately 

q = q(O) + iq(-l) + q(1)€, (4.59) 

_i(l_q2)p = [_i(l_q2)p](O) + i[-i(l-q2)p](-l) 

+ [-i(1 - q2)p]W (4.60) 

where 
q(O) = ,uv[M(M + 1)]-1, (4,61) 

q(l) = q(-l) = SCM + I), (4.62) 

[-i(1 - q2)pJ<O) 

= ,u(M - v)(M + v + 1)[M(M + l)r\ (4.63) 

[-i(1 - q2)p](-I) = (M - v)S(M + I), (4.64) 

[-i(1 - q2)p](l) = -(M + v + 2)S(M + 1), (4.65) 

and 

[
M2 + ,u2v2M-2 - ,u2 - v2J! 

SCM) = (2M _ 1)(2M + 1) . (4.66) 

The jth eigenvalue of Mis m(i) = v + j - I (if v > ,u; 
otherwise ,u + j + I), and so we obtain the matrix 
elements 

where 

r r (O).2 + r(-l).2 + r W .2 
;k = ; Uik k Uik+l i UHlk' 

,\ A (0) .i + A (-1).2 + A (1).Il 
Uik = U; U;k Uk U;k+l U; UHlk' 

(4.67) 

(4.68) 

r~O) = 1 - K,uV[(V + j - 1)(v + j)]-\ (4.69) 

r~-l) = r~l) = -KS(V + j), (4.70) 

~~O) = ,u[2p(j - 1)(2v + j) + AV] 

x [(v + j - 1)(v + j)rt. (4.71) 

~~-l) = [2p(j - 1) + A]S(V + j), (4.72) 

~~l) = [2p(2v + j) + A]S(V + j). (4.73) 

(3) A = (q + l)qp2 + 2i({3q2 + yq + v)p + Aq. 
(4.74) 

Let us set 

so that 

and 

,u = y - ({3 + v) 

A = (q + I)B + Aq + 2i,uqp, 

B = qp2 + 2i({3q + v)p; 

r = q + 1, 

~ = Aq + 2i,uqp. 

(4.75) 

(4.76) 

(4.77) 

(4.78) 

(4.79) 

Again, though ~ is unbounded, its increase with M 
is of lower order than that of r R and gives rise to no 

difficulty. The operator B is listed under Example 7 
in the previous section, which shows that 

q = q(O) + iq(-l) + q(l)€, (4.80) 

iqp = (iqp)(O) + (iqp)(l)€, (4.81) 

where 
q(O) = (M - v)/{3, (4.82) 

qW = q(-I) = H(M + I)(M - 2v)]!/{3, (4.83) 

(iqp)(O) = M, (4.84) 

(iqp)(l) = [(M + I)(M - 2V)]1. (4.85) 

The jth eigenvalue of M is 2v + j (assuming v ~ -t) 
and the matrix elements of r and ~ are, therefore, 

where 

r r (O).I< + r(-I).i + r(1).2 
jk = j Ujk k Uik+l j UHlk' 

,\ A (0).1< + A (-1) .i + A (1).Il 
U jk = U j Ujk Uk Ujk+l U; UHlk' 

(4.86) 

(4.87) 

r~O) = 1 + (v + j)/{3, (4.88) 

r~-I) = r~l) = t[j(2v + j + 1)]!/{3, (4.89) 

~~O) = A(V + j)/{3 + 2,u(2v + j), (4.90) 

~~l) = ~~-1) = ctA/{3 + 2,u)[j(2v + j + 1)]1. (4.91) 

C. Matrix Reduction 

The calculation of the matrix elements of r and ~ 
allows us to write down the eigenvalue equation 

! Ajktpko = ! (b(k)r jk + ~jk)tpko = a(°tp~lI, 
k k 

with explicitly numerical coefficients, and we wish 
next to discuss the solution of this equation. All 
numerical methods depend on the reduction of this 
infinite set to a finite set of equations, and our first 
concern will be to examine the effect of truncation on 
the eigenvalue a(/) and its associated eigenvector tp}'). 

As r is a nonsingular operator, the above equation 
can be written as 

b(j)tp~1I = ! (awriJ - Ejk)tpio, (4.92) 
k 

Ejk = ! r1il~ik' 
i 

(4.93) 

If b(O) is a number less than the lower bound b(1) of B, 
we can also write 

jtp~1I = j(bU) _ b(O»)-1 

x L (awrikl - Ejk - b(O)<5 jk)tpio. (4.94) 
k 

The general requirements on B, r, and ~ which were 
stated in Sec. 2 can now be formulated more explicitly 
by demanding that the operators M(R - b(O»-l r-1 
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and M(B - b(O»-l r-l~ should be bounded. When 
these conditions are met, we can show that 

(4.95) 

where ~ and € are positive numbers. Then, if we define 
the vector (j"P(Z) by 

(j"P~z) = "P~Z), n < j :::;; n + m, (4.96) 

(j"P~z) = 0, j:::;; n or j > n + m, (4.97) 

it follows that 

II (j"P(I) II = «(j"P(I), (j"P(I»i < O(n-i), (4.98) 

independently of the value of m. Thus, truncation of 
Aik at the nth row and column will result in errors in 
a(l) and "P(I) less than O(n-i). It should be stressed 
that this theoretical estimate of the error can be 
reduced in order of magnitude and made precise in 
magnitude in most practical applications. Another 
point worth noticing is that the value of n required 
to ensure satisfactory accuracy will normally depend 
on I. 

Our problem is now reduced to the diagonalization 
of the n-dimensional matrix A ik • If Aik is symmetric, 
we might well regard this as a trivial matter, since 
there is a variety of fast and accurate computer pro­
grams in common use which is well suited to this 
purpose. It is true that, since r-iAri is self-adjoint, 
our matrix can always be reduced to symmetric form; 
however, this is not always the most convenient form 
of the matrix, even when r = I-as we have already 
seen, for instance, when the discrete eigenvectors do 
not form a complete set. The problem of diagonalizing 
an asymmetric matrix, even when the eigenvalues are 
real, is regarded as one of the most difficult in 
numerical analysis. We therefore pursue the matter in 
this section, showing that an extension of the factori­
zation method is well adapted to the problem. The 
speed and accuracy of the method is so good that it is 
even competitive with existing methods of diagonal­
izing symmetric matrices. 

The principles of the method have been described 
by Francis, and employ what he calls the "QR trans­
formation," a generalization of Rutishauser's ·"LR 
transformation." 6 Both of these are manifestly 
applications of the factorization procedure, and 
depend on the following algebraic lemma. If 

(4.99) 
and 

then 
m 

X 1 X 2 • •• Xm()m ... ()2()1 = IT (A - a i )· (4.101) 
i~l 

If Xi is the adjoint of ()j' this operator is positive­
definite, and it follows that the only eigenvalues of 
Aj between the lower and upper bounds of the aj are 
the ai themselves. If the Xi are not adjoints of the 
()i' the aj are not in general eigenvalues. However, it 
can be shown that, if Xi is unitary and ()j is upper­
triangular at each stage of the factorization, and the 
aj are suitably chosen, Xi()j will approach upper­
triangular form. 

For suppose 
A = UTU*, (4.102) 

where T is triangular, and 

Um = X 1X2 ••• X m , (4.103) 
then 

m 

()m··· ()2()1 = U,!U II (T - ai)U* (4.104) 
j~l 

is upper-triangular; and if anyone of the a/s is near 
an eigenvalue, the last diagonal element will be zero. 
A series of values of ai is chosen with the object of 
reducing the last diagonal element to zero. When this 
has been done, the last row and column of the 
matrix is left alone and the next to last diagonal 
element is reduced to zero, and so on. Ultimately 
Xj()j, which is a unitary transform of A, is triangular 
and the eigenvalues can be read off from the diagonal. 
An easily determined additional transformation re­
duces the triangular matrix to diagonal form. The 
final diagonal matrix has been obtained from A by a 
similarity transformation, whose elements determine 
the eigenvectors of A. This procedure is effective even 
when A has complex eigenvalues; but, unless complex 
arithmetic is used, the complex eigenvalues appear as 
irreducible two-dimensional matrices along the diag­
onal of the matrix in its final form. 

D. Computations 

Our first numerical example is derived from the 
operator 

(4.105) 

which has been analyzed in Eqs. (4.4)-(4.28). It follows 
from the results listed that A can be represented by the 
matrix 

Aij = Bij + ~ii' 
Bij = j(j - l)(jij' 

~ii = -HP - j - t)(X2/[(j + t)(j - t)], (4.106) 

~i H2 = -tj(j + 1)(X2/[(j + t)(j - t)i(j + t)i] 

= ~H2j, 
where the elements of ~ii not otherwise specified 
vanish. As this matrix is symmetric, it can be diag­
onalized by Jacobi's method; but the eigenvalues 
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obtained in this way should agree with those of the 
operator 

A' = (2L + l)tA(2L + I)-i, (4.107) 

where B = L(L + 1). This operator is represented by 
the matrix 

A;j = Bij + ~;j, 
~j 1+2 = -!j(j + 1)()(2/[(j + t)(j + t)], (4.108) 

~1+2j = -!j(j + 1)()(2/[(j - t)(j + t)). 
A FORTRAN program based on the factorization method 
and described in the appendix was used to find the 
eigenvalues and eigenvectors of this matrix, truncated 
to 50 rows and columns. The eigenvalues obtained 
are listed in Table I corresponding to ()(2 = 25. 

The determination of these eigenvalues, together 
with eigenvectors, took eight seconds on a CDC 6400 
computer, about one half the time required by a 
similar program applying Jacobi's method to the cor­
responding symmetric matrix. Comparison of the 
results of the two programs and the evaluation of the 
asymptotic formula for the eigenvalues showed that 
all except the last two eigenvalues are quite accurate 
and that, up to the 44th eigenvalue, accuracy extends 
to the last significant figure. Somewhat less than )wo 
factorizations were required, on the average, to obtain 
each eigenvalue. Similar results have been obtained 
with other asymmetric matrices, including some with 
complex eigenvalues. 

TABLE I. Eigenvalues for matrix given in Eq. (4.108), corre­
sponding to a:2 = 25. 

k a'k) k alk ) 

1 -16.0790427 26 637.525339 
2 -16.0504127 27 689.523455 
3 -2.44859890 28 743.521774 
4 0.0609298922 29 799.520268 
5 8.63039594 30 857.518913 
6 18.0845680 31 917.517689 
7 29.9168823 32 979.516581 
8 43.8068811 33 1043.51557 
9 59.7361805 34 1109.51466 

10 77.6875676 35 1177.51382 
11 97.6526589 36 1247.51305 
12 119.626718 37 1319.51234 
13 143.606902 38 1393.51169 
14 169.591415 39 1469.51109 
15 197.579078 40 1547.51053 
16 227.569088 41 1627.51002 
17 259.560884 42 1709.50954 
18 293.554062 43 1793.50910 
19 329.548329 44 1879.50868 
20 367.543464 45 1967.50830 
21 407.539299 46 2057.50794 
22 449.535707 47 2149.50771 
23 493.532587 48 2243.50738 
24 539.529858 49 2339.70420 
25 587.527460 50 2437.70002 

Our second example is used to illustrate a technique 
useful, and often essential, in handling slowly con­
vergent matrices. It arises in the determination of the 
energies of bound states and the Regge trajectories 
associated with Wick's equation. The relevant operator 
IS 

A = [K2 - (1 + q2)-I] 

X [tp(l + q2)p(1 + q2) - 4v2]. (4.109) 

For bound states, v is an integer and K determines the 
binding energy; the eigenvalues of A represent possible 
values of the coupling constant. In the corresponding 
scattering problem, K is imaginary and may be assumed 
to be known; v is also imaginary and determines the 
Regge poles. The operator 

B = tp(1 + q2)p(1 + q2) = 4£2 

readily yields to the technique of Sec. 3, with 

(;1 = (1 + q2)-1 - t; 

(4.110) 

(4.111) 

the eigenvalues of L are /(i) = j - 1 and the matrix 
elements of (;1 are 

(4.112) 

except that «(;1)31 = t. Because of the poor conver­
gence of the solutions of 

AVP ) = a(i)1p(i) , 

it is necessary to modify the last diagonal element of 
the truncated matrix Aij; this is done in such a way as 
to ensure that 

a(i)[K2 - (1 + q2)-I]-I1p(j) = (B _ 4v2)1p<j) 

is a finite vector. 
In examples of this kind, the components 1p(j) of 
. k 

1p(1) satisfy a recurrence relation of the type 

a1p~~2 + 2b1p~~1 + C1pk
j

) = 0 (4.113) 

for large values of i. This difference equation has two 
~ndependent solutions, and the one normally required 
IS 

(4.114) 

where). is the smaller root of 

a).2 + 2h)' + C = o. (4.115) 

Consequently, the last diagonal element of the 
truncated matrix should be modified by a factor 
1 + taAfh. Such a procedure does not apply, however, 
when A is given by (4.109), since equation (4.115) 
proves to have two complex roots of equal modulus. 
In this case the alternative procedure already men­
tioned is used. 
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5. DIFFERENTIAL AND INTEGRAL EQUATIONS 

It will be evident from the results obtained in the 
preceding sections that it is in no sense essential, and 
perhaps even detrimental, to express quantum­
mechanical eigenproblems in the form of differential 
or integral equations. On the other hand, because of 
the widespread use of wave-mechanical methods, 
problems may often appear in this form; the present 
section is included both to clarify the relationship 
between the two formalisms and to aid with the identi­
fication of corresponding differential and operational 

·equations. 
A. Differential Equations 

The functions u!(x) of the differential equations 
(Ll) and (1.3) are related to the vectors 1p(!) of the 
algebraic equations (1.2) and (1.4) in the following 
way: 

U!(x) = ip(O)e iP",1p(!). (5.1) 

From this and the fact that 

(5.2) 

where q and p have their usual quantum-mechanical 
meanings in distinction to the unrestricted coordinate 
variable x, and assuming q1pCO) = 0 to hold, it follows 
that 

(5.3) 

and 

-i!!... u!(x) = ip(O)eiP",p1p(!). (5.4) 
dx 

Hence, we are justified in rewriting equations of the 
form 

[A( -i :x ' x) - a!}z<x) = 0 (5.5) 

in the form 

(5.6) 

Conversely, the operators B(P, q), r(p, q), and 
Il(p, q) may be expressed as differential operators 
wherever they appear by means of these same sub­
stitutions; Fo;' convenience, the differential equations 
corresponding to the examples solved in Sec. 3 are 
listed below: 

(4) 

[~ (1 - x2) ~ - 2(ft + vx) ~ + bi]Ui(X) = 0, 
dx dx dx 

(5) [x d
2

2 - f32x - l + bi]U/X) = 0, 
dx x 

(6) 

[ 
d2 d] (7) X -2 - 2(f3x + v) - + bi ui(x) = 0, 

dx dx 

(8) [(1 + X2
)2 ::2 - 4,u(1 + x2

) + bi};(X) = 0, 

(9) [::2 - 4,u tan
2 

x + bi};(X) = 0, 

(10) [X2 ::2 - f32x2 + 2llX + bi}i(X) = 0, 

[ 

d2 d2 

(11) 2 + -2 - (1 + ll)X~ - (1 - ll)xi 
dXl dX2 

- 2f3XlX2 + bi,k]Ui,iXl' x2) = 0, 

(12) 
[ 

2 d2 d 2 b] ( X -2 + X - + x - i U i x) = O. 
dx dx 

As indicated by the names assigned earlier, these are 
all forms of well-known equations. 

Similarly, in addition to (l.l) 

[~ (1 - X2) ~ + ll2X2 + a!]ul(x) = 0, 
dx dx 

the examples discussed in Sec. 4 may be considered to 
solve: 

(1) [(1 - KX2)~(1 - X2)~ - 2{v(1 - KX2) 
dx dx 

- p(l - X2)}X :x - Ax2 + al}zCx) = 0, 

(2) [(1 - Kx)~(l - X2)~ - 2{(1 - KX)(,u + vx) 
dx dx 

- p(l - X2)} ~ - Ax + al]ul(X) = 0, 
dx 

[ 
~ d 

(3) x(x + 1) -2 - 2{(x + 1)(f3x + v) + ,ux}­
dx dx 

- AX + a!]u1(x) = O. 

These are equations which appear in many perturba­
tion problems of current concern. 
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It is also interesting to note that each of the above 
linear second-order differential equations, the charac­
teristic form for the Schrodinger representation, has 
a first-order nonlinear counterpart, a Riccati form. 
Defining the functions Wj = wiq) such that 

WjP - pWj = i!!... Wj (5.7) 
dq 

(since qp - pq = i), and taking the OJ of equations 
(3.1) and (3.2) to be 

then if 

OJ = p + iWj, 

OJ =p - iWj, 

(5.8) 

(5.9) 

(5.10) 

where H j represents the Hamiltonian (with m = !) 
incorporating the potential function v(q) , it follows 
that 

B. - b(j) = O'!O. 
J J J 

will become 

p2 + v(q) - bW = (p - iWj)(p + iWj) (5.11) 

or 

!!...W. + w2 - v(q) + bW = O. dq J J 
(5.12) 

This Riccati equation may be converted to the 
SchrOdinger form featured above by applying the 
standard transformation12 

-1 d 
Wj = u j dx Uj, (5.13) 

relating wj(q) and u;(x); the result is 

[::2 - vex) + bi}i = O. (5.14) 

Of course the Wi' uj ' and b(i) may be regarded as 
matrix elements and these equations as matrix differ­
ential equations. Clearly, either may be solved to 
obtain the eigenfunctions and eigenvalues relating to 
a particular potential v(q) or vex). In the past, the 
latter has most often been used, and many specialized 
solution techniques have been developed13 ; but per­
haps the most comprehensive one is the factorization 
method of Infeld and Hull, referred to earlier.4 This 
depends on the fact that many single equations of the 
type (5.14) can be "factorized" into two first-order 

12 E. L. Ince, Ordinary Differential Equations (Longmans, Green, 
and Company, London, 1926; reprinted Dover Publications, New 
York, 1944), pp. 23-25. 

13 P. M. Morse and H. Feshbach, Methods o/Theoretical Physics 
(McGraw-Hill Book Co., New York, 1953), Vol. II, pp. 1639-1758. 

linear differential equations: 

[k(X, m + 1) - :JUj = [b j - L(m + l)]t uj+\ 

(5.15) 

[k(X, m) + ~JUj = [b j - L(m)]luj-\ (5.16) 

where m represents some nonnegative integer. Cross­
applying the initial operators and comparing each 
resulting equation with (5.14) then leads to the Riccati 
equations 

!!...k(x, m + 1) + k2(X, m + 1) + L(m + 1) 
dx 

= vex, m) (5.17) 

and 

- !!... k(x, m) + k2(x, m) + L(m) = vex, m}. (5.18) 
dx 

Subtracting these yields the necessary and sufficient 
condition which k and L must satisfy: 

!!... [k(x, m + 1) + k(x, m)] + k2(X, m + 1) 
dx . 

- k2(X, m) + L(m + 1) - L(m) = O. (5.19) 

Any k - L pair which satisfies this equation implies 
a particular vex, m) through the above relations and, 
thus, one factorization type whose eigenfunctions and 
eigenvalues follow from (5.15) and (5.16). Basically, 
there are only two such types, but they give rise to six 
others which, though nonindependent, are all of 
practical importance. Most common potentials, in­
cluding those leading to Legendrian and hypergeo­
metric forms, prove to be special cases associated with 
one or another of these six types; they have been 
tabulated, along with the related k - L pairs, eigen­
functions, and eigenvalues, by the same authors. 

The step operators bracketed in (5.15) and (5.16) 
correspond to the OJ of Eqs. (3.1) and (3.2) or, more 
generally, to the 0'(1) of Eqs. (3.36) and (3.37); hence, 
it is to be expected that the same kind of differential 
equation would have to be solved to obtain specific 
forms of either. Actually, the general solution of the 
Riccati equation 

where T is an nl X n2 matrix and N1 , N2 , Ns , N4 are 
respectively n2 X nl, n2 X n2, n1 X n1, n1 X n2 mat· 
rices, can be formulated in terms of a characteristic 
matrix of an associated set of linear equations and a 
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matrix of initial values.14,15 In a sense, both of the 
methods discussed here amount to specialized schemes 
for obtaining the solutions of this set of associated 
linear equations. However, the factorization method 
does not yield the step operators in a convenient form 
for field theory computations, where they enter as 
creation and destruction operators in the algebraic 
interpretation of the required functional differential 
calculus,16.17 and does not lend itself to the calculation 
of 'matrix elements for dynamical variables. 

The latter limitation means that the method cannot 
very easily be extended from the simpler equations, 
such as Examples 1-12 above, to perturbed forms of 
these equations; and it is just this difficulty which the 
codiagonal approach remedies. It is possible, of 
course, to obtain such matrix elements from recurrence 
relations whenever these are available. As mentioned 
in connection with Eqs. (3.38) and (3.39), the oper­
ators a(!) necessarily define relations of this kind; with 

a(1)Pn = (n + I)Pn+1, 

a(2)Pn = nPn- l , 

(5.21) 

(5.22) 

the operational form implied by Example 3 of Sec. 3, 

X= 
aU) + a(2) 

2M + 1 ' 
(5.23) 

immediately yields the well-known formula connecting 
Legendre polynomials Pn(x) of serial order: 

xP = (n + I)Pn+1 + nPn_ 1 

n 2n + 1 . 
(5.24) 

Hence, matrix elements for the perturbation terms of 
Legendre-like equations can be determined from the 
latter. Using Eq. (1.1) as an example, 

(l2X2p = (l2{ [ (n + 1)(n + 2) Jp 
n (2n + 1)(2n + 3) n+2 

+ + P [ 
(n + 1)2 n

2 J 
(2n + 1)(2n + 3) (2n + 1)(2n _ 1) n 

+ [(2n :(~)~~)_l)JPn-+ (5.25) 

which represents an alternate, if somewhat incon­
venient, form of the relation defined by (4.26)-(4.28). 

It is useful to observe that Inui has devised a 
technique of writing recurrence relations for the 
solutions of any equation of the form (5.14) which 

14 J. J. Levin, Proc. Am. Math. Soc. 10, 519 (1959). 
15 W. T. Reid, J. Math. Mech. 2,221 (1959). 
16 F. Rohrlich and M. Wilner, J. Math. Phys. 37,482 (1966). 
l' A. I. Akheizer and V. B. Berestetskii, Quantum Electrodynamics 

(Interscience Publishers, Inc., New York, 1965), pp. 198-205. 

can be factorized. IS This is the class of Fuchsian 
equations whose solutions are certain "special func­
tions." It is also the class of equations for which the 
operator E, as defined herein, may be diagonalized 
exactly; and since the perturbation operators rand 
~ need not remain s~all, the present results may also 
be interpreted as a method of solving an extended 
class of special function Fuchsian equations. These 
are equations of the form 

[ 
d2 d J dx2 + P(x) dx + Q(x) + a! u!(x) = 0, (5.26) 

where P(x) and Q(x) lead to no more than three 
regular singularities, or one regular and one irregular 
singularity, and are otherwise analytic everywhere in 
the domain of interest. Our restrictions on r and ~ 
are such as to leave the essential character of these 
functions unchanged, while yet permitting solutions 
for a much broader range of types than has previously 
been considered. 

B. Integral Equations 

The solution of (5.6) by matrix techniques also 
provides the solution of a variety of equations of the 
type 

(5.27) 

where K(A) is some function of A, and the eigenvalue 
k(!) of K, corresponding to the eigenvector 1p(!), is 
clearly 

(5.28) 

When, as in (5.5), A is represented as a differential 
operator and the eigenvector 1p(!) as a differentiable 
function u(!), K ordinarily must be represented as an 
integral operator-the only exceptions arising when 
K(A) is a polynomial. Thus, in the representation 
adopted in this section, (5.27) assumes the form 

LP 
K(x, y)u(!)(y) dy = k(!)u(!)(x), (5.29) 

where (l = q(l) and f3 = q(2) are the endpoints of the 
range of eigenvalues of q. This is a homogeneous 
integral equation of a type which frequently arises in 
mathematical physics. 

If the kernel K(x, y) is nonsingular, the Hilbert­
Schmidt method provides a well-known matrix tech­
nique for the solution of (5.29). Here we are more 
interested in the possibility of identifying the operator 
A corresponding to a given kernel K and, hence, 
effectively reducing the integral equation to a differ­
ential equation or an operational equation of a known 

18 T. Inui, Pro gr. Theoret. Phys. (Kyoto) 3(2), 168 (1948) and 3(3) 
244 (1948). ' 
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type. The inverse problem is also of considerable 
interest, since the integral equation already incor­
porates boundary conditions which may be difficult 
to apply to the corresponding differential equation. 
It is reasonable to require that K(x, y) should be an 
analytic function of both variables, since otherwise 
the solution of the latter problem will not be unique. 

The requirement that the integral operator in (S.29) 
should commute with the differential operator A can 
be met only if K(x, y) satisfies the partial differential 
equation 

A( -i o~ ,x )K(X, y) = A*( -i OOy ,y )K(X, y), 

(S.30) 

where A*(p, q), as previously, represents the Hermitian 
conjugate of A(p, q). Since A has to be self-conjugate 
in the sense of (2.S), 

A*(p, q) = H(p, q)A(P, q)H-l(p, q), (S.31) 

where H(p, q) is Hermitian. If A is a second-order 
differential operator of the form 

A(P, q) = pf(q)p + ig(q)p + h(q), 

then H is a function H(q) of q only, given by 

(S.32) 

f(q)H'(q) = g(q)H(q). (S.33) 

If we make use of (S.31) and define L(x, y) by 

K(x, y) = H( -i :y ,y )L(X, y), (S.34) 

we find that (S.30) is satisfied, provided 

A( -i :x' x )L(X, y) = A( -i :y ,y )L(X, y). (S.35) 

We may therefore assume that L(x, y) is a symmetric 
function of x and y. 

It is not possible, of course, to give a general 
solution of (S.3S) and we shall therefore proceed to 
discuss some examples arising from operators A(p, q) 
of the general type considered elsewhere in this paper. 
First let us suppose that A is given by (5.32) with 

so that 

f(q) = I - q2, 

g(q) = 2(aq2 + bq + c), 

h(q) = Aq2 + pq, 

(5.36) 

H(q) = e2aq (1 - q)a+b+c(1 + q)-a+b-c. (5.37) 

The limits of integration oc and f3 in (5.29) will take 
values - 00, -1, 1, or 00, chosen with regard to the 

values a, b, c, and the validity of (5.30). In this ex­
ample, L(x,y) can be assumed to be a function of the 
form 

L(x,y) = L(x + y), (S.38) 

and (S.3S) is satisfied provided 

zL"(z) + 2(az + b + I)L'(z) + (AZ + p)L(z) = 0. 

(5.39) 

The solution of this equation which is finite for z = 0, 
even when b > -I, is readily obtained in terms of the 
confluent hypergeometric function Mk,m: 

L(z) = e-azz-(bH) Mk,m(vz) , 

v2 = 4(a2 - A), 

vk = p - 2a(b + 1), 
(S.40) 

m = b + t. 
The kernel of the integral equation is thus a more 
elementary function than its solutions, which can be 
expressed in terms of ellipsoidal wavefunctions. 

For our second example we suppose that 

f(q) = q(1 - q)(A - q), 

g(q) = j'(q) + aq2 + bq + AC, 

h(q) = f.lq, 

(S.4I) 

wherein it can be assumed that A > 1. The form of 
H(q) is readily obtained from (S.33) and the limits of 
integration oc and f3 in (S.29) now take values of - 00, 

0, I, A, or 00. Here we can assume 

L(x, y) = L(xy) (5.42) 

[alternatively, L(xy - x - y) or L(xy - AX - Ay)] 
and then L must satisfy the equation 

z(1 - z)L"(z) + (c - az)L'(z) - pL(z) = 0, (5.43) 

whose solutions are hypergeometric functions. The 
solutions of the integral equation are generalized 
Lame functions. Another type of differential operator 
which has a kernel containing a factor of the type 
L(xy) is obtained by replacing x and y with x 2 and y2, 
respectively. 

As a final example, suppose that A is of the type 

A(p, q) = qf(p2) + ipg(P2). (5.44) 

Then clearly (5.3S) will be satisfied provided L(x, y) is 
a suitable function of the form 

L(x, y) = L(x2 - 2xy + y2). (5.4S) 

It is easy to construct more complicated examples and 
thus build a collection of corresponding differential 
and integral operators. 
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6. DISCUSSION 

A. Scattering Problems 

First we shall discuss one application of the methods 
described to operators which do not have a complete 
set of discrete eigenvectors. Examples 6 and 10 of 
Sec. 3 are of this kind, a type which occurs quite 
commonly in quantum mechanics. The energy spec­
trum of a system of particles is continuous when two 
or more components of the system can separate after 
interaction. It may even happen that the spectrum is 
entirely continuous, as when the potential energy has 
either no negative minima, or only shallow negative 
minima. 

One way of producing a discrete spectrum for the 
energy in such situations is to introduce an additional 
potential, equivalent to an impenetrable wall con­
taining the system. This device is not convenient for 
practical purposes, however, as it substitutes a very 
large number of closely-spaced energy levels for even 
a finite part of the continuous spectrum. Besides, the 
object of the calculation is usually to determine the 
scattering matrix rather than the energy eigenvalues, 
which are to be regarded as given in scattering prob­
lems. A more pertinent problem is, therefore, to 
determine the eigenvalues of (2.1), 

A = fB + Ll, 
where B represents the energy and rand 6. are chosen 
so that the eigenvalues of A are discrete. 

F or two particles in an eigenstate of the angular 
momentum, the energy is 

B = [p2 + [(l + 1)/q2]/(2m) + V(q). (6.1) 

Supposing that, for large numerical values of q, 
V(q) f"o-' -a/r(q), we take 

r = r(q), Ll = a - bf(q), (6.2) 

where b is the known eigenvalue of B. The eigenvalue 
of A is then a. What is really required from this calcu­
lation is the relation 

[ = [(i)(a, b), (6.3) 

obtained by assigning the value a to t\:le jth eigenvalue 
of A. The bound states, which always exist for suitable 
values of a, correspond to negative values of b. When 
b is given the positive values appropriate to scattering, 
lUi becomes complex, and I = lUI is a Regge trajectory, 
which must appear as a pole of the S matrix. Since the 
S matrix is unitary, the element corresponding to the 
lth partial wave is 

OCJ 

Sl = II (1 - 1(;)*)/(1 - IU» 
j=l 

(6.4) 

where Le is the analytic continuation of the angular­
momentum operator whose eigenvalues are [(i). The 
phase shifts are given by 

2i'YJz = log Sl 

= trace log [(l - L:)/(1 - Len (6.5) 

As a simple example of the application of this 
technique, consider the scattering of two charged 
particles due to their Coulomb interaction. Then 
V(q) = -a/q, and the operator 2mA coincides with 
that of Example 5 listed under the exactly soluble 
cases of Sec. 3. From the analysis given there, 

l(i) = -j + ia/(2mb)~, (6.6) 

if we interpret (-2mb)} as -i(2mb)!, i.e., make an 
analytic continuation consistent with giving the mass 
a negative imaginary part in the transition from nega­
tive to positive values of b. With a numerical factor 
of unit modulus inserted to assure convergence, the 
corresponding S-matrix element is 

00 

Sz = II (I - 1/j)-2ia(l + j + irx)/(l + j - irx) 
j=l 

= f(l + 1 - irx)/f(l + 1 + irx), (6.7) 

in agreement with the known result. 

B. General Remarks 

Because the Infeld-Hull factorization method 
depends on one particular coordinate representation, 
various studies of its algebraic substructures have been 
made; and because the method utilizes differential 
equations, these have featured Lie algebras, which 
inherently involve groups associated with differential 
equations. Kaufman has exploited this last fact in a 
very direct way, by using the differential operators 
from recurrence relations for several special functions 
to form the corresponding finite operator in a Lie 
algebra.19 She shows that none of the examples actually 
treated by Infeld and Hull imply a Lie group with 
more than three parameters. 

The six factorization types are, of course, more 
general; but Miller has established that these may be 
derived from the representations of four Lie algebras, 
whose groups are all special cases of a four-parameter 
Lie group: 0 3 for the three-dimensional rotation 
group, Ta for the two-dimensional Euclidean group, 
T6 for the three-dimensional Euclidean group, and 
H4 representing a special four-dimensional Lie al­
gebra. 20 Making the proper identifications, the recur­
rence relations of the form (5.15), (5.16) for each 

19 B. Kaufman, J. Math. Phys. 7, 447 (1966). 
20 W. Miller, Jr., Mem. Am. Math. Soc. 50 (1964). 
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factorization type follow immediately from the 
commutation relations of its algebra. As might be 
expected, irreducible representations of the required 
algebras are obtained by solving Riccati equations in 
the unknown functions. 

Inui, in the work referred to earlier,Is has proved 
that any Fuchsian equation of the hypergeometric or 
confluent hypergeometric type can be factorized. 
Accordingly, the algebra underlying any such equa­
tion must be one of the four Lie algebras given above. 
All examples of the operator B treated in the present 
paper are of this kind. However, the method we have 
developed is more general, allowing equations to be 
solved whose algebras may be of a different type. 
For instance, Example 11 of Sec. 3 readily generalized 
to n coupled oscillators, so that the group 02n+l is 
involved. 

The system of Eqs. (3.24) will terminate whenever 
the operator B is exactly diagonalizable and G is 
properly chosen, regardless of whether or not it 
corresponds to a factorizable differential equation with 
its associated Lie algebra. Actually, the method 
adopted here appears to be more general than the 
factorization method, where the commutators of the 
G j must in addition be expressible in terms of the G j , 

and must form a finite sequence. Our method implies 
either a covering algebra of a Lie algebra, or even an 
algebra of a more general kind, when the sequence of 
equations does not terminate at all. Indeed, it seems 
reasonable to believe that a Lie-algebra structure is no 
more essential than a differential-equation formulation 
for quantum-mechanical problems. 

On the other hand, a Hilbert space appears to be 
desirable, and generalizing from the Hermitian 
operator case mentioned in connection with equations 
(3.1)-(3.8), we have taken the operators B, Gk , and, 
ultimately, A to be self-adjoint. Our results depend 
strongly on this fact. Also, independently pursuing a 
suggestion contained in work by Coish,21 Joseph and 
Coulson have recently developed a method featuring 
self-adjoint step operators by means of which many 
results similar to ours for the unperturbed operator B 
may be obtained.22,23 

Perhaps in.conclusion it is worth remarking that, 
while the new solutions which the present method 
makes possible are not exact in the traditional sense 
associated with differential equations, they may 
nevertheless provide a superior description of the 
material world. The methods of conventional analysis 
do not necessarily correspond to the processes of 

21 H. R. Coish, Can. J. Phys. 34, 343 (1956). 
•• A. Joseph, Rev. Mod. Phys. 39, 829 (1967). 
.3 C. A. Coulson and A. Joseph, Rev. Mod. Phys. 39, 838 (1967). 

nature,24 and there is some reason to think that they 
are not entirely compatible with the physical require­
ments of quantum mechanics. 

APPENDIX 

We shall summarize here a computational proce­
dure for the determination of eigenvalues and eigen­
vectors, based on the factorization method described 
in the text. It is easily translated into a computer 
program, consisting of three parts. 

(I) The first part of the program reduces the matrix 
A to almost triangular form by Householder's 
method ,25 which uses only orthogonal transformations. 
This has to be done only once, and improves the 
speed and accuracy of the whole program. If the 
matrix A is n-dimensional, a succession of n - 2 
orthogonal transformations is applied, reducing the 
elements Aii with i > j + 1 to zero for j = 1,2, ... , 
n - 2. 

Define 

A(I) = A, 

A(k-t-I ) = P(k)A(k)P(k), (k = 1,2, ... , n - 2) (AI) 

A' = A(n-I ), 

with p(k) defined by 

p(k
j

) = t5'j _ W~Ic)W(,k) 
I , '3 , 

w~k) = 0, i::; k, 

W (k) - (1 + A(k)A(k) )! 
Tc+l - k+lk , 

W (k) - A(k)A(k)/W(k) 
i - ik Tc+l' 

A (k) = ± [ I (A:~»)2J-! , 
i>k 

(A2) 

where the sign of A (k) is the same as that of A~l k' If 
eigenvectors are required, 

p' = p(n-2) ••• P(2)p(I) (A3) 

should be computed as well as A'. 
(2) The second and most essential part of the 

program uses a factorization procedure, closely related 
to Francis's "QR transformation," to reduce the 
almost triangular A'to triangular form, again by 
orthogonal transformations only. If some of the 
eigenvalues of A are complex, the resulting matrix 
A" will not be strictly triangular, but will contain two­
dimensional sub matrices on the diagonal whose eigen­
values are complex eigenvalues of A. 

Define 

2. P. A. M. Dirac, Phys. Rev. 139, 684 (1965) • 
2. A. S, Householder and F. L. Bauer, Numerische Math. 1, 29 

(1959). 
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for 

by 

k = n, n + 1, n + 2, ... 

A(k-l) = U(k)T(k) + p,(k) , 

A(k) = T(k)U(k) + p,(k), (A4) 

where U(k) is unitary, T(k) is upper-triangular, and 
p,(k) is a suitably chosen multiple of the unit matrix. 
The unitary matrix U(k) is a product of n - 1 orthog­
onal matrices: 

U(k) = pik) p~k) ••• P~.!.l 

where pJk) is determined from 

Bi i+1' Bi+1 i' and Bi+1 i+1 of 

(k ~ n), (A5) 

the elements Bii , 

B = P~~1 ... Pik)A (k-U (j > 1), 

or B = A(k-l) for j = 1. In fact, pJk) is obtained by 
replacing the elements (Jii' (Ji HI, (JHl i' and (Ji+l HI of 
the unit matrix with 

(B " - u(k»/N, B IN B IN "r - HI i , HI i 
and 

where 
N2 = (B jj - A,(k»2 + B~+1 i' 

The only part of this procedure which is unspecified 
now is the determination of p,(k), and this has an 
important bearing on the convergence of the sequence 
A(n), A(nH ), A(n+2), ••• to triangular form. The nearer 
p,(k) is to an eigenvalue of A (or the real part of a 
complex eigenvalue), the more quickly this eigenvalue 
will be isolated. Usually it is sufficient to estimate the 
eigenvalue (or its real part) from the lowest unresolved 
two-dimensional matrix on the diagonal. However, 
it is important to isolate the eigenvalues in descending 
numerical order, and therefore better to start with 
an overestimate of p,(k) , approaching the estimated 
value from above after several transformations. 

When the elements below the diagonal are suffi­
ciently small, the iterations (A4) are terminated and 
the results' 

A" = A(k), 
p" = (j(k) • •• (j(n) p' (A6) 

are kept for the last part of the program. 
(3) The third part of the program reduces the tri­

angular matrix to diagonal form by means of similar­
ity transformations; this is necessary, of course, only 
if eigenvectors are required. A sequence of trans­
formations of the type 

A(r+1) = T(r)A(r)T(r)-t, 

T!i) = (Jii - Ckl(Jik(JiI' 

T (r)-1 _.It + .It.lt 
i; - Uij Ck IUikUi I , 

(A7) 

with i < j may be used, starting with 1 = nand 
k = n - 1, and progressively reducing the value of 
1 + k. The only complication arises when, because of 
the existence of complex eigenvalues, there are some 
nonvanishing elements just below the diagonal. We 
shall consider the possibility A~rL =;l= 0 and A~~l i =;l= O. 
If Ai' Ai' Q, and C are two-dimensional matrices 
obtained from, first, the (i - l)th and ith rows and 
columns of A(r), second, the jth and (j + 1 )th rows 
and columns of A(r), third, the (i - l)th and ith rows 
and thejth and (j + l)th columns of A(r) and, fourth, 
the (i - 1 )th and ith rows and jth and (j + 1 )th 
columns of T(r)-I, we have to determine C so that 

This matrix equation is a set of four simultaneous 
equations from which cij and ci ,+1 can be determined; 
the solution simplifies when, as a result of the second 
part of the program, 

A (r) - A(r) d A(r) - A(r) 
ii - i-li-l an H - HI HI • 
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An analytic study is made of the dispersion relations and frequency spectra of simple cubic lattices in 
which there exist long-range potentials of the form l/r". The rigid-ion approximation is used. An ex­
pansion of the dispersion relations about the maximum propagation vector in the first Brillouin zone 
is obtained for 1 ~ P ~ 3 and the contribution of the region about this point to the vibrational frequency 
spectrum of the lattice is studied. 

I. INTRODUCTION 

When long-range interactions are present in a 
crystal lattice, one or more branches of the dispersion 
relations for its normal-mode vibrations may be 
nonanalytic at certain critical points in the reciprocal 
cell. This nonanalytic behavior is caused by nonana­
lytic terms in the elements of the secular determinant 
giving the normal-mode frequencies and is not neces­
sarily a result of a degeneracy between branches of 
the dispersion relations at the critical point. At the 
frequency corresponding to the critical point, the 
behavior of the frequency spectrum is determined by 
the expansion properties of the dispersion relations 
about the critical point.1- 3 We have thus begun a 
study of the dispersion relations and frequency 
spectra of lattices in which long-range potentials of 
the form Ifr P are present between particles. 

The treatment in this paper is concerned mainly 
with three-dimensional simple cubic lattices when the 
rigid-ion approximation is used. In Sec. II, we discuss 
the general properties of the elements of the secular 
determinant for an N-dimensional simple cubic lattice 
when a Ifr P long-range interaction is present. The 
elements are found to be analytic except at the maxi­
mum propagation vector in the first Brillouin zone. 
In Sec. III, we study the dispersion relations near this 
nonanalytic point for a three-dimensional simple 
cubic lattice when p is restricted by 1 < p :::;; 3. In 
Secs. IV and V, the frequency spectrum and vibra­
tional modes of this lattice are studied. We also 
consider the limiting behavior of our results as p ap­
proaches one. A specific model for which p = 1 is 
introduced in Sec. VI. Finally, in Sec. VII, we briefly 
note that many of our results depend strongly on the 
cubic symmetry. 

• Based on a thesis submitted by P. D. Y. in partial fulfillment 
of the requirements for the degree of Doctor of Philosophy in the 
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II. THE SECULAR DETERMINANT 

We consider an infinite, N-dimensional, simple 
cubic lattice in which a Cartesian coordinate system 
is imbedded in such a way that the ith component of 
the position of any lattice point is given by ali where 
Ii is an integer. The displacement of the particle at 
equilibrium position al in the i direction is denoted 
by ui(l). We assume that the particles interact through 
a long-range and a short-range pair potential in such 
a way that the potential energy of the particle at the 
origin is given by 

(1) 
where 

and 

Vs = H I' {~i[ali + ui(l) - Ui(O)]2}-h. (3) 
I 

The primes on the summation signs indicate that 
1 = 0 is not included in the sums. The sum in Eq. (3) 
is assumed to be finite. G and H are constants and 
we do not assume that p in Eq. (2) is necessarily an 
integer. 

In the harmonic approximation, the equation of 
motion of the particle at the origin is 

mu;(O) = - ~ a
2

v I u;(l). (4) 
l,j aui(O)au;( 1) 0 

After substituting solutions of the form 

u;(l) = Ui exp [i~ilkcpk - cot)] (5) 

into Eq. (4), we obtain the eigenvector equation 

(6) 
where 

(7) 

The Aij are defined in the following way. First 
we write Aij in terms of its long- and short-range 
contributions, 

Aij = At + A~. (8) 

At and A~ can be expressed in the following form: 

At( <p) = Tt(O) - Tt( <p) (9) 
and 

1090 
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where Tf; and TZ are defined in Eqs. (AI) and (A2) of 
Appendix A. The secular equation, giving the dis­
persion relations A( <1» for the lattice, is 

IA;l<l» - biiA(<I»1 = O. (11) 
The first Brillouin zone is defined by the condition 
-1T < if>; S 1T. 

We now wish to determine the conditions under 
which the expansion of Aii about a critical point will 
be dominated by a nonanalytic term as we approach 
the critical point. (Here we will ignore the unlikely 
possibility that Ai; contains no second-order terms.) 
Referring to Eqs. (2) and (10), one sees that A~ is 
analytic everywhere since it is a finite sum of analytic 
functions. Thus, we need study only the behavior of 
At or equivalently T~. 

Define 

SnC<I» = I' Il; cos (if>; - 1T)lj/C£k1i)n. (12) 
I 

As long as p > N - 2, the series in Eqs. (AI) and 
(A2) are uniformly convergent and we may write 

L e]2Sp/2+2 
T;j = -pCP + 2) orpiN; - 0iiPSp/2-j-l' (13) 

We use the Ewald transformation4,5 to convert Sn(<I» 
into the following form: 

1Tn { [( $ j 2 Sn = - ~!<l>-n-1+~N 1T~j I j + -) ] 
r(n) 21T 

+ I' [cDn_l(1T~jl~)Ilk cos $k1k] - ~}. (14) 
I n 

Here, $; = rp j - 1T and <l> m (x) is the incomplete 
gamma function defined by 

<Pm(x) = f" tme-xt dt. (15) 

It is well known that cDm(x) is analytic for any real 
x > O. However, its expansion from x = 0 into 
regions of positive x is not a simple power series. 
The form of this expansion depends upon whether or 
not m is a negative integer. It is given in Eqs. (Bl)­
(B3) of Appendix B. 

Using Eqs. (13) and (14) and the fact that <l>;"(x) = 
-<l>m+1(x), the T5(<I» are easily expressed as sum~a­
tions over incomplete gamma functions. It is well 
known that these summations are rapidly and ab­
solutely convergent. A glance at Eq. (13) will show 
one that an incomplete gamma function of zero , 
argument cannot appear in such a sum unless I; = 0 
or, equivalently, <p = (1T, 17', ... ,1T). It follows that 
T~( <1» is analytic everywhere in the first Brillouin 
zone except at ~ = O. 

4 P. P. Ewald, Ann. Physik (Leipzig) 64, 253 (1921). 
5 M. Born and K. Huang, Dynamical Theory of Crystal Lattices 

(Oxford University Press, London, 1954). 

Expansions of the Tb about ; = 0 are easily 
obtained. These are listed in Appendix A, Eqs. 
(A3)-(AlO). From these expansions and Eqs. (9) 
and (10) the general form for the expansion of Ai; 

about; = 0 can be found. It is given by the following 
set of relations: 

(a) If -ip + iN - 1 is not a negative integer, then 

Ai; = 0u X const 

+ 2P1Tp+2-~Nr(tN - tp) ($;) (;;) 
r(1 + tp)[~i$k/21T)2]!N-h 2TT 217' 

+ power series. (16) 

(b) If -tp + !N - 1 is a negative integer, then 

Ai} = 00 X const 

+ 2p( -1 )h-!N+11TP-!N+2 ( ~i ) ( ~ i) 
r(1 + ip)r(tp - tN + 1) 21T 217' 

X [~k(;:nh-~N In ~r(;:J 
+ power series. (17) 

In the above equations, the power series begins 
with second-order terms and contains terms of even 
order only. Clearly, the Ai; are nonanalytic at ; = 0 
[that is, at <p = (1T, 1T, ... ,1T)]. From the cubic 
symmetry, we see that this point is a critical point. 

From Eqs. (15) and (16) we see that the following 
rules govern the behavior of the Ai; near the critical 
point; = 0: 

(a) If p > N, the second-order terms in the power 
series dominate the nonanalytic term. 

(b) If N - 2 < p S N, the nonanalytic term 
dominates the second-order terms in the power series. 

(c) In the limit as p approaches N - 2, the non­
analytic terms approach terms which are not well 
defined at ; = O. That is, the values approached by 
these terms as ; approaches zero depend upon the 
direction of approach. 

In what follows we shall be primarily interested in 
cases (b) and (c). In case (a), the behavior of the 
frequency spectrum at the frequency of the critical 
point will be qualitatively the same as when no long­
range interaction is present. 

III. DISPERSION RELATIONS FOR A 
THREE-DIMENSIONAL MODEL 

In the remainder of this paper we shall be primarily 
interested in three-dimensional simple cubic lattices 
since much previous work has been done concerning 
one- and two-dimensional lattices.3,G,7 From the 
discussion in Sec. II, it is clear that, if N = 3 and 
p> 3, the qualitative behavior of the frequency 

6 H. B. Rosenstock, Phys. Rev. 111, 755 (1958). 
7 M. Smollett, Proc. Phys. Soc. (London) A65, 109 (1952). 
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spectra will be the same as when only short-range 
interactions are present. Thus, our discussion will 
be limited to the case of 1 ~ P ~ 3. It is also clear 
that in the limit of p = 1, the Aij are not well defined 
at ; = O. As a result, we will initially assume that 
1 < P ~ 3, and then study the limiting behavior of 
our results as p approaches unity. 

From Eqs. (16) and (17) and Appendix A, we see 
that the general forms of the Aij near ; = 0 are 
given by 

An = (J. + f3~~ + y(~~ + ~~) - 27T~~h(n + O(~) 
(18) 

and 

A12 = !5~1~2 - 27T~1~2h(e) + O(~4), (19) 

with the remaining Ai; following from the cubic 

where 

and 

[

(J. - 27T~~h(~2) -2rr~1~2hW) 

AO = -27T~1~2h(~2) (J. - 27T~~hW) 

-27T~1~3h(~2) -27T~2~3h(~2) 

!5~1~2 

symmetry. Here (J., 13, y, and 15 are constants. The 
function h( ~2) is given by the following set of equa­
tions: 

(a) If 1 < p < 3, then 

h(e) = _21- P7Tt ret - tp) 1 . (20) 
p r(1 + tp) (e)~-b 

(b) Ifp = 3, 
(21) 

We next determine the dispersion relations for the 
lattice in the region near ; = O. These are most 
easily obtained by applying perturbation theory to 
the solution of Eq. (6). Let A be the matrix whose 
elements are the A ij • We write A as the sum of two 
matrices 

(22) 

- 27T~1~3h(e)] 
- 27T~2~3h(~2) 

(J. - 27T~~hW) 

(23) 

[
f3~~ + y(~~ + ~~) 

AP = !5~1~2 f3~~ + y(~~ + ~:) (24) 
-' 

b~I~3 

We consider A ° to be the unperturbed matrix and 
AP to be the perturbation. Perturbation theory to 
first order is easily carried out because the secular 
equation giving the eigenvalues of AO can be factored. 
Our results for each of the three branches of the 
dispersion relations near; = 0 are as follows: 

A1 = (J. - 27T~2h(~2) 

+ ~-2[f3(4) + 2(y + c5)(2, 2)] + Oa2Ih(~2) (25) 

and 

A2} = (J. + ~-2[y(4) + (13 - c5 + y)(2, 2) 
A3 

± 1(13 - c5 - y)1 «4,4) - (4,2, 2»)!] 

+ O(~2Ih(~2). (26) 

The bracketed terms are certain polynomials in the 
~i which are defined in Appendix C. The remainder 
in the above expressions appears because of the fourth­
order remainder in the expression for AP and because 
we neglected contributions given by second- and 
higher-order perturbation theory. 

The term h( ~2) does not appear explicitly in the 
expressions for A2 and A3 • On the other hand h( ~2) 
contributes to the leading behavior of Al as ; ap­
proaches zero. From Eqs. (20), (21), and (25), we see 
that the leading terms for the first branch are as 

follows: 
(a) If 1 < p < 3, then 

A = (J. + 22-P7T~P ret - tp) ~p-l + O(e). (27) 
1 r(1 + tp) 

(b) If P = 3, then 

A1 = (J. - 27T~2In ~2 + O(~2). (28) 

Clearly, if p obeys 1 < P ~ 3, the point; = 0 is a 
minimum in AI. 

From Eqs. (26), (27), and (28), it is clear that A 
approaches (J. as ; approaches zero in all three 
branches provided p > 1. However, if we take the 
limit of Eq. (27) as p approaches one, we see that the 
value of Al at ; = 0 is ambiguous. For example, if 
we first let; go to zero and then let p go to one, Al goes 
to (J.. However, if we first let p go to one and then let 
; go to zero, Al goes to (J. + 47T. But one thing is clear. 
Consider a neighborhood of ; = 0 sufficiently small 
that second-order terms in Eq. (27) can be neglected. 
As p approaches one, Al approaches (J. + 47T unam­
biguously at every point in this neighborhood except 
; = 0 itself. 

No ambiguities occur in the second and third 
branches as p approaches one. Thus, we assume that 
Eq. (26) holds true for p = 1. The ambiguity in the 
first branch occurs only at a single point; = o. Thus, 
we assume that, if we exclude this single point, the 
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FIG. 1. The behavior of the 
leading term in A, near 1; = 0 
for several values of p. 

behavior of Al when p = 1 is obtained by taking the 
limit of Eq. (25) as p approaches one. We obtain 
the following expansion for Al when p = 1: 

(a) In Cartesian coordinates 

Al = ~ + 47T + ~-2[p(4) + 2(y + 15)(2,2)] + O(~4). 
(29) 

(b) In spherical coordinates 

Al = ~ + 47T + p~2 
- 2(1'1 - y - 15)~2H(e, 4» + Oa4

), (30) 
where 

H(e,4» = -1[7 + cos (44))] sin4 e + sin2 e. (31) 

In Fig. 1 we show the behavior of the leading terms 
in Al as p approaches unity. 

IV. THE FREQUENCY SPECTRUM FOR THE 
THREE-DIMENSIONAL MODEL 

The contributions of the region about t; = 0 to the 
frequency spectra of the second and third branches 
will depend strongly upon the values of the constants 
in Eq. (26). However, one can see that V 4>A2 = 
V 4>A3 = 0 at t; = 0, so that these are ordinary non­
analytic critical points. Their contribution to the fre­
quency spectrum should produce the usual inverse 
square-root infinite slopes associated with such points.2 

Our detailed discussion will be confined to the 
contribution of the first branch to the frequency 
spectrum. The contribution of the region about t; = 0 
is easily calculated provided 1 < P ~ 3, for then the 
surfaces of constant frequency near the critical point 
are spheres. The volume enclosed by such a sphere is 
V = t7T~3 and the (un normalized) contribution to 
the frequency spectrum dG(A1) is given by 

L\G(A1) = dV/dAl . (32) 

Using Eqs. (27), (28), and (32) we obtain the following 
contributions for Al > ~: 

(a) If 1 <p < 3, then 

dG(A1) = ~[22-VP7T! ret - i-p)]3/11-V) 
P - 1 r(1 + !p) 

X (AI - ~)'4-v)/(:P--1), (33) 

FIG. 2. The contribution 
h.G(A,) of the region about 
1; = 0 to the frequency spectrum 
of the first branch for several 
values of p. The contribution 
when p = 1.5 is too small to 
rise perceptively above the 
horizontal axis. 

and its derivative is 

2 2.9 

2.5 

d6.G(Al) = 47T(4 - P)[22- V7Ti ret - tp)]3/(1-V) 
dAl (p - 1)2 P r(1 + tp) 

X (AI - ~)(5-2v)/(V-l). (34) 
(b) If P = 3, then 

dG = [(AI - ~)/27T]t{ -In [(AI - ~)/27T]}-i, (35) 

and the leading term in its derivative is 

d6.G(Al) 1 

dAl = 47T[(A1 - ~)/47T]t[-ln «AI - ~)/27T)]i' 
(36) 

Equation (35) was obtained with the help of the 
method of Gillis and Weiss.s 

If only short-range interactions were present, we 
would usually expect an inverse square-root infinity 
in ddG(A1)/dAl at Al = ~. From Eqs. (34) and (36), 
we see that the following is true for our model: 

(a) If 1 < p < 2.5, then d6.G(A1)/dAl approaches 
zero as Al approaches ~ from above. 

(b) If P = 2.5, then ddG(A1)/dAl approaches a finite 
value as Al approaches ~ from above. 

(c) If 2.5 < p < 3, then ddG(A1)/dAl goes to 
infinity like (AI - ~)-n, where 0 < n < t, as Al ap­
proaches ~ from above. 

(d) If P = 3, then d6.G(A1)/dAl goes to infinity like 
(AI - ~ )-t [ -In (AI - ~) ]-i as Al approaches ~ from 
above. 
In Fig. 2, the leading behavior of dG(A1) near Al = ~ 
is shown for several values of p. 

In the limit of p = 1, the region about t; = 0 
makes no contribution to the frequency spectrum at 
Al = ~, for at all points in a small neighborhood of 
t; = 0, except t; = 0 itself, Al is approximately 
~ + 47T. Thus, this region will contribute to dG(A1) 
near the latter value of AI' In fact, one can easily show 
that the right-hand side of Eq. (33) approaches zero 
as p approaches one. In a later more specific example, 
the behavior of L\G(A1) will be determined for the case 
of p = 1. 

V. VIBRATIONAL MODES 
It is well known that if; lies in the [100], [110], or 

[111] directions, our vibrational modes will be 

8 J. Gillis and G. H. Weiss, Phys. Rev. 115, 1520 (1959). 
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pure transverse or pure longitudinal. We wish to deter­
mine which of our branches is the longitudinal branch 
and which are the transverse branches. 

First consider the case where ; lies in the [110] 
direction. The eigenvector equation (6) is easily solved 
for this case since now An = A22 and A13 = A 23 = O. 
We find that for the longitudinal mode A = Au + A12 , 
and, referring to Eq. (25), we easily identify this fre­
quency with the first branch. The first transverse 
mode is characterized by A = A33 , Ul + U2 = 0, and 
Ua = O. Using Eq. (26), we identify this mode with 
the second branch. Finally, the second transverse 
mode is characterized by A = An - A12 and Ul = 
U2 = O. It is identified with the third branch. 

Similar analyses with; pointing in the [100] and 
[111] directions show that the first branch is to be 
identified with the longitudinal mode and the second 
and third branches with the transverse modes. In 
these cases, the transverse modes are degenerate. 

So far, we have made no careful analysis of the 
vibrational modes for ; pointing in an arbitrary 
direction. 

VI. A MODEL FOR THE COULOMB 
INTERACTION 

In Sec. IV we discussed the contribution which the 
region about; = 0 makes to the frequency spectrum 
for the first branch if p obeys the condition 1 < P ~ 3. 
It was pointed out that the discussion does not apply 
to the case of p = 1. To study this case, we choose a 
particular model in which the long-range interaction 
is the Coulomb interaction. For the short-range 
interaction we choose q = 9 in Eq. (3) and assume 
that the sum extends over nearest neighbors only. 
The crystal is assumed to be under no outside 
pressure, so that the energy per cell is a minimum. 
From the latter condition we find that in Eq. (10) the 
factor aP-qH/G is equal to p,/54 where p, is the Made­
lung constant. We then obtain the following values 
for the constants appearing in Eqs. (26) and (29): 
IX = 5.11, (J = -2.54, Y = 0.109, and 15 = -1.18. 

An analysis of Eq. (29) now shows that Al ap­
proaches a maximum of IX + 41T as ; approaches 
zero. The surfaces of constant frequency are fluted 
spheres as shown by the contours in Fig. 3. This 
behavior of the dispersion relations is qualitatively 
different from that near I; = 0 when 1 < p ::;; 3. 

The form of the contribution llG(Al) of the region 
about ; = 0 to the frequency spectrum is easily 
determined using Eqs. (30) and (32). We find that, if 
Al < IX + 41T, 

llG(Al) = tL({J, (J - y - b)(1X + 41T - }'l)!' (37) 

where L({J, (J - y - b) is a constant given by 

L({J, (J - y - b) 

1

2"1'" sin 0 dO d4> 
= 0 0 [2({J - y - b)H(O, 4» - (J]! , (38) 

and H(O, 4» is defined in Eq. (31). Thus, dllG(Al)/dAl 
approaches infinity like (IX + 41T - Al)-i as Al 
approaches IX + 41T from above. This is qualitatively 
similar to the contribution of a critical point when 
no long-range interactions are present. It is quite 
different from the behavior of dllG(Al)/dAl when 
I <p ~ 3. 

In Figs. 3-5 we show contours of constant frequency 
in planes of constant 4>3 for all three branches obtained 
from Eqs. (26) and (29). We also give contours in the 
4>1 = 4>2 plane for the second and third branches. The 
fluted maximum occurring at ; = 0 in the first branch 
has been discussed above. From Figs. 4 and 5 we see 
that fluted saddle points occur at ; = 0 in the second 
and third branches. The sector numbers2 (P, N) of 
the fluted saddle point in the second branch are (1, 8). 
Those of the fluted saddle point in the third branch 
are (6, 1). We have compared these contours with 
contours obtained from a direct numerical calcula­
tion of the dispersion relations9 and find good agree­
ment near; = O. 

VII. DEPENDENCE OF RESULTS ON 
CUBIC SYMMETRY 

Mention must be made that the above results 
depend strongly upon the cubic symmetry. Our dis­
cussion will. be brief because our study of more 
general lattices is incomplete. As a simple example of 
a lattice in which cubic symmetry is broken, consider 
the above simple cubic lattice but with its particles 
constrained to vibrate in the Xl direction only. Equa­
tions (6) and (18) then show that the dispersion 
relation is of the form 

A = IX - 21T~ih(n + G(e). (39) 

We see from Eq. (20) that if we first take the limit of 
p = 1, the value approached by A as ; approaches one 
depends upon the direction of approach. Consider 
any neighborhood of ; = 0, no matter how small. 
Values of A ranging at least from IX to IX + 41T will be 
found in this neighborhood. 

We have also studied an orthorhombic Bravais 
lattice using the rigid-ion approximation. The deriva­
tion in Sec. II can easily be carried out for such a 
lattice and the conclusions reached at the end of the 
section remain valid. If 1 < p ::;; 3, the dispersion 
relations are easily calculated using nondegenerate 
perturbation theory and the leading nonanalytic term 
due to the long-range interactions is found to occur in 
every branch, not just the first. We have not made any 

9 C. Mainville, M.A. thesis, Clark University, 1968. 
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FIG. 3. Contours of constant frequency for the first branch near l; = 0 when p = 1. In each plane of constant </>3' 
only one-eighth of the region about l; = 0 is shown. 

careful analysis of the case of p = 1 for such lattices. 
We conclude with the remark that one can easily 

extend the treatment in this paper to more complex 
lattices. 

APPENDIX A 

The T{j( cp) and T~( cp) appearing in Eqs. (9) and (10) 
are defined as follows: 

Tt(cp) = -pep + 2) 
X L' {( -I?'klk[i1j sin (CPi1i) sin (cpt l ,) 

1 (~kl~)h+2 

and 

X J:"Lcos (CPk[k)}' i;i: j, (AI) 

TL _ _ ' -1 J:.k l k P _ p(p + i 

[ 
. 2) /2J 

ii( cp) - f ( ) (~k[~)h+l (~k/!)h+2 
X Ilcos(CPk[k)' (A2) 

k 

The expressions for T~(cp) are obtained from Eqs. 
(AI) and (A2) by replacing p with q, omitting the 
factor of minus one to the power ~klk' and regarding 
the sums to be finite. 

The expansions of the Tt(cp) aboutcp = (1T, 1T,"', 
1T) or ; = 0 are given by 

P1Th +l 
Tt(cp) = - r(I .1) [g;j(;) + hiM)] + O(~4), 

+ 2P (A3) 

where gij(;) and hij (;) are defined below. First we 
write 

g . .(;) = C(O) + ! C(2) (~r) (~) (A4) 
t) 'J r.s ors 21T 21T' 

C;~) and cg;s are constants defined as follows: 

C~~) = 0ij{ -2j(p + 2) + L' [21T<P_h+!N_iL)/; 
1 

+ <D~p(L) - 21T<Dh+l(L) 1m, (AS) 

where L = 1T~kl:, and 

C:i~~ = (21T)20rs L' [-t<Dh(L)I; 
1 

+ 1T<Dh+l(L)I~I; + 1T<D -h+!N+l(L)I;I; 
- l<P_h+!N(L)l~ - 2t5ir<P_hH_t\{L)1; 
+ (21T -lt5ir<p_h+fN_l(L»). (A6) 
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FIG. 4. Contours of constant frequency for the second branch near; = 0 when p = 1. Both planes of constant </>3 
and the </>, = </>. plane are shown. 

Finally, ifi ¥= j, then 

C (2) (2 )2~ ~ ~'[2,-t, (L)[2[2 
iir. = 17 UirU is k 17'V!p+l i j 

I 

+ 27T<l>_h+!N+1(L)I~/; - <l>-h+~N(L)(l; + I;) 
+ (217)-1<l>_h+!N_l(L)]. (A7) 

The second term in Eq. (A3) is defined as follows: 
(a) If -ip - 1 + iN is not a negative integer, then 

- [_ ~ 217h-!N+1r(tN - iP)] 
hil~) - N + ~!N-h -p .!:. 

X (;:) (;~). (AS) 

(b) If P = N, then 

hil~) = [217(Y -ln17) - 217 In (s)] (;:) (;~), (A9) 

where y = 0.5772 ... and S = "'.f,k~:1(217)2. 

(c) If -ip - 1 + iN is a negative integer less 
than -1, then 

h . .(~) = - _17_ + -17 Sh-tv In (S) 
[ 

4 2( )h-!N+1 ] 

t1 N - p r(tp - iN + 1) 

X (.t.) (11-). (AlO) 
217 217. 

APPENDIX B 

The expansion of <l>m(x) from zero into regions of 
positive x is given by the following set of formulas: 

(a) If m is not a negative integer, then 

<l>m(x) = rem + 1) _ ~ (_x)n (Bl) 
x m+1 n=o(m + n + 1)(n!) 

(b) If m = -1, then 
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(c) If m is a negative integer less than -1, then APPENDIX C 

1 x 
cI>m(x) = ----

( - m - 1) ( - m - 2) 
C,_x)-m-2 + - ... + ~----'---

2! (-m - 3) (-m - 2)! 
x-m- 1 (_xrm- 1 

+ (-lrm In x + -'------'---
(-m - I)! (-m - I)! 

x[r+ 1 +!+"'+ 1 ] 
(-m - 1) 

+ (-lrm+1 [ x-
m 

_ x-
m

+
1 

(-m)! 2( -m + I)! 
x-m+

2 
] 

+ 3( - m + 2)! - . .. . (B3) 

The bracketed terms appearing in Eqs. (25) and 
(26) are defined as follows. (m, n, r) is the sum of all 
distinct terms of the form ~'?'~;~~ where i, j, and k 
are distinct. For example, 

(4,2,2) = ~t~~~~ + ~~~~~~ + ~~~~~~. 
FinaIIy we define (m, n) == (m, n, 0) and (m) == 
(m, 0, 0). For example (2) = ~2. 
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Functional analysis techniques are used to obtain stability theorems for the Faddeev equations in the 
quantum-mechanical three-particle nonrelativistic scattering theory. Sufficient conditions are obtained in 
order that the solutions of these equations not be sensitive to small variations of the off-shell two-particle 
amplitudes. These conditions provide criteria for the validity of some of the previous formal investiga­
tions of the Faddeev equations. 

I. INTRODUCTION 

In recent years there have been numerous applica­
tions of Faddeev's formulation of the quantum­
mechanical three-particle scattering problem with 
pairwise interactions l to various aspects of nuclear 
and particle physics,2 liquid helium,3 and quantum 
statistical mechanics.4 One of the advantages of this 
formulation is that the three-particle scattering prob­
lem is expressed in terms of the exact solutions of the 
scattering problems for the two-particle subsystems. 

One part of the theory which is still lacking, how­
ever, is a "stability theorem" stating that the solutions 
of the Faddeev equations are not sensitive to small 
variations of the two-particle off-shell amplitudes. 
The need for such a result was first noted by Lovelace5 

and more recently by others.6 As Lovelace emphasized, 
the stability question is particularly important in 
practice because the off-shell two-particle amplitudes 
are, in general, not exactly known. Some results 
pertaining to the problem of stability have been 
obtained by varying input parameters of computer 
solutions of approximate versions of the Faddeev 

1 L. D. Faddeev, Mathematical Aspects of the Three-Body Problem 
in the Quantum Scattering Theory (Israel Program for Scientific 
Translations, Jerusalem, 1965). References to earlier papers by this 
author can be found here. 

2 We refer to two reviews of these developments: K. M. Watson, 
J. Nuttall, and J. S. R. Chisholm, Topics in Several Particle Dynamics 
(Holden-Day, Inc., San Francisco, Calif., 1967); I. Duck, in Ad­
vances in Nuclear Physics, M. Baranger and E. Vogt. Eds. (Plenum 
Press, New York, 1968), Vol. I. 

3 T. W. Burkhardt, Ann. Phys. (N.Y.) 47,516 (1968); E. 0stgaard, 
Phys. Rev. 171,248 (1968). 

4 W. G. Gibson, Phys. Letters 21,619 (1966); A. S. Reiner, Phys. 
Rev. 151, 170 (1966); B. J. Baumgarth, Z. Physik 198,148 (1967). 

• C. Lovelace, in Strong Interactions and High Energy Physics, 
edited by R. G. Moorhouse (Plenum Press, Inc., New York, 1964); 
Phys. Rev. 135, BI225 (1964). 

6 M. Fontannaz, Nuovo Cimento 53B, 53 (1968); International 
Nuclear PhYSics Conference, C. D. Goodman, P. H. Stelson, and 
A. Zucker, Eds. (Academic Press Inc., New York, 1967), see the 
discussion following the talk by R. D. Amado; R. Blankenbecler, 
in Theory of Three-Particle Scattering in Quantum Mechanics, J. 
Gillespie and J. Nuttall, Eds. (W. A. Benjamin, Inc., New York, 
1968). 

equations.7 The trouble with this approach is that it is 
a difficult matter to disentangle the properties of the 
calculational schemes employed to solve the Faddeev 
equations from the properties of the equations them­
selves. From a different point of view, several authors 
have considered modifications of the Faddeev equa­
tions resulting from the expression of the two-particle 
amplitudes as the sum of two parts.8 

The purpose of the present paper is to investigate 
the stability of the Faddeev equations by using the 
rigorous formulation of perturbation theory for 
linear operators in Banach spaces.9 This work may be 
considered the analog for the three-particle scattering 
problem of that of GrossmannlO on the two-particle 
problem in which the stability of the Lippmann­
Schwinger equation was investigated in a rigorous 
manner. 

In Sec. II we pose the stability problem for the 
Faddeev equations and discuss the relationship of our 
approach to previous work. Then in Sec. III we lay 
the foundation for our work, including a short review 
of some known results in a form suitable for our 
purposes. In Sec. IV, sufficient conditions are obtained 
for stability of the inhomogeneous Faddeev equations. 

7 R. Aaron, R. D. Amado, and Y. Y. Yam, Phys. Rev. 136, B650 
(1964); A. G. Sitenko, V. F. Kharchenko, and N. M. Petrov, Phys. 
Letters 21,54 (1966); H. Hebach, P. Henneberg, and H. Kiimmel, 
ibid. 24B, 134 (1967); G. L. Shrenk and A. N. Mitra, Phys. 
Rev. Letters 19, 530 (1967); W. Bierter and K. Dietrich, Nuovo 
Cimento 52A, 1209 (1967); M. Fontannaz, Ref. 6; N. M. Petrov, 
S. A. Storozhenko, and V. F. Kharchenko, Yad. Fiz. 6, 466 
(1967) [Sov. J. Nucl. Phys. 6, 340 (1968)]. 

8 E. O. Alt, P. Grassberger, and W. Sandhas, Nucl. Phys. B2, 
167 (1967), and references contained therein; I. H. Sloan, Phys. Rev. 
165, 1587 (1968); M. G. Fuda, ibid. 166, 1064 (1968); R. J. Yaes, 
ibid. 170, 1236 (1968). We thank Dr. Yaes for preprints of his work 
prior to publication. 

9 See, for example, T. Kato, Perturbation Theory for Linear 
Operators (Springer-Verlag, Inc., New York, 1966). We shall quote 
some standard results from this reference, referred to as K. 

10 A. Grossmann. J. Math. Phys. 2, 714 (1961). Note added ill 
proo!' Similar work was also done by A. Ya. Povzner and T. 
Ikebe. See T. Ikebe, Arch. Ratl. Mech. Anal. 5, 1 (1960), where 
reference to Povzner's work is given. 
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Section V is then devoted to the discussion of the 
corresponding sufficient conditions for stability of the 
homogeneous equatio~s. Finally, Sec. VI consists of 
the concluding remarks. 

II. POSING THE STABILITY PROBLEM 

The Faddeev equations are a set of three coupled 
linear integral equations which can be written in the 
inhomogeneous and homogeneous forms, respectively, 
as 

fez) = g(z) + A(z)j(z), 

fez) = A(z)j(z). 

(1) 

(2) 

Here, z is an energy parameter which may assume 
complex values and the integral operator A depends 
upon the two-particle amplitudes in a linear manner. 

These equations are defined in a scale of Banach 
spaces B(O, f-t) consisting of bounded, Holder-con­
tinuous, complex-valued functions on R6 which are 
characterized by their Holder-exponent f-t and their 
behavior at infinity (0). The definition of B(O, fl) is 
somewhat involved and we refer to Ref. 1 for these 
details. We consider instead, solely for the sake of 
simplicity, the scale of Banach spaces B(O, fl) con­
sisting of all bounded, continuous, complex-value 
functions on R1 satisfying 

Il(x + y) - f(x)1 ::; const x IYI", 
\Y\ S 1, ° < fl < 1, 

\f(x)\ ::; const x (1 + \xl)-8, ° > 0, (3) 

normed by 

IIf11o,,, = sup (1 + ixlt 
x,Iul :S1 

X [1f(X)\ + Il(x + y) - f(X)I]. (4) 

IYI" 
Anything that we prove for B(O, f-t) can also be proved 
for B(O, f-t). The procedure of using B instead of B is 
not necessary and does not alter the results in any way. 
The sole reason for introducing B is to simplify the 
proof of Theorem 4. 

Consider an operator of the form 

H(K, z) == A(z) + KC(Z), 0::; K S 1, (5) 

and write the inhomogeneous and homogeneous 
forms, respectively, of the corresponding equation 

F(K, z) = G(K, z) + H(K, Z)F(K, z), (6) 

F(K, z) = H(K, Z)F(K, z). (7) 

The stability problem can now be stated in the follow­
ing form. If G(K, z) and H(K, z) are continuous in K 
as K ---+ 0 (in a sense to be specified), then under what 
conditions are the solutions F(K, z) of (6) and the 

solutions F(K, z) and eigenvalues z = Z(K) of (7) 
continuous in K as K ---+ O? 

These questions are mathematically nontrivial be­
cause the operator A is unbounded and, moreover, is 
not densely defined.n If the function space involved 
here were finite-dimensional, the stability problem 
could readily be solved.12 It will be shown in Sec. V 
that the question of the stability of the eigenvalues 
Z(K) and the solutions F(K, z) obtained from (7) can be 
reduced to considerations in such a space. Unfor­
tunately, no such reduction is possible for the solutions 
F(K, z) of (6). 

The physical situation that we have in mind in 
formulating the stability problem in the above manner 
is as follows. We first consider a three-particle scatter­
ing problem described by (1) and (2). We then modify 
the two-particle amplitudes resulting in the corre­
sponding Eqs. (6) and (7). The objective is then to 
discuss the relationship between the solutions of (6) 
and (7) and of (1) and (2) resulting from the modi­
fication of the operator A, as given by (5). This formu­
lation of the problem allows us to investigate the 
effect of adding more terms in the separable 
approximation7 and to give sufficient conditions for 
the validity of the previous perturbation approaches to 
the Faddeev equations.s With regard to the former 
application it is essential that we do not restrict C to 
be a single operator, but allow it to consist of a sum 
of operators. Our conditions will always involve the 
"total" operator C. 

III. REVIEW OF PREVIOUS RESULTS 

We first discuss some known results concerning (1) 
and (2). 

Theorem 1 (Fredholm alternative1I.l): Suppose that 
the two-particle potentials Vii E B(Oo, flo), 00 > t 
[eo> i in the case of B(eo, flo)], flo >L 1 S i < 
j S 3, are real-valued. Then for ° S eo, fl S flo, 
there exists a positive integer n such that Am has 
a compact extension K from its domain D(Am) 
to the entire space Xo == B(O, fl) which maps Xo 
into D(Am) for all positive integers m ;;::: n. More­
over, for a given value of z, either (2) has a non­
trivial solution, 0 =;t. f E D(A m), or there exists a 
unique solution f E D(A) of (1). 

Definition 19
: A linear operator T is closed if 

x" E D(T), Xn ---+ x, and TXn ---+ Y imply that x E D(T) 
and Tx = y. 

11 S. Albeverio, W. Hunziker, W. Schneider, and R. Schrader, 
Helv. Phys. Acta 40, 745 (1967). 

12 The relevant theorems are contained in Ref. 9, Chap. II. 
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Lemma 1: Given the conditions on the two-particle 
potentials of Theorem 1, then A is a closed linear 
operator. 

This result is contained in Faddeev's work,1 al­
though it is not expressed in this terminology. 

Lemma 2: If A is as in Lemma 1 and P is a poly­
nomial, then peA) is a closed linear operator. 

Proof" 'By virtue of Theorem 1, Lemma 1, and a 
well-known result,13 we have only to show that a value 
of z exists such that (2) has only the trivial solution. 
However, Faddeev showed that this is true for any 
z with 1m z ~ o. 

Following Albeverio et al.,ll we define a norm on 
D(Ak) by 

k 

II/Ilk = I IIA'lllo (8) 
i=O 

in terms of the norm on Xo. It now follows from 
Lemma 2 that these domains are Banach spaces 
(K.IV.1.4), which will be denoted by Xk • 

Following the notation of Kato} we denote by 
B(X, Y) the set of all bounded linear operators on X 
to Y, where X and Yare Banach spaces. If X = Y we 
write B(X, X) = B(X). B(X, Y) is a Banach space 
with the norm of T E B(X, Y) defined in the uniform 
operator topology by 

IITllxy == sup IITxliY. (9) 
O*",EX Ilxllx 

Also, we denote by C(X, Y) the set of all closed linear 
operators in X to Y. If T E C(Xo, Y), then, for 
simplicity, we will not use a special notation for the 
restriction of T to X k • Now, we have 

Theorem 211: If Theorem 1 holds and if (1) has a 
unique solution f E Xl' then (I - A)-l E B(X m' Xl); 
i.e., there exists a positive constant a such that (I is the 
identity operator): 

11(1 - A)-lglll S a Ilgllm for all g E X m • (10) 

Indeed, by making use of the identity 

m-l 
(I - A)-l = (I - Amrl ~ Ai, 

;=0 

it is easily seen that a permissible choice for a is 

a = 2 II(I - K)-lllo. 

18 See, for example, N. Dunford and J. T. Schwartz, Linear 
Operators (Interscience Publishers, Inc., New York, 1958), Vol. I, 
p.602. 

IV. STABILITY OF THE INHOMOGENEOUS 
FADDEEV EQUATIONS 

Our first result concerning the stability of the 
Faddeev equation is 

Theorem 3: If z is such that [I - A(Z)]-l exists in the 
sense of Theorem 2, D(C) ::::> D(A), and 

IIc(z)ullm S d Ilulll for all u E Xl, (11) 
with 

d < lla, (12) 

i.e., C(z) E B(Xl' Xm), then [I - H(K, Z)]-l exists as 
an element of B(X m' Xl) and is continuous in the uni­
form operator topology for sufficiently small K ~ O. 

Proof" Consider the formal identity 

[I - H(K, Z)]-1 = [I - A(Z)]-l[I - KS(Z)rl 

ct) 

= [I - A(z)rl ~ [KS(ZW (13) 
1=0 

in which S(z) == C(z)[I - A(Z)]-l. 
Combining (10) and (11) we see that S(z) E B(Xm). 

Using (10) again it follows from (13) that 

[I - H(K, Z)]-l E B(Xm' Xl) 

if it exists. Since K E [0, 1], a sufficient condition for 
the absolute and uniform (in K) convergence of the 
series (13) is 

IIS(z)llm < 1. (14) 

Combining this condition with (10) and (11) gives the 
bound (12) on d. With this condition [I - H(K, Z)]-l 
exists. 

Using (10) and (13) we obtain 

II {[I - H(K, Z)]-l - [I - A(Z)]-l}glll 

S a IKIIIS(z)llm [I - IKIIIS(z)lIm]-l Ilgllm 

for all g E Xm • Hence, [I - H(K, Z)]-l is continuous 
in K for sufficiently small K ~ 0 in the uniform topol­
ogy, and the theorem is proved. 

The bound on d obtained above is not very illumi­
nating. Using an elementary identity we find 

d < ! III - K(z)llo S HI + IIK(z)llo]. (15) 

A sufficient condition for the existence of [I - K(Z)]-l 
is IIK(z)llo < 1, which is satisfied for sufficiently large 
values of Izil. In this case we have d < 1. In general 
however, it is only necessary that IIKP(z)lIo < 1 for 
some positive integer p. In this case it is possible that 
d ~ 1. 

The results of Theorem 3 derive from the sufficient 
condition (14). It is, of course, only necessary that 
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IISP(z)llm < 1 for some positive integer p. We shall 
limit consideration, in the present paper, to the 
investigation of the consequences of the sufficient 
condition (11). 

We note that it follows directly from Theorem 3 
that the solutions of (6) are continuous in K for 
sufficiently small K ~ 0 in the uniform topology. 
Thus, we have essentiallyI4 completed the stability 
problem for the scattering states and the rest of the 
paper will be primarily concerned with the bound­
state problem. 

V. STABILITY OF THE HOMOGENEOUS 
FADDEEV EQUATIONS 

We can obtain from (11) two weaker conditions 

lIc(z)ull l ~ d lIulil (16) 
and 

IICCz)ull o ~ d lIull!> with U EXl , 

D(C) ~ D(A), and d < l/a. (17) 

Condition (17) is usually described by saying that C 
is A-bounded,s whereas (16) tells us that C E R(Xl ). 

Lemma 1 states that A(z) is a closed linear operator. 
If (17) holds with d < 1 it follows (K.IV.l.1) that 
H(K, z) is also a closed linear operator. However, as 
noted above, the inequality d < 1 need not be satisfied. 
Thus, we need to impose a more stringent condition 
on the operator C. We will show, however, that this 
proposed condition actually follows from (16). 

Definition 29
: Let T and S be two linear operators in 

a Banach space X such that D(S) ~ D(T). S is T­
compact if, for any sequence Un E D(T) with both 
{Un} and {TUn} bounded, {Sun} contains a convergent 
subsequence. Equivalently, {Sun} is relatively compact, 
i.e., it has compact closure. 

We now have 

Theorem 4. If (16) holds then C is A-compact. 

This condition is stronger than A-boundedness, but 
the assumption that d < 1 is not required. In order to 
prove this theorem we use the following standard 
result. 

Lemma 3 (Asco/i-ArzeJa theorem): Let C(RI, 0) be 
the Banach space of complex-valued continuous 
bounded functions normed by 

IIfllc = sup (1 + IxI)8If(x)l, 0> t. (18) 
mER1 

U The uniqueness of these solutions will be established in Theo­
rem 5. 

Consider an infinite sequence {fn(X)} E C(RI, 0) such 
that: fn(x) is equicontinuous on each closed sub­
interval of RI, 

lim sup Ifn(x) - fn(x')1 = ° for all n, (19) 
~-+o+ Ix-x'I:;~ 

and there exists a uniform bound M and a positive 
number r such that 

for all x such that Ixi > r and all n. Then the sequence 
{fn(x)} is relatively compact in C(R\ 0), i.e., from 
every such sequence a subsequence can be extracted 
which converges uniformly on every compact subset 
of RI. 

In the usual statement of this result the domain of 
the functions is taken to be a compact set. In that case 
the theorem is true if these functions are uniformly 
bounded and equicontinuous. In the case of interest 
here, the treatment of Epsteinl5 shows that it is 
sufficient to require that the functions be equicontin­
uous on each compact subset of the domain and 
equibounded (in n) at (at least) one point, the 
uniform-boundedness property following from these 
conditions. In a paper on the two-particle scattering 
problem (Lippmann-Schwinger equation) Belinfantel6 

stated the above theorem for functions on R3 with a 
condition similar to (20), but with 0 = 1. In the 
three-particle problem, however, (20) is more natural, 
as will be seen below. 

Proof of Theorem 4: Consider a bounded infinite 
sequence in Xl' {uJ E Xl' lIuv ll l ~ q = const. We 
must show that the sequence {Cu.} has a subsequence 
which converges in the norm topology of Xl' 

In terms of the norm on Xo we have 

IIAiu.llo ~ q, j = 0, 1. 

It follows from (16) that 

IICu.1i1 ~ dq 
or 

IIAiCu.llo ~ dq, j = 0, 1. (21) 

Since any Holder-continuous function is a fortiori 
continuous it follows that the norms of C(Rl, fJ) and 
Xo are equivalent in the sense that two positive u­
independent constants IX and fJ exist such that 

IX Ilullo 5: Ilulic ~ fJ Ilulio. (22) 

15 B. Epstein, Partial Differential Equations (McGraw-Hili Book 
Co., Inc., New York, 1962), p. 4. 

16 1. G. Belinfante, 1. Math. Phys. 5, 1070 (1964). 
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This equivalence coupled with (21) implies that 

IIA iCu vllc:5 dqq', q' = const, j = 0, 1, 

or 

IAiCuv(x)1 :5 dqq'(l + \xl)-6, j = 0, 1. 

Hence, for sufficiently large r > 0, 

i dqq' 
IA Cu.(x)1 :5 Ix16 ' Ixl > r, j = 0, 1, 

and the sequences {AiCuv(x)}, j = 0, I, satisfy (20). 
Now, introduce the norm 

IIfllc' == sup (1 + Ixlt If(x + y) - f(x)1 , 
"'.IYI~l lylIL 

o > 0, ° < .u < 1. (23) 

Clearly this norm is equivalent in the sense of (22) to 
the norms on CCR\ 0) and Xo. Combining this fact 
with (21) we obtain IIAiCUvllc,:5dqq', j=O, 1, 
q" = const. Now using (23) we find 

IAiCu.(x + y) - AiCu,(x)1 :5 dqq" lylIL (1 + Ixl)-6, 
j = 0, 1. 

Hence, the sequences {AiCuJ, j = 0, 1, are equicon­
tinuous on each closed (and hence compact) sub­
interval of R1. 

It now follows from Lemma 3 that each of the 
sequences {AiCuv}, j = 0, 1, have convergent sub­
sequences in CCR1, 0). By the equivalence of the norms 
these subsequences are also convergent in Xo and, 
therefore, the sequence {CuJ has a convergent sub­
sequence in the norm topology of Xl, which completes 
the proof of the theorem. 

Definition 39 : For T E CCX, Y) we define 

nul T(nullity or kernel index of T) 
== dimension of the null space of T, 

def T (deficiency or deficiency index of T) 
== dimension of the quotient space YjR(T), III 

which R(T) denotes the range of T. 

These quantities are either nonnegative integers or 
infinite. If they are both finite and R(T) is closed, then 
T is said to be FredholmY In this case, the index of T 
is defined as 

ind T == nul T - def T. 

If Tsatisfies the Fredholm alternative, then ind T = 0. 

17 This condition can be relaxed by only requiring that one of the 
pair nul T, def T be finite. In this case ind T is still well defined and 
T is said to be semi-Fredholm. We shall not require this more 
general concept. 

It follows from Lemma 1 and an elementary result 
that A - / is a closed linear operator. From the proof 
of Theorem III we have 

and 

nul (A - I) < 00, 

def (A - I) < 00, 

ind (A - 1) = 0. 

(24) 

(25) 

From these facts and the closedness of R(A),IB and 
consequently the closedness of R(A - I), we see that 
A - / is Fredholm. 

We can now return to the discussion preceding 
Definition 2 and prove that H(K, z) is a closed linear 
operator without requiring the condition d < 1. 
Actually, we obtain additional results without stronger 
hypotheses. 

Theorem 5: If (11) holds then the operator H - / 
is linear, closed, Fredholm, and satisfies the Fred­
holm alternative. 

Proof' The linearity is obvious and the remaining 
properties follow from the facts that A-I is closed 
and Fredholm, Eq. (25), and Theorems 4 and 
K.IV.5.26. 

This theorem states, among other things, that 

ind (H - 1) = ind (A - I), 

but says nothing regarding the relative magnitudes of 
the respective kernel and deficiency indices. We now 
consider this question. A preliminary result is 

Lemma 4: If (11) obtains then the set of z-values for 
which [1 - H(K, Z)]-l does not exist (in the sense of 
Theorem 3) is at most countable, closed, and is con­
tained within a finite interval on the real axis. 

Proof' Faddeev1 showed that these statements hold 
for [1 - A(Z)]-l. It has been shown in Theorem 3 
that, if [/ - A(Z)]-l exists and (11) obtains, then 
[/ - H(K, Z)]-l also exists. The proof of the lemma 
follows immediately. 

It follows from Theorem 5 that the set of z-values 
discussed in Lemma 4 is precisely that for which 
nontrivial solutions of (7) exist. 

18 This can easily be shown by using some elementary considera­
tions and Eq. (7.8) of Ref. 1. This simple result was previously noted, 
by the use of a slightly different argument, by K. Mochizuki, J. 
Math. Soc. Japan 19,123 (1967)., 
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We now have 

Theorem 6: If A and H are as in Theorem 5, then 

nul (H - I) ::::;; nul (A - I) < 00. 19 

Proof Consider the equation 

A(Z)/(Z) = A(z)/(z), (26) 

where A(Z) is the eigenvalue of A as a function of 
energy.20 Choose Zo to correspond to a nontrivial 
solution of (2), i.e., 

(27) 

Since Zo is an element of a set which is at most count­
able, we can draw a circle around Zo: 

Z. = {z: Iz - zol = €}, € > 0, 

such that if Z E Z. and € is sufficiently small then 
A(Z) =;6 1. In other words, [A(Z) - A(Z)]-1 exists in the 
sense of Theorem 2 for Z E Z •. 

As Z ranges over Z., A(Z) traverses some path in the 
complex plane which can be taken as a circle r 
enclosing the point A = 1. We now define the operator 

P == _1 ([A(Z) _ A(Z)tl dA (28) 
27Ti Jr 

and note that r separates the spectrum, i.e., the Zo in 
(27) is unique. P is the eigenprojection onto the closed 
linear manifold, M, consisting of all 1 satisfying 
(26) with A = 1.9 Furthermore, by (24), 

nul (A - /) = dim M < 00. (29) 

Now consider the operator 

P(K) == ~ ( [A(K, z) - H(K, z)r l dA, (30) 2m Jr 
where Z and r are the same as above and A(K, z) is the 
eigenvalue of H(K, z) as a function of K and z. 

From the estimate 

IIP(K)IIm1::::;; p II (A(K, z) - H(K, z»-lilml' 
p = radius of r, 

and Theorem 3 it follows that P(K) exists as an 
element of B(Xm' Xl) and is continuous in K for 
sufficiently small K ~ 0 in the uniform topology. 

19 This theorem is true in a finite-dimensionaispace (see Ref. 9, 
Chap. II) and is what one expects physically. In the present case with 
infinite dimensionality it can be proved if C is A-bounded with 
d < 1 (K.IV.5.22). This restriction on d can be lifted if C is a single 
operator and, furthermore, the equality holds in this case 
(K.IV.5.31). We pointed out in Sec. II, however, that this condition 
is too abusive to the physical problem. By making use of our previous 
results we give a different proof of this theorem, unhampered by the 
restrictions noted above. 

20 There should be no confusion concerning our two usages of the 
word "eigenvalue." In (26), A. is an eigenvalue of A, whereas z is a 
discrete eigenvalue of the Hamiltonian. 

Furthermore,9 P(K) is a projection and is the sum of 
the eigenprojections of all eigenvalues of H(K, z) 
lying inside r. This shows that r separates the 
spectrum of H(K, z) and completes the proof of the 
theorem. 

A direct consequence of this theorem is that, in 
physical terms, the eigenvalues A(K, Z(K» of H(K, Z(K» 
are derived from the corresponding eigenvalue A(Z) 
of A(z) by splitting, i.e., by breaking the degeneracy. 

We can now establish the stability of the bound 
state energies. 

Theorem 7: If H is as in the above theorem, then 
the eigenvalues Z(K), obtained from (7), are continuous 
functions of K for sufficiently small K ~ O. 

Proof Let P(K) be as in the preceding theorem, and 
denote its range by M(K). It then follows from 
K.1.4.10 that M(K) and M are isomorphic. In partic­
ular, 

dim M(K) = dim M. (31) 

It now follows from K.VII.1.8 that the eigenvalues, 
A(K, Z(K», of H(K, z) are continuous functions of K, 
i.e., branches of one or several analytic functions 
which have at most algebraic singularities near 
K = 0. 21 Moreover, Kato's discussion emphasizes 
that, since we are dealing with a finite system of 
eigenvalues (the part of the spectrum inside r), the 
problem is reduced to a problem in a finite-dimensional 
space. We need only restrict ourselves to the subspace 
M(K). 

In view of the finite-dimensional nature of the 
problem we can now use the result22 that A(K, z) is 
continuous separately in the variables K and z if 
H(K, z) has this property. The continuity of Z(K) in K 
now follows from the continuity of A(K, z) in the two 
variables separately, the mapping (27), and the 
discussion following that equation. This completes 
the proof of the theorem. 

Theorem 8: If H is as in Theorem 5, then the 
nontrivial solutions of (7), F(K, z), are continuous 
functions of K for sufficiently small K ~ O. 

Proof' This result follows as a corollary to the proof 
of the preceding theorem. 

21 Kato states this theorem for the case in which H(K, z) is holo­
morphic in K near K = 0, whereas we have been concerned with the 
case in which H(K, z) is only continuous in K E [0, I] for sufficiently 
small K. Following a discussion by Kato, however, (Ref. 9, p. 365) 
we can consider H(K, z) to be real holomorphic if it admits a Taylor 
expansion at each K E [0, I]. In this case, H(K, z) can be extended by 
the Taylor series to complex values of K in some neighborhood D of 
[0, I]. This extended H(K, z) is then hoiomorphic for KED. We note 
that in the present case the Taylor expansion is entailed by (5). 

22 See Ref. 9, p. 116. 
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We have now completed our discussion of the 
stability of the Faddeev equations. The final theorem 
gives more information concerning the eigenvalues 
Z(K). 

Theorem 9: If H is as in Theorem 5, then the eigen­
values Z(K), obtained from (7): 

(a) are at most countable, form a closed set, are 
contained within a finite interval on the real axis, 

(b) have finite multiplicity, and 
(c) have the same accumulation points as the eigen­

values Z obtained from (2). 

Proof" It is known that the eigenvalues z, obtained 
from (2), have the properties (a) and (b).1.23It follows 
from Theorem 5 and Lemma 4 that (a) holds for 
Z(K). The validity of (b) for Z(K) follows from (29) and 
(31). Finally, (c) follows from Theorems 4 and 
K.lV.5.35, and the theorem is proved. 

We see from this theorem that H has the spectrum 
of a compact operator, as does A. It does not neces­
sarily follow, however, that some power of H has a 
compact extension to the entire space, Xo , although 
A has this property.24 However, if we take the point 
of view, implied by the discussion at the end of 
Sec. II, that (6) and (7) evaluated at some KO E (0, 1] 
are legitimate Faddeev equations, i.e., that Faddeev's 
estimates apply to them, then Theorem 1 will obtain 
and consequently the Hm, m ~ n, have compact 
extensions to all of Xo. We note, however, that all 
our results are independent of this additional assump­
tion. 

23 These results were proved under different conditions on the 
two-particle potentials than those imposed by Faddeev by W. 
Hunziker, Helv. Phys. Acta 39,451 (1966). 

24 In this case, the Hilbert space provides a less varied situation 
than other Banach spaces. It is known in the case of either a bounded 
normal operator in an arbitrary Hilbert space or a self-adjoint oper­
ator (not necessarily bounded) in L"( - 00, 00) that operators with 
spectra of compact operators are necessarily compact. Discussion of 
these results and references to the original papers can be found in 
Ref. 13, p. 611. Note added in proof: However, this property does 
not necessarily hold if the condition of normality is removed. See 
C. R. Putnam, Commutation Properties of Hilbert Space Operators 
(Springer-Verlag, Inc_, New York, 1967), p. 48. 

VI. CONCLUDING REMARKS 

It has been shown that the hypotheses of Theorem 
3 are sufficient to prove the stability properties of the 
Faddeev equations. These conditions provide criteria 
for the validity of some of the previous formal 
investigations.7•8 

Our results could be extended in at least two ways. 
First, it would be interesting to see whether or not the 
two-particle potentials used in practical problems7•8 

lead to operators which satisfy our sufficient con­
ditions. Secondly, necessary conditions for stability 
could be obtained by considering the consequences of 
the requirement that the spectral radius of the opera­
tor S, introduced in Theorem 3, be less than unity, or 
by considering some equivalent condition. Alter­
natively, an attempt could be made to prove the 
existence of [J - H(K, Z)]-l without using the series 
(13). 

After this paper was completed, we received a 
preprint of Hepp's interesting work on the N-particle 
problem25 which contains, among other things, some 
results concerning stability. In obtaining these results 
stronger conditions are imposed on the two-particle 
potentials than in the present work. These conditions 
require that the homogeneous form of the generalized 
Faddeev equations have no nontrivial solutions. 
On the other hand, his results hold for the 
N-particle problem, whereas we have been concerned 
only with the case N = 3. It appears that, with regard 
to the problem of stability of the Faddeev equations, 
the methods and results of the two approaches are 
complementary. 
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Exact and approximate expressions are given for the integrals 

Vnm = S~D x"(x' + ~.)-m(eP' + 1)-1 dx. 

The integrals 

iD wn 
Vnm = 2 2 few) dw, 

-D (w +!:1)m 
(1) 

where few) = (ePC9 + 1)-1 is the Fermi function 
({3 = l/kT), occur throughout the theory of the 
Kondo effect. Most recently, the case m = 2 has been 
discussed by Klein1 who approximated them by taking 
the derivative off(w) as a pulse function. The purpose 
of this note is to point out that these integrals can be 
evaluated "exactly." 

First of all, only the cases m = 1, n = 0, 1 need be 
treated in detail since the others may be obtained by 
differentiation with respect to !:1. For D = 00, these 
integrals have been evaluated by Adtlwi and the 
author2 in terms of the digamma function. 

Next we note that 

Vnm = LD(W2 :n!:12)m [few) + (-l)nf( -w)] dw. (2) 

Sincef(w) + f(-w) = 1, if n is even, Vnm is elemen­
tary. Thus, only the case Vll need be considered, and 
we have 

Vll = - (D 2 W 2 tanh (fJ
W

) dw. Jo w +!:1 2 
(3) 

For the case of low temperatures, which we define as 
kT < !:1j7T, Fermi integrals are easily evaluated by a 
variety of methods. For example,3 to order e-PD , 

Vll = -i In [ 1 + (~n 

where B2k is a signed Bernoulli number. For kT« 
!:1/7T, 

1 A. P. Klein, Phys. Rev. 172, 520 (1968). 
• I. Adawi and M. L. Glasser, J. Appl. Phys. 37,364 (1966). 
8 M. L. Glasser, J. Math. Phys. 5, 1150 (1964). 

(5) 

which agrees [to lowest order in (!:1j D)] with Naga­
oka's estimate.4 

For the high-temperature case kT ~ !:1j7T, exact 
expressions can be derived as follows. We first evaluate 
the integral 

J = (00 2 X 2 tanh ocx cos xy dx. Jo x +!:1 
(6) 

Since the integrand is even, 

J - 1 R f 00 x tanh ocx izv d 
- 2 e 2.\2 e x 

-00 x + Ll 

(7) 

and we evaluate this by residues by closing the con­
tour in the upper half-plane. x(x2 + !:12)-1 has a 
simple pole at x = i!:1 with residues i, tanh ocx has 
simple poles at x = k7Ti/2oc with residue oc-1 , k = 1, 
3, 5, ... (we assume 2oc!:1 :yI: k7T so there is no double 
pole), so we obtain 

ke-(k1T j 2a.)1I 7T 

J = 27T2 I - - tan (oc!:1)e-AlI• (8) 
k (k7T)2 - (2oc!:1)2 2 

Thus, by the Fourier inversion theorem, 

X 
2 2 tanh ocx 

x +!:1 

1
00 [ke-(k1r/2a.)y ] 

= 47T I 2 2 - tan (oc!:1)e-AY cos xy dy. 
o k (k7T) - (2oc!:1) 

(9) 

We now integrate both sides of (9) from 0 to D 
(taking oc = !(3) and then integrate with respect to y 
(or vice versa), all integrations being trivial. Thus 
we obtain 

Vn = tan (tfJ!:1) tan-l (D/!:1) - 47T I k tan-
1 

(fJD/k7T) • 
k odd (k7T)2 - (fJ!:1)2 

(10) 

This is valid for k T :yI: !:1/7T, !:1/37T, .•.. For k T» Llj7T, 
we find easily that 

Vu""' ifJLl tan-1 CD/!:1) - tfJD. (l1~ 

• Y. Nagaoka, Phys. Rev. 138, A1112 (1965). 
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For the case kT = ~/1T, a double pole occurs in the 
integrand in (7), but in this case the series which 
arises can be summed. We give only the result: 

2 {D~ 1 a [~2(D2 _ ~2) 
Vn (P~ = 1T) = 1TN D2 + ~2 - ~ aD (D2 + ~2)2 

- PD 2N 2 tanh (tPD)]}. (12) 
2 D +~ 

This cannot, of course, be differentiated with respect 
to ~ to obtain other Vnm ' but the same procedure can 
be applied to obtain all Vnm (~P = p1T) in similar closed 
form. 

In conclusion, we discuss the integrals Vn == Vn2 

evaluated by Klein. We have, exactly, 

D 1 -1 (/A) (13) 
Vo = 2~2(D2 + ~2) + 2~3 tan D u , 

v = -.L tan-1 (D/~) _ _ D __ , (14) 
2 2~ 2(D2 + ~2) 

which agree to zero order in (~/D) with Klein's 
estimates. For VI we obtain 

~ __ 1 [D ~(kT)2] 
VI = 2~2 D2 + ~2 + 3~2 ' 

for low temperature, 

~ _1_[ D~ _ tan-1 (D/~)] 
= 4~kT D2 + ~2 ' 

As a final example we consider the double integral 
which arises in evaluating the averaged value of a 
localized spin5 

s = {D ID {eP(E-E'l -:/ _~} 
lD -D (E - E ) E - E 

x f(E)[1 - feE')] dE dE'. (18) 

By means of the identity 

u-2(eU 
- 1) - u-1 = L\1 - t)e"t dt 

and the invariance of the resulting integrand under 
the substitution t --+ 1 - t, (13) can be written as 

(19) 

where 

iPD etOJ + eO- il ", fA ut- 1 + u-t 

F(PD) = dx = du, 
o 1 + eX 1 1 + u 

}. = ePD• (20) 

The integral in (15) can easily be approximated for 
large as well as small }.. For example, writing 

from a table of Mellin transforms we have 

for high temperature. (15) F(PD) = 1T csc 1Tt + (t - 1)-I}.t-\F1(1, 1 - t; 

The leading term (to zero order in D/~) in each case 
agrees with Klein's estimate but, for example, the 
lowest temperature-dependent correction for small T 
is given incorrectly by a factor of 10. For Vn , Klein 
obtains (appendix, Ref. 1), to lowest order in (/).1 D), 

Vn ,....., In (~I D) + (1/2~2)(kT)2, 
for low temperature, 

,....., (1T12)(P~) - In (PD) - 1, 

for high temperature. 
Our results show 

Vn ,....., In (~I D) + (1T2/6~2)(kT? 
,....., (1T14)(P~) - tPD. 

(16) 

(17) 

2 - t; _}.-I) - t-I }.-t
2FI (I, t; 1 + t; _}.-I). (21) 

Thus, for kT« D, 

S ~ (2D In 2)kT + 21n (DlkT) + const 

and, for kT» D, 

s~ t(DlkT)2 + O[(DlkT)4]. 

Approximating the Fermi function by a trapezoid 
again gives the leading term correctly, but in each case 
the first correction is given incorrectly in sign and 
magnitude. 

5 M. L. Glasser and J. I. Kaplan, Nuovo Cimento (to be 
·published). 
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Knowing only the zero-field magnetization (e.g., Yang's result) of the Ising model in any number of 
dimensions, one can construct a lower bound on m(h), the magnetization in finite field. Knowledge of u, 
the internal energy per bond, enables a more efficient lower bound to be constructed. Both are applica­
tions of the Griffiths inequality, as recently generalized by Kelly and Sherman, and should prove useful 
in the lattice gas problem where it is essential to know m(h). 

We present nontrivial lower bounds on the mag­
netization in finite magnetic field Im(h)1 of the Ising 
model. An "upper upper" bound is Im(h)1 = 1. 
Subsequently we hope to derive an improved upper 
bound which, together with the present result, should 
help constrain the true m(h) fairly well. 

Consider an isotropic M x N lattice, with a spin 
at every site and periodic boundary conditions, and a 
Hamiltonian 

In the limit MN -* 00 followed by h' -* 0, Griffiths 
has shown that m is positive and obeys 

lim lim m(h') ~ my, (6) 
h'-+O Jj{N-+oo 

where my is the (positive) magnetization calculated by 
Yang.3 Similarly, the limit: 

lim lim lu(h')1 = lui (7) 
h'-+O 2V[N-+00 

H(h) = -J ~ aia} - h :2 ai . 

is the zero-field short-range correlation function-i.e., 
(1) the absolute value of the internal energy per bond. 

un i 

The partition function Z(M, N, It, (3) is: 

Z(M, N, h, (3) == Tr {e-PH } 

= Z(M, N, h', p)(eP(h-h')J:ifJi)h" (2) 

where < )h' indicates "thermodynamic average w.r.t. 
H(h')." Expanding: 

/ MN \ 
(eP(h-h')J:i<1i )h' = cosh1l1

•
v P(h - h')\ IT (1 + a.;f); , 

1 h' 

(3) 

in which t == tanh f3(h - h'). 
We factor the product into pairs and apply the 

generalized Griffiths inequalityl due to Kelly and 
Sherman.2 

/1I1N \ 
\ IT (1 + ail)/ 

1 h' 

iM," 
~ II ([1 + t(ai + ai+l) + t2aiai+l])h" (4) 

1 

By translational invariance, all factors are equal, and 
the rhs of (4) is 

(1 + 2tm(h') + t2 lu(h,)/)!MN. (5) 

• This research supported by the United States Air Force, 
AFOSR grant No. 69-1642. 

1 R. B. Griffiths, Phys, Rev. 152, 240 (1966). 
2 D. G. Kelly and S. Sherman, J. Math. Phys. 9, 466 (1968). 

Thus, 

Z(M, N, h, (3) ~ Z(M, N, 0, P)(coshMN Ph) 

X (1 + 2tmy + t2Iu/)hlN. (8) 

On the lhs, we have 

Z(M, N, h,P) == exp [ MNf3 ih dh"m(h")]Z(M, N, O,P). 

(9) 

Because m(h") is a nondecreasing function of its 
argument, 

hm(h) ~ ihdh"m(h"), 

Combine (10) and (8) to obtain 

m(h) ~ (hf3)-l{log cosh f3h 

(10) 

+ i log (1 + 2tmy + t 2 Iu/)}. (11) 

We illustrate this result in Fig. 1, plotting the rhs of 
(11) for one temperature above Tc (curve A), one at 
To (B), and two below Tc (C and D). 

A lower bound, which is somewhat less efficient 
above Tc but almost as good as (11) below it, can be 
obtained with far less numerical work; according to 
Refs. (1) and (2), lui 2 m}, therefore using this on 
the rhs of (11) we find 

m(h) 2 (f3h)-l log (cosh f3h + my sinh f3h). (12) 

Above or at To, my = 0, and the resultant lower 
bound is shown as the dotted curve in Fig. 1. Below 

3 C. N. Yang. Phys. Rev. 85, 808 (1952). 
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1.0 o 

c 

.8 

.6 

. 2 

o .2 

x = TANH (3H 

Tc , the lower bound (12) rapidly approaches (11) and 
would be indistinguishable from curves C and D at the 
temperatures we have chosen, on the scale of our 
graph. 

It is hoped that the present results might be useful 

FIG. I. Lower bounds to the mag­
netization at finite field m(h) plotted 
vs x = tan Ph at various temperatures. 
For A, TIT. = 1.83; for B, T = T.; 
for C, TIT. = 0.927; and for D, TIT. = 
0.61; all using inequality (11). Dotted 
curve is inequality (I2) at all T ~ T •• 

in lattice gas theory as well as in magnetism. It should 
be noted that they are not at all restricted to two 
dimensions; once a variational estimate of m in zero 
field is known for three dimensions, it can be used 
forthwith in Eq. (12). 
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Given an irreducible unitary representation of a noncompact group, what happens if one tries to 
diagonalize one of the noncompact generators? We study some aspects of this question on an example, 
chosen to be a representation of the discrete series withj = -t of the special real linear group in two 
dimensions. 

I. INTRODUCTION 

Classical Fourier analysis is the standard example 
of diagonalization of a noncompact generator (in this 
case, the generator of translations along the real line ). 
Some interesting properties arise when such an 
Abelian noncompact group is imbedded in a larger 
structure. This occurs, for instance, when one studies 
the group G == SL(2R), of two-by-two real unimodu­
lar matrices. Let us first recall elementary properties 
of this group that will be used. An arbitrary element 
g EGis of the form z = (~~), a, b, e, d real, ad­
be = 1. The Lie algebra ofthis simple group is realized 
as traceless real two-by-two matrices, a basis of which 
is 

t = !(l 
1 2 0 _~), t2 = ~G ~), r = H~ -~), 

(1) 
satisfying the commutation rules 

[r,/IJ=/2' [r,12]=-/1 , [/1 ,/2J=-r. (2) 

These generators are such that, given a unitary 
representation of G, their representatives are skew­
adjoint operators. Let us assume that we are given 
such a representation, and let us denote by T l , Ta, 
and R these representatives. Since R generates a com­
pact subgroup, its spectrum, though unbounded, is 
discrete. From the commutation rule 

[R, (Tl ± iTa)J = ±i(Tl ± iT2), 

one sees that Tl ± iT2 play the role of raising and 
lowering operators. On the other hand, suppose we 
diagonalize T1 • Its spectrum will be continuous of the 
form iA (A real). The commutation rule 

[Tl' (R T T2)] = ±(R T Ta) 

seems to indicate that acting with R T Ta on some 
"improper states" IA), corresponding to the spectral 
value A of -iTl' will lead to the "improper state" 

• Work supported by the U.S. Atomic Energy Commission. 
t Permanent address: Service de Physique Theorique, CEN 

Saclay, BP No.2, 91, Gif sur Yvette, France. 

IA T i). We intend to discuss more precisely this 
question. 

To do this, we shall specifically study one irreducible 
representation of G which we choose to be one of 
the discrete series. l In Sec. II, we describe this 
representation following Ref. 2. Section III is devoted 
to the diagonalization of Tl through a Mellin trans­
form. It turns out that we are naturally led to study 
some properties of a set of orthogonal polynomials, 
of a type introduced by Pollaczek.3 Finally, in Sec. 
IV, we consider the representation of G in this new 
basis.4 

It will be understood in the following that when a 
real positive number x is taken to complex power y, 
arg x = O. The complex conjugate of z will be 
denoted z*. 

II. A REPRESENTATION OF THE 
DISCRETE SERIES 

As in Ref. 2, let us consider the vector space ~ of 
analytic functions such that iff E ~: 

(1) fez) is analytic for 1m z > 0, and continuous 
with all its derivatives in 1m z ;;:: 0; 

(2)](z) = (l/z)f(-(I/z» is also continuous with 
all its derivatives in 1m z ;;:: O. 

As a result of (1) and (2), one can define a norm on 
~ through 

(3) 

Equipped with this norm, ~ is not complete. Its com­
pletion is a Hilbert space Je of analytic functions in 
the upper half-plane. Indeed, if f E ~, its value at a 

1 V. Bargmann. Ann. Math. 48, 569 (1947). 
21. M. Gel'fand, M. I. Graev, and N. Y. Vilenkin, Generalized 

Functions, Vol. 5 (Academic Press Inc., New York, 1966), Chap. 
VII, Sec. 5. 

3 G. Szego, Orthogonal Polynomials (American Mathematical 
Society, Providence, R.I., 1959). 

• While completing this paper, we received a preprint from 
A. O. Barut and E. C. Phillips ("Matrix elements of representations 
of noncompact groups in a continuous basis," University of 
Colorado, 1967), which deals with a similar subject. 
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given point z(Im z > 0) is such that 

1 I i+ oo 

1 I 1/(z)1 = - f(x) -- dx 
27T -00 X - z 

1 [(+00 dx J! 
::;;; 2J; II/II 1-00 x 2 + 1m Z2 

or 

1m z > 0: If(z)1 ::;;; Ilfll/2(Im z)!. (4) 

Equation (4) shows that a Cauchy sequence in ~, 
with respect to the norm (3), will converge uniformly, 
in the ordinary sense, on any compact set of the upper 
half z-plane, to an analytic function. ~ is dense in Je, 
but it is clear that it is not all of Je as shown by the 
example of [1/(z + i)] log (1 ~ iz)/2,which belongs to 
Je but not to ~; it is, however, the limit of 

~ ! (z - i)"(z + i)-11-1 , 
1 P 

which belongs to ~. 
For an alternative description of Je, we introduce 

the functions/nCz) E~: 

/nCz) = (z - on(z + o-n-1 , n = 0, 1,··· , 

(/nl/m)=onm. (5) 

Let us show that the system Un} is complete. It is 
sufficient to prove that if / E ~ and (fn 1/) = 0 for 
all n, then / = O. Indeed, an explicit computation 
leads to Cd/dz)n(z + W/CZ)IZ=i = 0, for n = 0, 
1, .... By recurrence, all derivatives of / vanish at 
z = i and since/is analytic,/ = o. As a consequence, 
the elements of Je are characterized by sequences of 
complex numbers {an}, n nonnegative integer such 
that L la r,l2 < w; the analytic function itself is 
obtained as L~ an/,,(z). This series converges uniformly 
in any compact domain of the upper half-plane, 
since such a domain can be enclosed in a circle 
I(z - O/(z + 1)1::;;; p < 1, where one has 

I
N I [<X) J! t anf,'{z) ~ t la n I2

/(1 - p2) . 

Let (~~) == g E G and / E ~; the set of transformations 

j ---+ U(g)j, U(g)j(z) = --j -- (6) 1 (az + C) 
bz + d bz + d 

leave ~ invariant and can be extended to a unitary 
representation of G in Je. This representation belongs 
to the discrete series1 ; it is irreducible and will be 
studied in the following. From the global form (6), 
we can derive the representatives of the generators 
T1 , T2 , and R defined in the introduction. They are the 

differential operators 

T1 = !(1 + 2z ~), 
2 dz 

T2 = - ~[z + (Z2 - 1) :zl (7) 

R = ![z + (Z2 + 1) ~J. 
2 dz 

The complete set Un} satisfies 

R/n = i(n + t)/n' 
(T1 + iT2)/n = n/n-1, (8) 

(T1 - iT2)/n = -en + 1)/n+1· 

In other words, in this basis R is diagonal with eigen­
values of the form i(n + t), where n is a nonnegative 
integer. The Casimir operator Ti + T~ - R2 takes in 
this representation the value - t. If this is written as 
j(j + 1), it corresponds to a value ofj equal to -to 

III. DIAGONALIZATION OF A NONCOMPACT 
GENERATOR 

Our aim is now to diagonalize a noncompact 
generator, T1 , say. An eigenfunction of the corre­
sponding differential operator (7) is a homogeneous 
function za. For no value of the exponent does such 
a function belong to Je. This is to be expected: T1 has 
no eigenvalue (in the sense that they would correspond 
to normalizable eigenstates) but we expect its spectrum 
to be purely imaginary, or (izl - T1)-1 to exist as a 
bounded operator for 1m z ¢ O. 

We shall obtain this diagonal form by studying 
the following Mellin transform. Let / E Je; we intro­
duce the function of the real variable A, F(A) by 

/ ---+ F, F(A) = i cosh TTA (00 dp/(ip)p-t-o.. (9) 
7T Jo 

It is clear that the integral converges in the ordinary 
sense for / E~. We shall extend it with the help of 
the transforms {Fn} of the basic functions Un} intro­
duced in Sec. II: 

fn ---+ F n' 

Fn{A) = cosh TTA (oodp(p _ It(p + 1)-n-1p-t-O .. 
7T Jo 

(10) 

A convenient way of performing the integral (10) is 
to observe that the series 
<X) 

L tn{p - l)n(p + 1)-n-1 
o 

1 = , It I < 1, 0 ~ p, 
(p + 1) - t(p - 1) 
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converges absolutely and uniformly in 

[It I =:; 1 - E] X [0 =:; p < 00]. 

Hence, we obtain for the set {Fn} the generating 
function: 

~ n ") _ cosh ?Tit (00 d p-l-il 
It I < l'f t Fn(l, - ?T Jo P p(l- t) + (l + t) 

= (1 + t)-!-iA( 1 - t)-1+i", (11) 

where we have used the fact that 

Fo(A) = cosh ?Tit (00 dp p-t-iA 
?T Jo p + 1 

. e-1!A[l-i£ looJ dp -i-a _ =hm- + --p -1 
..... +0 2?T -00-;£ if p + 1 

by Cauchy's theorem. 
In formula (II), the phases of (1 + t) and (l - t) 

are zero for -1 < t < +1. 
We summarize elementary properties of the 

functions Fn(it) in the following: 

Proposition 1: 
(a) Fn{A) is polynomial in A of precise degree nand 

FnCi/2) = 1; 

(b) (-)nF!(A*) = (-1)nFn(-A) = Fn(it) 

= F(-n, t + iit; 1; 2); (12) 

(c) for It I < 1, 

(13) 

Proof' Proposition 1 asserts that the Fn(A) forms an 
orthonormal set of polynomials in the Hilbert space 
of functions F(A) such that 

11F112 = (+00 dA 1F(J.)12 < 00. 
)-00 cosh ?TA 

We have already proved (c),from which (a) and (b) 
easily follow. Indeed, Fn(A) appears equal to the 
polynomial of degree n: 

F (A) = i (-I - iA)n_i -t + iAM - )P, (14) 
n 0 (n- p)!p! 

where (x)p = rex + p)/r(x). Hence the coefficient 
of An in Fn(A) is 

(-Wi 1 = (-2i)n#O. 
o p! n - p! n! 

From the integral representation (10), we obtain 
the expression (12) of En in terms of the hypergeo­
metric function from which the value Fn(i/2) = 1 
follows. 

To establish the orthogonality relation, we make 
use again of the generating function. From the 
equality (11m xl < ?T/2): 

e";'''' ---1+00 9' dit 1 
-00 cosh ?TA - cosh x ' 

for -1 < U, t < 1 we derive 

Since we are dealing with an analytic function of t 
and U in It I < 1, lui < 1, we can identify the coeffi­
cients of its Taylor expansion and thus arrive at the 
desired orthogonality property. 

Finally, the relation (e) is an immediate consequence 
of the representation of the Lie algebra of G. Indeed, 
from Eqs. (6) and (8), we have 

t[nFn_1(A) - (n + 1)Fn+1(J.)] 

= cosh ?TA (+00 dpp-!-i;' .!!... [e",T1n(iP)]a=o 
?T loo drt. 

In the last integral, interchange of the order of 
integration and differentiation is allowed. As a result: 

![nF n __ 1(A) - (n + l)F n+l(it») 

= .!!... [eiaAF "(A)J,,,=.o = iAF n(A). 
drt. 

The polynomials Fn belong to a class which has 
been studied by Pollaczek.3 We denote by H the 
Hilbert space of square-integrable functions on the 
real line with measure dAfcosh ?TA. As usual, two 
functions which differ on a set of measure zero are 
identified. 

Proposition 2: The polynomials Fn form a complete 
orthonormal basis in H. 

Proof' In view of Proposition 1, it is sufficient to 
prove that the functions An, n a nonnegative integer, 
form a complete set in H. Let FE H be orthogonal to 
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all An. Consider the function 

g(s) = . eisAF(A). i+OO dA 

-00 cosh 17A 

It is analytic in the strip 11m AI < 17/2 and all its 
derivatives vanish at the origin. As a result, g(s) = ° 
and F(A) vanishes almost everywhere. This proves 
that the system {Fn} is complete. 

We can recover fn from Fn through an inverse 
Mellin transform: 

inez) = 21, i+ooFn(A)(-iZ)-l+i" 
I -00 

dA 17 ,17 
X ,--<arg(-lz)<-. (15) 

cosh 17A 2 2 

With these results, we can return to the integral 
transformation (9). First let f E ~; then the integral 
in (9) is absolutely convergent. Moreover, one readily 
shows that for real A, IF(A)I e-,,1,,1/2 --+ ° as IAI --+ 00 

faster than any power of IAI and hence FE H. Using 
(15), one finds that, if f=!~ anfn' then F = 
!~ anFn. In other words, the Mellin transform M 
is an isometric mapping from ~ c: Je in a dense 
subset of H which will be denoted D. By continuity, 
it is then uniquely extended to a one-to-one isometric 
mapping M from Je to H. 

We close this section by mentioning some properties 
of D. Let pn) stand for the nth derivative off E ~, 

andl(z) = z-lf(- Z-I); then: 

Proposition 3: Any F = MfE D can be extended 
as an entire function in the complex A plane. More­
over, 

f In) 

F[ - iet + n)] = i(l-n) - (0), 
n! 

l In) 

F[iO + n)] = i(2-n) -, (0), n = 0, 1, .. " (16) 
n. 

and 
PeA) = Ml(A) = -iF( -A). 

Proof' Note that one can write 

F(A) = epl(A) + iep2(A), 
where 

ep2 is deduced from rPl by changing A --+ - A and 
f --+ J Thus it is sufficient to consider rPl' At first it is 
analytic for 1m A > -l, vanishing at the points 
i[l + n], for nonnegative integer n. Furthermore, 

integration by parts gives, for an arbitrary positive 
integer p and 1m A> -t, 

rPl(A) = i cosh 17A 
<t - iA)p17 

{ 

p ( d )'-1 dP
-' X ~(- ),-1 d- fUp) d P_' p-t-iHPlp=1 

r=1 p p 

+ (-)P fdP[:;p!CiP)}-t-HP}. 
The zeros of the (! - iA)p are just cancelled by those 
of cosh 17A. We can then analytically continue this 
formula to 1m A> -t - p. Since p is arbitrary, 
rPl(A) is an entire function of A. If we set p = n + 1 
and A = -i(! + n), n a nonnegative integer, in the 
above expression, we get 

rPl[-i(! + n)] = i(-:tddn!(iP)lp=o = i(1~n)!(n)(o). 
n. p n. 

Combining these results with similar ones for rP2' we 
arrive at formula (16). 

IV. REPRESENTATION OF G 

The isometric operator M of the preceding section 
enables one to carry the representation U of G, defined 
in Je, to an equivalent representation V, defined in 
H through V(g) = MU(g)M-l. The inverse trans­
formation V-I was already indicated in (15). Hence, 
for V(g), we obtain the following expression: 

F --+ V(g)F, 

V(g)F(A) = cosh 17A [00 dpp-t-i"i+oo(ibp + d)-t-ill 
217 Jo -00 

X (ap _ icrt+iIlF(p) d", , 
cosh 17", 

with 

p > 0, _ ~ < arg (a p - iC) < ~ . 
2 ibp + d 2 

(17) 

At first, this formula is defined when FED. It is 
then extended by the unitarity property to all H. 
Assume FED and none of the real numbers a, b, c, 
dto vanish. The interchange of the order of integration 
is allowed in (17). Let us, therefore, compute the 
kernel 

KaCA, ",) = co~~ 17A 50''' dpp-t-i"(ibp + drt - ill 

x (ap - iC)-t+ill . (18) 
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Let Gl denote the subgroup of elements of the form 

(
ea

/
2 0) 

g(ex) = eatl = ° e-a/ 2 • 

The manifold S of elements g in G, such that abcd =;l= 0, 
is invariant under right and left translation by Gl . 

Moreover, 
Kg(a)gg(p)(A,ft) = eiAaKy{Aft)eiIlP, (19) 

which enables one to compute K only for representa­
tives of each type of double coset Gl \G/G l • 

These fall into four classes. We select representa­
tives of the form 

(A) = e2At. = (COSh A sinh A), 
sinh A cosh A 

(B) = e2Br = (C~S B -sin B), 
sm B cos B 

(C) = ( sinh C co~h C ), 
-cosh C -smh C 

(D) = (Sinh D -c~sh D), 
cosh D -smh D 

(20) 

where the parameters A, B, C, and D are all different 
from zero. The last two classes are taken into account 
by remarking that they can be obtained from the first 
one by left multiplication by go = (J +~), or right 
multiplication by gol, and that one has 

Kg yeA, ft) = -iKi -A, ft), 
o 

Kyy -leA, ft) = iKiA, - ft), (21) 
o 

a fact which is readily related to the properties of the 
mapping F ~ F. Let us, therefore, compute 

K(A) = Ke2Ata and K(B> = Ke.Br. 

We present in some detail the calculation for case 
(A) with A positive. We have: 

K(A)(A, ft) = CO~7T TTA L 00 dpp-i-iA 

x (ip sinh A + cosh A)-i-ill 

x (p cosh A - i sinh A)-i+ill. 

We define a single-valued integrand by performing 
cuts in the p plane from ° to + 00 and from i tanh A 
to i coth A along the imaginary axis. The branch of 
the function is characterized by Eq. (17), which takes 
the following form for p slightly above the real 
positive axis: 

arg p = 0, -7T/2 < arg (p - i tanh A) 

- arg (ip tanh A + 1) < 7T/2. 

With these conventions we can replace the original 
integration in p from zero to infinity by a line integral 

encircling the point zero clockwise, starting at p = 
+00 - iE and ending at p = +00 + iE, provided 
we replace the factor cosh TTA by ir").. Observing that 
we can close the contour at infinity, we are left with 
an integral along a contour C which encloses counter­
clockwise the cut from i tanh A to i coth A. This is 
equal to the integral from i tanh A to i coth A of the 
discontinuity of the integrand since the end points do 
not give any contribution. Collecting all the factors, 

K ( 1 ) _ h A-i+ill . h A-i-ill cosh 7Tft -11 ().-Il) 
(A) 11., ft - cos sm e 

27T 

l
cothA 

X dxX-i - iA 
tanh A 

X (coth A - X)-i-ill(X - tanh A)-i+ill, 

which after the change of variable 

x = tanh A + ----­
sinh A cosh A 

yields, for A > 0, 

K(A)(A, ft) = !e-"(A-Il) cosh Ai (A+Il) sinh A-l - i (A+Il) 

X F(! + iA,! + ift, 1; -1/sinh2 A). 

In obtaining this last expression we have made use of 
the classical representation of the hypergeometric 
function: 

F(a b· c· z) = r(c) 
, " r(c - b)r(b) 

x Ll

dt(1 - Zt)-«tb- l (1 - ty-b-l. 

Proceeding along the same lines we obtain, for an 
arbitrary A =;l= 0, 

K(A)(A, ft) = !e~"(;.-Il)/2[cosh A]i(A+Il)[lsinh An-l - i (A+Il) 

X F(! + iA, ! + ift; 1; -1/sinh2 A), 

€ = AIIAI. (22) 

For Class (B), we make again use of relation (21), 
which allows one to restrict B to ° < B < 7T/2, and 
obtain 

K(B)(A, ft) 

= !e"(I1-).)/2 re! + iA) 
r(t - ift)r(1 -+ i(A + ft» 

x (sin B)i(I'-·l.)(cos B)i(A+Il) 

x FO + ift, ! + ift; 1 + i(A. + ft); cos2 B) 

+ i!e.,(A+Il)/2 ret + iA) 
ret + ift)r(1 + i(A - ft» 

x (sin B)iC).-Il)(cos Bri (A+Il) 

x F(t - ift, ! - ift, 1 + i(A + ft), sin2 B). (23) 
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Expression (22) can be brought to a form similar to 
(23) using transformation properties of the hyper­
geometric function. 

On the manifold G-S (which contains the subgroup 
G1), the kernel is singular. Of particular interest is the 
representation of the subgroup G1 • It follows from 
(17) that 

(24) 

In other words, in this basis the representation of this 
subgroup is diagonal. Our calculation of the kernel 
Kg is not very well suited to obtain the other gener­
ators, but they can be readily recovered using, for 
instance, the Pollaczek polynomials of the preceding 
section. Indeed, we have 

TIF.,(A) = t£nFn_1(A) - (n + l)Fn+1(A)] = iAFn(A), 

(2Sa) 

RFn(A) = i(! + n)Fn(A) 

= !i[(t + iA)F n(A - i) + (t - iA)F n(A + 0], 

(25b) 

T2Fn{A) = - !i[nFn_I(A) - (n + 1)Fn+1(A)] 

= ti[(! + iA)Fn(A - i) - (t - iA)Fn(A + 0]· 

(2Sc) 

The first equation is the recurrence relation already 
proved in Sec. Ill, and only reflects the fact that T1 
is diagonal. The two others are derived, using the 
generating function (11). For instance, 

00 

= i I (w+ t)tnF.,(A) 
o 

= i(1. + t !£)(l -+ t)-i-iA(1 - trhiA 
2 dt 

= !i[(! + ;),)(1 + tri - o'(1 - t)i+ ... 

+ (l - iA)(1 + t)!-iA(1 - t)-hiA] 

= J. ! tn[(! + iA)F.,(A - i) + (! - iA)F.,(A + i)], 
2 0 

and similarly for T2 • As a result, wherever they are 
defined (and at least on D), the generators are ex­
pressed in the Hilbert space H as difference operators 
by the formulas 

TIF(A) = iAF(A), 

T2F(A) = ti[(t + iA)F(J. - i) - (t - jJ.)F(A + i)], 
RF(A) = tile! + iA)F(A - i) + (! - O.)F(A + i)]. 

(26) 

It is easily verified that TI , T2 , and R satisfy the 
correct commutation rules and are antisymmetric on 
D. For instance, one can directly show that, for any 
two F and G in D, 

(G I [T2 + R]F) + ([Tz + R]G I F) = 01 

Indeed, the left-hand side can be written as a contour 
integral: 

if dA G(A)(! + iA)F(A - i), Je cosh 7T;. 

where G(A) = G*(A*), and the contour C consists 
of the lines 1m A = 0, 1m A = t, and two infinitely 
remote segments joining these two lines on Re A = 
±A, A ~ 00. The integrand is nowhere singular 
inside this contour since the zero of cosh TTA for 
A = i/2 is cancelled by the factor (! + iA) and, as a 
result, the integral vanishes as expected. 

The relations (26) give a precise meaning to the 
remarks made in the introduction concerning the 
representatives of the other generators in the basis 
where Tl is diagonal. When the generators are realized 
as differential operators in a Hilbert space offunctions, 
we require the existence of an adequate supply of 
infinitely differentiable functions, though the whole 
Hilbert space need not contain only differentiable 
functions. In very much the same way, we are led in 
the present case to the existence of a sufficient number 
of entire functions to be able to exponentiate the 
generators. 

Similar considerations can be extended to other 
representations of G or, more generally, to those of 
semisimple noncompact groups." 
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